High Performance Computing and GPU Programming

Lecture 3: GPU Application
 GPU Intro Review
 Simple Example
 Memory Effects
GPU Intro Review
GPU Intro Review

• Shared Multiprocessors
 – “Global” parallelism
 – Assign threads into Warps (32 threads)

• Blocks
 – 1 block is executed by 1 SM
 – Reside in a 1-D or 2-D Grid
 – Composed of threads – can be 1-D, 2-D, or 3-D

• Threads
 – “Local” parallelism
 – Max = 1024 per block
• Remember the programming model
• GPUs like to have data independence
 – Achieve massive parallelism
• Finally recall GPU memory types
• Each type has advantages and disadvantages

![Diagram of GPU memory types]

- Global Memory
- Texture Memory
 - Local Memory
 - Shared Memory
 - Block 0
 - Block 1
 - Block 2
Simple Example
The example is:
- Simple mathematically
- Rather complicated implementation wise

Consider data interpolation
- \(\tilde{f}_i(x) \)
- \(f_{i,j} \)
- \(L(x) \)

\[
\tilde{f}_i(x) = f_{i,1}L_1(x) + f_{i,2}L_2(x) + f_{i,3}L_3(x) + \ldots + f_{i,n}L_n(x)
\]
Simple Example

- Just a linear combination of the value at a node multiplied by the corresponding value of the interpolation polynomial
- Let’s evaluate the derivative at n=3 points

\[
\frac{\partial f(x_1)}{\partial x} = f_{i1}L'_1(x_1) + f_{i2}L'_2(x_1) + f_{i3}L'_3(x_1)
\]

\[
\frac{\partial f(x_2)}{\partial x} = f_{i1}L'_1(x_2) + f_{i2}L'_2(x_2) + f_{i3}L'_3(x_2)
\]

\[
\frac{\partial f(x_3)}{\partial x} = f_{i1}L'_1(x_3) + f_{i2}L'_2(x_3) + f_{i3}L'_3(x_3)
\]
Simple Example

• Data organization

\[
\frac{\partial f(x_m)}{\partial x} = f_{i1}L'_1(x_m) + f_{i2}L'_2(x_m) + f_{i3}L'_3(x_m)
\]

• Recall we like 1-D arrays
 – Allows faster access
 – Let’s you understand access patterns

• Let’s look at a CPU C++ code!
int main () {

 //Declaration of variables
 double *f, *fp, *Ld;
 int ne, np;

 //Allocate memory
 f = (double *)malloc(sizeof(double) * ne*np);
 fp = (double *)malloc(sizeof(double) * ne*np);
 Ld = (double *)malloc(sizeof(double) * np*np);

 //Import the coefficients here (from MatLab)
 // ...
 for (int i=0; i<np; i++)
 for (int j=0; j<np; j++) {

 Ld[j + i*np] = data->coefficients[j + i*np];
 }
 // ...
}
//Interpolate the data
for (int i=0; i<ne; i++)
for (int j=0; j<np; j++)
{
 //Initialize to zero
 fp[j + i*np] = 0.0;

 for (int m=0; m<np; m++) {
 //Form the derivative at point j
 fp[j + i*np] += f[m + i*np] * Ld[m + j*np];
 }
}

return 0;
• How do we put this on a GPU?

\[\vec{t} = [t_x, t_y, t_z] \quad \vec{b} = [b_x, b_y] \]

• Need to first organize the blocks and threads
 – For simplicity let
 • \(b = [n_e] \)
 • \(\vec{t} = [n_p] \)
 – As a side note this is awful
 • Only 3 threads per block when we have 1024 available
 • The Warp is terrible
 • But this is easy to understand!

• Let’s start the GPU code now!
```c
int main () {

    //Declaration of variables
    double *f, *fp, *Ld;
    double *f_d, *fp_d, *Ld_d;
    int ne, np;

    //Allocate CPU memory
    f   = (double *)malloc(sizeof(double) * ne*np);
    fp  = (double *)malloc(sizeof(double) * ne*np);
    Ld  = (double *)malloc(sizeof(double) * np*np);

    //Allocate GPU memory
    cudaMalloc((void **) &f_d,  sizeof(double) * ne*np);
    cudaMalloc((void **) &fp_d, sizeof(double) * ne*np);
    cudaMalloc((void **) &Ld_d, sizeof(double) * np*np);

    //Load in Lagrange data
    //...
```
Simple Example

// Copy Data to Device
 cudaMemcpy(f_d, f, sizeof(double) * np*ne, cudaMemcpyHostToDevice);
 cudaMemcpy(fd_d, fd, sizeof(double) * np*ne, cudaMemcpyHostToDevice);
 cudaMemcpy(Ld_d, Ld, sizeof(double) * np*np, cudaMemcpyHostToDevice);

// Threads and blocks
 dim3 threads(np);
 int blocks(ne);

// Launch the kernel
 interpolate<<<blocks, threads>>>(fd_d, f_d, L_d, np, ne);
 cudaMemcpy(fd, fd_d, sizeof(double) * np*ne, cudaMemcpyDeviceToHost);

• Question for everyone
 – Where is all this data located at? Which memory?
 – What about np and ne?
 – What is the CPU doing now?
__global__ void interpolate(double *fd, double *f, double *L, int np, int ne) {

 int j = threadIdx.x; // Data point
 int i = blockIdx.x; // Cell

 for (int m=0; m<np; m++) {

 fd[j + i*np] += f[m + i*np] * L[m + j*np];
 }
}

• That did not look to complicated
 – Performance is poor
 – Why?
 – How can we improve?
Memory Effects
Memory Effects

```
int j = threadIdx.x;  //Data point
int i = blockIdx.x;   //Cell

for (int m=0; m<np; m++) {
    fd[j + i*np] += f[m + i*np] * L[m + j*np];
}
```

