High-Order Spectral Difference: Validation and Acceleration using GPU Computing

Ben Zimmerman
M.S. Student
Iowa State University
Spectral Difference

- Overview
 - Brief Introduction
 - 1-D Implementation
 - CUDA Implementation
 - CUDA Validation
 - CUDA Acceleration
 - Conclusions
Introduction

- **SD3DN**
 - Spectral Difference 3-D Navier-Stokes Solver
 - High-order
 - Unstructured hexahedral elements
 - Hexahedral cells offer high efficiency
 - Solves equations in differential form
 - No surface / volume integrals
 - Implemented in:
 - MPI FORTRAN
 - CUDA C++
1-D Formulation

• Consider the 1-D wave equation:

\[
\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0 \quad f(u) = cu \quad c > 0
\]

• Discuss 3rd order spacial discretization

• First assume solution takes the following form:

\[
u(x) = C_0 + C_1 x + C_2 x^2 \quad \rightarrow \quad 3 \text{ points}
\]
1-D Formulation

\[\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0 \]

- From before we have:
 \[u \in P^2 \quad \quad f(u) \in P^3 \]
- To build flux polynomial → 4 points needed
- We use Gauss and Gauss-Lobatto Points
1-D Formulation

• How do we build the flux?

• Lagrange Polynomials (use flux point locations)

\[L_1(x) = \frac{(x - \tilde{x}_{i_2})(x - \tilde{x}_{i_3})(x - \tilde{x}_{i_4})}{(\tilde{x}_{i_1} - \tilde{x}_{i_2})(\tilde{x}_{i_1} - \tilde{x}_{i_3})(\tilde{x}_{i_1} - \tilde{x}_{i_4})} \]

\[L_2(x) = \frac{(x - \tilde{x}_{i_1})(x - \tilde{x}_{i_3})(x - \tilde{x}_{i_4})}{(\tilde{x}_{i_2} - \tilde{x}_{i_1})(\tilde{x}_{i_2} - \tilde{x}_{i_3})(\tilde{x}_{i_2} - \tilde{x}_{i_4})} \]
1-D Formulation

- The Flux polynomial becomes:

\[f(x) = f_{i1}L_1(x) + f_{i2}L_2(x) + f_{i3}L_3(x) + f_{i4}L_4(x) \]

- We require the derivative and flux values:

\[\frac{\partial f(x)}{\partial x} = f_{i1}L_1'(x) + f_{i2}L_2'(x) + f_{i3}L_3'(x) + f_{i4}L_4'(x) \]
1-D Formulation

- Spectral Difference Steps
 - Get solution \((u)\) at flux points
 - Evaluate interior flux using \(f(u)\)
 - Set end point flux to common Riemann flux
 - Get flux derivative at solution points
 - Update solution at solution points

\[u(x) = C_0 + C_1 x + C_2 x^2 \]
CUDA Implementation

• What is CUDA?
 – NVIDIA GPU Computing
 • Compute Unified Device Architecture
 – Massive parallelism of programs
 – Hundreds of “CUDA cores”
 – CUDA functions (“kernels”) contain:
 • Grid
 • Blocks
 • Threads
CUDA Implementation

- Function ("kernal") → Grid
- This Grid contains blocks
 - blockIdx.x
 - blockIdx.y
- Each block contains threads
 - threadIdx.x
 - threadIdx.y
 - threadIdx.z

From NVIDIA Programming Guide
CUDA Implementation

- Memory Importance
 - Global
 - Copied from CPU to GPU and used in calculations
 - Not very fast
 - Texture
 - Bound in CPU code
 - Allows for fast reads
 - Shared
 - Allocated within GPU code
 - 150x faster than global memory
CUDA Implementation

- **1-D Case:**
 - evaluate derivative of flux
 - Gauss points
CUDA Implementation

• Example: Calculate flux derivative:

\[\frac{\partial f(x)}{\partial x} = f_{i1} L'_1(x) + f_{i2} L'_2(x) + f_{i3} L'_3(x) + f_{i4} L'_4(x) \]

• Let:
 - sp Current solution point
 - fp Current flux point
 - nsp Total number of solution points per cell
 - cell Current cell
 - nc Total number of cells
 - L Array of Lagrange coefficients [#sp * (nsp+1)]
 - F Array of flux values [#cells * (nsp+1)]
CUDA Implementation

\[
\frac{\partial f(x)}{\partial x} = f_{i1} L_1'(x) + f_{i2} L_2'(x) + f_{i3} L_3'(x) + f_{i4} L_4'(x)
\]

