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An Experimental Study on the Aerodynamic and Aeroacoustic Performances 

of a Bio-Inspired UAV Propeller  

 

Zhe Ning1, Hui Hu2() 

Department of Aerospace Engineering, Iowa State University, Ames, Iowa, 50011 

Under rapid development, the small UAV is facing two essential problems: aerodynamics 

efficiency and noise emission. In this work, the aerodynamic and aeroacoustics characteristics 

of a novel bio-inspired UAV propeller with the unique planform shape inspired by the cicada 

wing and maple seed was experimentally investigated by comparing with conventional 

baseline propeller at hover flight condition. The design thrust (3N) and solidity (0.12) are kept 

same for both propellers. The aerodynamics forces and sound measurements revealed that, 

compared with baseline propeller, the bio-inspired propeller could generate equal thrust and 

emit lower noise under constant power input. In addition, the flow field measurements 

obtained from Partial Image Velocimetry (PIV) illustrated that the bio-inspired propeller 

produced a smaller wake region and demonstrated a fast decay rate of tip vortex strength 

compare to baseline propeller.  

           Nomenclature 

A              =   Swiping area of the propeller 

𝐵𝑃𝐿 = Blade passing frequency   

𝐶0 = Sound speed 

c = Chord length of the propeller 

c𝑡𝑖𝑝 = Chord length at the tip of the propeller 

c𝑟 = Chord length at corresponding radius of the propeller 

D = Diameter of the propeller 

𝑅𝑒𝑐
           = Reynold number at corresponding chord length 

𝑇 = Thrust   

p               = Sound pressure 

𝑝𝑟𝑒𝑓          = Sound pressure reference 

R = Radius of the propeller 

r = Non-dimensional radial distance 

SPL =   Sound pressure level 

𝑈 = Relative velocity at certain chord  

𝑈𝑇 = Rotational velocity at certain chord 

𝑈𝑃 = Induced velocity at certain chord   

𝑉𝑡𝑖𝑝 = tip speed   

𝑥 = Axial coordinate 

𝑦 = Vertical coordinate 

𝑧 = Transverse coordinate 

Ω = Rotational speed of the propeller 

α = Angle of attack 

Ɵ = Twist angle 

Φ = Inflow angle 

ρ               =    Density of air 
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I. Introduction 

 In the past twenty years, the Unmanned Aerial Vehicle (UAV) has developed rapidly due to the reduction of the 

sizes and costs of small electronic devices, such as processors, sensors, and batteries1. Specifically, the rotary-wing 

system has become a popular configuration due to its hovering ability and vertical take-off and landing (VTOL) motion 
2. Fitted with these attributes, the rotary-wing UAV has been put to use in a variety of applications (e.g., video taking 

& mapping, building &construction, delivery, rescue operation, and personal entertainment).  

 During the last two decades, the development of the rotary-wing UAV was focused on control theory and 

functional development. In a study performed by Achtelik3, the flying motion of a quadcopter was controlled by visual 

feedback and sensor measurements to accomplish autonomous flight. Mellinger4 studied real-time trajectories and 

controllers to drive a quadcopter to execute aggressive maneuvers. Lindsey5 used teams of quadcopters to construct 

buildings, and Mirjan6 used flying robots to build a bridge. Although the control theory and application has been well 

developed, less emphasis has been placed on the aerodynamic performance. Currently, the operational time of rotary-

wing small UAV is lower than one hour, which is too short for many applications, such as delivery, inspection, and 

recording video. Therefore, the aerodynamic efficiency, especially the propeller efficiency, is an essential 

consideration for the design progress providing the known constraints of the battery charge and motor power. The 

numerical work done by Bristeau7 illustrated that the flexibility of the propellers has significant effect on the 

quadcopter dynamic performance, under the assumption of constant local angle of attack (AOA) and induced velocity. 