- Global memory access and computation
 - Never do this
 - At 10 points and 100 elements...
 - ~0.083 milliseconds
 - Worse than the CPU code
 - NVIDIA GeForce GT 630M Vs. Intel I7 @ 2.2GHz
Memory Effects

For your understanding – let’s go through each memory one at a time

1. Texture Memory
 - We will bind the global memory into texture memory
 - Must be bound in the CPU code
 - Then accessed by GPU code

```c
texture<int2, 1, cudaReadModeElementType> t_f;
texture<int2, 1, cudaReadModeElementType> t_fd;
texture<int2, 1, cudaReadModeElementType> t_Ld;  // Double Precision

texture<float, 1, cudaReadModeElementType> t_f;
texture<float, 1, cudaReadModeElementType> t_fd;
texture<float, 1, cudaReadModeElementType> t_Ld;  // Single Precision
```
Memories Effects

texture<int2, 1, cudaReadModeElementType> t_f;
texture<int2, 1, cudaReadModeElementType> t_fd;
texture<int2, 1, cudaReadModeElementType> t_Ld;

int main () {

 //Import data and initialize arrays
 // ...

 //Copy Data to Device
 cudaMemcpy(f_d, f, sizeof(double) * np*ne, cudaMemcpyHostToDevice);
 cudaMemcpy(fd_d, fd, sizeof(double) * np*ne, cudaMemcpyHostToDevice);
 cudaMemcpy(Ld_d, Ld, sizeof(double) * np*np, cudaMemcpyHostToDevice);

 //Texture Binding
 cudaBindTexture(0, t_f, f_d, sizeof(double) * np*ne);
 cudaBindTexture(0, t_fd, fd_d, sizeof(double) * np*ne);
 cudaBindTexture(0, t_Ld, Ld_d, sizeof(double) * np*np);

 // ...

 • I will do everything in double precision
 • Did I need to bind pointer fd?
Memory Effects

• Did I really need texture memory here?
 – Answer: No
 – Everything is coalesced access to global memory
 – Slight improvement for L_d read

• It is good practice to get used to using textures
 – Just bind everything
 – Never know when might have non-coalesced access
 – Binding is cheap – basically free
2. Local / Registers

```c
__global__ void interpolate(double *fd, double *f, double *L, int np, int ne) {

    int j = threadIdx.x;   // Data point
    int i = blockIdx.x;    // Cell

    // Local memory allocation
    double fd_l = 0.0;

    for (int m=0; m<np; m++) {

        // Global memory calculation into registers
        fd_l += f[m + i*np] * L[m + j*np];
    }

    // Write registers to global
    fd[j + i*np] = fd_l;
}
```
Memory Effects

• So what happened to time?
 – 10 points 100 cells
 • Old time: ~0.083 milliseconds
 • New time: ~0.058 milliseconds

• Much better!
 – Still needs improvement

```cpp
for (int m=0; m<np; m++) {

    // Global memory calculation into registers
    fd_l += f[m + i*np] * L[m + j*np];
}
```

– Writes into registers – but calculation is in global memory
– How do we fix this?
Memory Effects

• If we put the memory in registers – need to allocate memory – do you see why?

```c
for (int m=0; m<np; m++) {
    //Global memory calculation into registers
    fd_l += f[m + i*np] * L[m + j*np];
}
```

• Will result in un-coalesced access to registers

• Need a memory that:
 – Is good for multiple access per thread
 – Where can I get that?
3. Shared memory

```c
__global__ void interpolate(double *fd, double *f, double *L, int np, int ne) {

    int j = threadIdx.x;       // Data point
    int i = blockIdx.x;        // Cell

    // Local memory allocation
    double fd_l = 0.0;

    // Shared memory allocation
    __shared__ double f_s[np];
    __shared__ double L_s[np*np];
}
```

- `__shared__` command
- Notice allocation size
int2 ii;

ii = tex1Dfetch(t_f, j + i*np);
f_s[j] = __hiloint2double(ii.y, ii.x);

for (int m=0; m<np; m++) {
 ii = tex1Dfetch(t_L, m + j*np);
 L_s[m + j*np] = __hiloint2double(ii.y, ii.x);
}
__syncthreads();

- int2 command access the textured memory
- Much more coding required!
- __syncthreads()
Memory Effects

- So what have we completed?
- Well...

```c
for (int m=0; m<np; m++) {
    //Shared memory calculation into registers
    fd_l += f_s[m] * L_s[m + j*np];
}
```
Memory Effects

__global__ void interpolate(double *fd, double *f, double *L, int nsp, int nc) {

 int j = threadIdx.x; //Data point
 int i = blockIdx.x; //Cell

 for (int m=0; m<nsp; m++) {
 fd[j + i*nsp] += f[m + i*nsp] * L[m + j*nsp];
 }
}

• My code blew up in size
• This is only 1-D
 – Tripled in size
 – Was it worth it?
 – Only a little faster
 – Why?
Memory Effects

• We are limited by our blocks and threads
 – With proper management we will see an additional factor of 2x speed-up
 – 1-D code is also very small
 – Not going to see 30 – 70x faster than a CPU version
 – If we can get a factor of 4 – 10x we are doing good

• Important
 – Use GPU registers
 – One write to global memory at the end
 – Ensures fast kernel
Wrap Up

• Simple code can become very complex
 – Every problem is very different for GPUs

• We saw roughly factor 2x from memory management only

• This problem is very basic though

• Next week
 – Thread and block management
 – Kernel thread control
 – 3-D coding problem