- **CPU Code**

```c
for (int cell=0; cell<nc; cell++) {
    //Loop over cells

    for (int sp=0; sp<nsp; sp++) {
        //Loop over solution points
        dfdx[sp] = 0.0;

        for (int fp=0; fp<nsp+1; fp++) {
            //Loop over flux points
            //Flux derivative @ solution point per cell
            dfdx[sp] += F[fp + cell*(nsp+1)] * L[fp + sp*(nsp+1)];
        }
    //End loop over flux points

    dFdX[sp + cell*nsp] = dfdx[sp];  //Save to memory
} //End loop over solution points
} //End loop over Cells
```

- **Requires 2 nested loops on CPU for 1-D**
 - How can we transfer this to CUDA?
CUDA Implementation

\[\frac{\partial f(x)}{\partial x} = f_{i1} L'_1(x) + f_{i2} L'_2(x) + f_{i3} L'_3(x) + f_{i4} L'_4(x) \]

• GPU Code

```c
int sp = threadIdx.x; //Solution Point
int cell = blockIdx.x; //Current working Cell

double dFdX[nsp*nc];

dFdX[sp + cell*nsp] = 0.0;

for (int fp=0; fp<nsp+1; fp++) { //Loop over flux points
    int id=sp + cell*nsp;
    //Get derivative at solution points
    dFdX[id] += F[fp + cell*(nsp+1)] * L[fp + sp*(nsp+1)];
}
```

• Number of Blocks
 - nc

• Number of Threads
 - nsp

• Only one loop!
 - But what is going on?
CUDA Implementation

```c
for (int fp=0; fp<nsp+1; fp++) {
    int id=sp + cell*nsp;
    //Get derivative at solution points
    dFdX[id] += F[fp + cell*(nsp+1)] * L[fp + sp*(nsp+1)];
}
```

- Recall each cell is a block and nsp threads per block

- Uses global memory
CUDA Implementation

```
int sp = threadIdx.x;     //Solution Point
int fp = threadIdx.y;     //Flux point
int cell = blockIdx.x;    //Cell
int2 ii;                  //Dummy Variable

__shared__ double dfdx[nsp];   //dflux Shared memory
__shared__ double Ls[nsp*(nsp+1)]; //Lagrange Shared memory
__shared__ double Fs[nsp+1];    //flux Shared memory

int idx = fp + sp*(nsp+1);    //Index to read Lagrange from textured memory
int idy = fp + cell*(nsp+1);  //Index to read flux from textured memory

//Fetch data from textured memory
ii = tex1Dfetch(t_L, idx); Ls[idx] = __hiloint2double(ii.y, ii.x);
ii = tex1Dfetch(t_F, idy); Fs[fp] = __hiloint2double(ii.y, ii.x);
__syncthreads(); //Ensure all data is loaded into Shared memory

if (fp == 0) {             //Lock down threads (do not need them)
  dfdx[sp] = 0.0;
}

for (int m=0; m<nsp+1; m++) { //Loop over flux points
  dfdx[sp] += Fs[m] * Ls[m + sp*(nsp+1)];
}
```
CUDA Implementation

• What have we gained?
 – We more than doubled our lines of code
 – But...
 • Code 1 kernal launch time (global memory):
 – 8.412 milliseconds
 • Code 2 kernal launch time (shared+texture memory):
 – 3.917 milliseconds
 – Double performance per iteration!
 • Performed on NVIDIA GEFORCE GT 630M
CUDA Validation

- Isentropic Vortex
 - 2-D case
 - Motion in X
 - Two studies
 - H-refinement
 - P-refinement

5th Order Vortex Run
CUDA Validation

- **H-refinement**
 - 4 Grids
 - 10x10 – 15x15
 - 20x20 – 25x25

<table>
<thead>
<tr>
<th>Order</th>
<th>L Inf Slope</th>
<th>L1 Slope</th>
<th>L2 Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.94</td>
<td>3.96</td>
<td>3.89</td>
</tr>
<tr>
<td>5</td>
<td>4.76</td>
<td>4.98</td>
<td>5.03</td>
</tr>
<tr>
<td>6</td>
<td>5.88</td>
<td>6.08</td>
<td>6.09</td>
</tr>
</tbody>
</table>

4th order refinement
CUDA Validation

- P-refinement
 - Studied on coarse grid (10x10)
 - Polynomial increased to degree 10
 - Exponential decay of error
CUDA Validation

- Couette Flow
 - 3-D case
 - Flow between two parallel plates
 - Viscous validation
 - P-refinement study

Velocity Profile
CUDA Validation

- **P-refinement**
 - Studied on coarse grid (2x2x1)
 - Order increased to 9th
 - Exponential decay of error
CUDA Validation

- Pulse and cylinder – 2074 cells

\[P = P_{\text{inf}} + \epsilon e^{\ln(-2)\left(\frac{x^2+y^2}{r\theta}\right)} \]
CUDA Validation