Since the rotary-wing UAV always consists of multiple rotors, with small separation distances between rotors, 

numerical analyses have proved that the strong flow interaction will result in up to 5% thrust decrease8. During flight, 

the rotor will be affected by tip vortices generated from the rotor itself, as well as neighboring rotors9. For current 

small UAV propellers, a larger gap between rotors must be maintained in order to make up the thrust deficit due to 

the flow interaction. In other words, the size of the rotary-wing UAV will increase. A significant result is that the 

bending strength at the joint between arm and fuselage will increase. Furthermore, the weight of the UAV will slightly 

increase, which may balance out or reduce the total efficiency. Besides the aerodynamic constraints, the noise 

generated from the operating rotary-wing UAV is another essential problem, which will have significant impact on 

human health, as well as wild animals. In a study executed by Ditmer10, the noise generated from a UAV increases 

the heart rates of bears, which indicates raised levels of stress. According to Leslie11 and Sinibaldi12, noise reduction 

of UAVs could broaden their mission ranges. Therefore, the noise generated from rotating propeller need to be 

considered during the design process. 

 Understanding that the propeller is the main component of lift generation and aerodynamic noise, the focus of this 

study is to design a UAV propeller with the same power input that can achieve the same or improved aerodynamic 

performance, while reducing noise levels. In determining a potential solution, nature always provides inspiration to 

researchers and engineers. As shown in Figure 1, cicada wings and maple seeds have their planform different from 

traditional propellers. Instead of having a tapered planform shape, they have large chord length in the mid-span region. 

Most of the thrust for a rotary wing is known to be generated between the 50% to 90% radius, as shown in Figure 2. 

The planform of insect wings and maple seeds seems to have a better match with the lift distribution, where the chord 

length is large at high lift region. Beside the geometry, another important factor is the Reynolds number. At Reynolds 

numbers ranging from 10,000 to 100,000, the lift/drag ratio dramatically increases as the Reynolds number increases. 

As shown in figure 3, the lift/drag ratio at a Reynolds number of 100,000 is almost twice that of when the Reynolds 

number is 50,000 for the same E63 airfoil (a typical low Reynolds number airfoil)13. The increasing chord length will 

increase the chord Reynolds number. As a result, the propeller will operate in the regime with a better lift/drag ratio 

if this configuration of planform is used into design. 

 With this in mind, we conducted an explorative study to evaluate the aerodynamic and aeroacoustic performances 

of a novel bio-inspired UAV propeller with the unique planform shape inspired by the cicada wings and maple seeds. 

The bio-inspired UAV propeller was designed to have the same planform area and the same airfoil cross sectional 

shape, thus yielding the same weight as a conventional tapered UAV propeller. It was expected that the bio-inspired 

UAV propeller will have comparable or even better aerodynamic and aeroacoustic performances in comparison to the 

conventional tapered UAV propellers. In the present study, a conventional tapered UAV propeller was used as the 

baseline for the comparative study, and the aerodynamic forces generated by the bio-inspired UAV propeller under 

hovering conditions will be measured quantitatively by using a high-sensitive force/moment transducer (JR3 load cell). 

The aeroacoustic performance of the bio-inspired propeller was characterized in an anechoic chamber. Furthermore, 

a high-resolution digital Particle Image Velocimetry (PIV) system was also used to achieve detailed flow field 

measurements to quantify the evolution of the unsteady vortex structures in the wake of the propellers. The 
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aerodynamic force and aeroacoustic measurement results were correlated to the detailed flow field measurements in 

order to elucidate the underlying physics.   

 

Figure 1. Wing planform of cicada and maple seed 

 

Figure 2. Aerodynamic force distribution of a rotor.  

 

Figure 3. life/drag ratio of a low-Reynolds E63 airfoil vs AOA at Re=50,000 & Re=100,000 

II. Propeller Design and Experimental setup 

2.1 Propeller design 

 As shown in figure 4, in order to accomplish a designed thrust of 3N, an E63 airfoil shape was used to design the 

baseline propeller. The thickness of the airfoil was doubled based on the camber line due to a strength concern. The 

propeller was 240mm in diameter and 11mm at the chord tip.  The chord lengths along the propeller radius from tip 

to 30% radius were calculated by the equation 𝐶𝑟 =
𝐶𝑡𝑖𝑝

𝑟
. where 𝐶𝑟 is the chord length at corresponding radius location, 

and 𝑟 represents a non-dimensional radial distance, which is 0 in the rotating center and 1 at tip. The blade twisted 

11.6 degrees at the tip to 26.3 degrees at the 30% radius. The solidity was 0.12 which is widely used for conventional 

propeller . As shown in figure 5, the airfoil shape, designed thrust and rotational speed, and solidity used to design the 

bio-inspired propeller were kept the same as the baseline propeller design. This is with the notable exception of the 

design of the propeller planform, which was derived from a real maple seed configuration with a reduced aspect ratio. 
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Both propellers were made of a hard plastic material (i.e., VeroWhitePlus, RGD835, manufactured by Stratasys, Inc.) 

by using a rapid prototyping machine (i.e., Connex 3D printer). 

 

 

Figure 4. Baseline propeller  

 

 

Figure 5. Bio-inspired propeller  

 

2.2 Experimental setup 

   
(a)                                                                                   (b) 

Figure 6. Anechoic chamber and sound measurement sketch 

 

 The noise at the hover flight condition was measured in an anechoic chamber (as shown in Figure 6 (a)) located in 

the Department of Aerospace Engineering at Iowa State University. The chamber has dimensions of 12*12*9 feet 

with a 100 Hz cut-off frequency. Figure 6 (b) shows the sketch of the sound measurement. The red arrow represents 

the induced airflow direction, and the blue points represent the test locations. The spectrum measurement was 

conducted at 0 degrees and 5D away from the propellers. In the near field, closer than 5D, the turbulence level is high, 

which would affect the sound measurement. 5D is the standard distance that can be considered a far field distance.  

Figure 7 shows the schematic of the experimental setup to be used in the present study to measure the dynamic 

force of the both propellers. A 0.2 diameter clearance gap was maintained between propeller and support tower. The 

power used to drive the motor was tabulated by a direct current power supply. The UAV propeller was connected to 

a function generator via an electronic speed control. The rotational speed of the propeller was controlled by adjusting 
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the duty cycle of the output signal from the function generator. During the experiment test, the rotational speed of the 

propeller was measured by tachometer. A high-sensitivity force-moment sensor (JR3 load cell) was used to measure 

the force and moment, and the precision of this sensor for force measurements was ±0.1N (± 0.25% of the full range). 

Different types of propellers (baseline & Bio-inspired) were tested under the conditions shown in Table 1. 

 

Table1. Test conditions 

Blade type Rotational direction Voltage 

Condition (V) 

Rotational 

speed (RPM) 

Baseline propeller 

 

CCW (Counter Clock-wise) 11.1 0-6000 

Bio-inspired propeller 

 

CCW (Counter Clock-wise) 11.1 0-6000 

 

Figure 7. Experimental setup for the dynamic measurements of propeller  

 

Figure 8. Experimental setup for the flow field measurement  
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In addition to the aerodynamic force measurements, a high-resolution digital PIV system was used to measure the 

flow field in order to quantify the detailed flow structures around the propeller. An interrogation window with 32×32 

pixels and a 50% effective overlap were used to calculate the instantaneous velocity vectors. In order to determine the 

ensemble-average wake flow statistics and detailed flow structure at certain phase angles, both “free-run” and “phase-

locked” PIV measurements were conducted in this study. The ensemble-average results were obtained from 1000 

frames of instantaneous PIV measurements for free-run test. For the “phase-locked” PIV measurements, the phase-

averaged flow velocity at certain phase angle range from 0 to 330 degrees subdivided into 30-degree increments were 

calculated from 255 frames of the instantaneous PIV measurements. Figure 8 shows the schematic of the PIV system 

used in this study. The air was seeded with ~1µm water based droplets by using fog generation. The field illumination 

was provided by a Nd;YAG laser generator with power 200 mJ per pulse at the wavelength of 532 nm. The laser sheet 

thickness was set to around 1 mm at test section. A high-resolution (2048 x 2048 pixels) charge-coupled device (CCD) 

camera with axis perpendicular to the laser sheet was used to capture the raw image. The camera and laser generator 

were connected to the computer via a digital delay generator, which controlled the timing of the image capture and 

laser illumination. A second digital delay generator was used to modify the signal, in order to achieve the “phase-

locked” PIV measurement.  