- Pressure taken at 3 points
 - Compare with analytic solutions
CUDA Validation
CUDA Validation

Point B

Time
CUDA Validation

Point C

Graph showing data points for different orders of accuracy:
- **Exact**
- **2nd Order**
- **3rd Order**
- **4th Order**
- **5th Order**

Time axis ranges from 8 to 10.
CUDA Validation

- SD7003 Wing
 - 60,000 Re
 - Mach 0.1 at 4 degree AoA
 - Comparison with FDL3DI
 - 293,590 cells

<table>
<thead>
<tr>
<th>Order</th>
<th># DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>2,348,720</td>
</tr>
<tr>
<td>3rd</td>
<td>7,926,930</td>
</tr>
</tbody>
</table>
CUDA Validation

Mean U velocity profile (Data at every 0.1c)

FDL3DI

SD3DN

IOWA STATE UNIVERSITY
Department of Aerospace Engineering
CUDA Validation

Mean Pressure Coefficient

Mean Friction Coefficient

FDL3DI
SD3DN 3rd
SD3DN 2nd
CUDA Acceleration

• CUDA is fast
 - 10x, 20x, 30x, 40x

• One-to-one
 - # GPU's = # CPU's
 - Use all resources
 • All cores on CPU

• Case I
 - Propagating vortex
 - CPU (8 cores)
 - Xeon 2.27GHz
 - GPU (240 cores)
 - Tesla C1060
CUDA Acceleration

CPU run

GPU run

- 5th order (28,125 DOF)
 - Roughly 13x faster
CUDA Acceleration

- **Case II**
 - Acoustic Pulse

- **CPU**
 - Xeon 2.27GHz
 - 5th order → 3.55 hrs

- **GPU**
 - GTX 550TI
 - 192 CUDA Cores
 - Tesla C2075
 - 448 CUDA Cores
CUDA Acceleration

• 4th order
CUDA Acceleration

- 4\(^{th}\) order
CUDA Acceleration

<table>
<thead>
<tr>
<th>Type/Order</th>
<th>2(^{nd}) Order</th>
<th>3(^{rd}) Order</th>
<th>4(^{th}) Order</th>
<th>5(^{th}) Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU (GTX)</td>
<td>0.0082766</td>
<td>0.018596</td>
<td>0.041478</td>
<td>0.07455</td>
</tr>
<tr>
<td>GPU (Tesla)</td>
<td>0.0083267</td>
<td>0.019119</td>
<td>0.0321213</td>
<td>0.066518</td>
</tr>
<tr>
<td>CPU (8 Cores)</td>
<td>0.205342</td>
<td>0.57619</td>
<td>1.23375</td>
<td>2.34552</td>
</tr>
<tr>
<td>Speed Up (GTX)</td>
<td>24.81 x</td>
<td>30.98 x</td>
<td>29.74 x</td>
<td>31.46 x</td>
</tr>
<tr>
<td>Speed Up (Tesla)</td>
<td>24.66 x</td>
<td>30.14 x</td>
<td>38.41 x</td>
<td>35.26 x</td>
</tr>
</tbody>
</table>

Timings in seconds / iteration
CUDA Acceleration

- **Case III**
 - SD7003 airfoil
- **CPU**
 - Xeon 2.27GHz
 - 4 CPUs → 32 cores
- **GPU**
 - 4 Tesla C2075

<table>
<thead>
<tr>
<th>Order</th>
<th># DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>2,348,720</td>
</tr>
<tr>
<td>3rd</td>
<td>7,926,930</td>
</tr>
</tbody>
</table>
CUDA Acceleration

Q-Criterion
4 NVIDIA Tesla 3rd order
8 degree AoA

<table>
<thead>
<tr>
<th>Order</th>
<th>Required Steps</th>
<th>CPU Total Time</th>
<th>GPU Total Time</th>
<th>Speed Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd Order</td>
<td>400,000</td>
<td>607.78 hrs (25 days)</td>
<td>27.86 hrs</td>
<td>21.81x</td>
</tr>
<tr>
<td>3rd Order</td>
<td>800,000</td>
<td>3483.29 hrs (145 days)</td>
<td>137.14 hrs (\sim6 days)</td>
<td>25.4x</td>
</tr>
</tbody>
</table>
Conclusions

• GPU CFD Computing
 – Disadvantages
 • Limited by GPU memory
 • Rewrite from scratch → Best performance
 • Copy data to GPU is slow
 – Advantages
 • Huge increase in processing power over CPUs
 • Can out-preform CPU servers
 – Saving time, space, and money
 • Compiler flags to optimize CPU codes for GPU
Questions?