 

III. Results and Discussion 

 

3.1 Aerodynamics performance results 

 The aerodynamic force measurements were conducted at different rotational speeds ranging from 0 to 6000 RPM 

for both propellers. Figure 9 presents the comparative results, where the design thrust is denoted by dashed line, and 

the results of baseline and bio-inspired are shown in red and black lines, respectively. This color line notation is also 

used in later comparisons. The symbols indicate the experimental data, and the lines are the best curve fits. Each data 

point is the average value of 30 second measurement with 1000Hz sampling frequency. In figure 9 (a), it should be 

noted that the thrust grows with the input power increasing. Compared with the baseline propeller, the bio-inspired 

propeller required same power to generate the design thrust. However, the rotational speed of the bio-inspired propeller 

was 3.5Hz lower than the baseline propeller at hover motion (thrust = 3N). This indicates that the thrust coefficient of 

bio-inspired propeller is higher than the baseline propeller. The thrust coefficient is defined by 

                                                                                      𝐶𝑇 =
𝑇

𝜌𝐴𝑉𝑡𝑖𝑝
2                                                                               (1) 

It can be found in figure 9 (c), the thrust coefficient of bio-inspired propeller is about 10% higher than the baseline 

propeller.  

 

 

  
                                 (a)                                                      (b)                                                       (c) 

Figure 9. Force measurement results of baseline and bio-inspired propellers  

3.2 Sound measurement results  

As mentioned before, the sound measurements were conducted at hover motion, thus the thrust was kept constant 

(3N) for both propellers. Hover is unique flight condition for vertical take-off and landing aircraft, where the thrust 

generated from propeller equal to the aircraft weight. At this flight condition, the forward and vertical flight speed is 
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zero. The experimental conditions at hover are listed in table 2. The aeroacoustic performance was characterized by 

sound pressure level (SPL) at different frequency, which calculated by 

        𝑆𝑃𝐿 (𝑑𝐵) = 20 𝑙𝑜𝑔10 (
𝑝

𝑝𝑟𝑒𝑓
) (𝑑𝐵)                                                      (2) 

The reference pressure is 2×10−5 Pa. Compared with baseline propeller, the bio-inspired propeller could reduce noise 

up to 4 dB in the human hearing domain (20Hz~20,000Hz). As shown in figure 9 (a), the bio-inspired propeller 

generates lower SPL than the baseline propeller, which means it has the potential to reduce tonal noise as well as 

broadband noise. Figure 9 (b) reveals the sound spectra comparison results at the low frequency domain. The 

frequency axial is non-dimensionalized by blade passing frequency (BPF), which is defined by  

                                                       𝐵𝑃𝐹 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦×𝑏𝑙𝑎𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟                                          (3) 

All of the peak values shown in spectra are the tonal noise components, which are associated with BPF. The tonal 

noise consists of loading noise and thickness noise. The loading noise is generated from the force variation and the 

thickness noise comes from mass variation, which has been illustrated in terms 1 and 2 on right hand side of  Lighthill’s 

acoustic analogy equation 

                                               (
𝝏𝟐

𝝏𝒕𝟐 − 𝑪𝟎
𝟐 𝝏𝟐

𝝏𝒙𝒊
𝟐) 𝝆 =

𝝏𝒎

𝝏𝒕
−

𝝏𝒇𝒊

𝝏𝒙𝒊
+

𝝏𝟐𝑻𝒊𝒋

𝝏𝒙𝒊𝝏𝒙𝒋
                                                        (4) 

At Mach number lower than 1, the loading noise dominates the tonal noise. Compared with baseline propeller, the 

reduction of the tonal noise of the bio-inspired propeller could be easily observed. This noise attenuation could be 

attributed to the small force variation of the bio-inspired propeller. As shown in table 2, the thrust standard deviation 

of the bio-inspired propeller is 24% lower than the baseline propeller. Another possible reason is the lower rotational 

speed. By applying the free-space Green’s function to equation 3, and do a scale analysis, it was found that the 

thickness noise is proportional to the U2, the loading noise is proportional to the U3, and the noise due to Lighthill’s 

stress tensor is proportional to the U4. Here, the U is the flow velocity. At hover motion, the rotational speed of bio-

inspired propeller is low, which benefits the noise reduction. 

 

Table 2. Flight condition at hover motion 

 Rotational speed  

(RPS) 

Mean Thrust  

(N) 

Thrust standard deviation  

(N)  

Baseline propeller 86.5 3 0.278 

Bio-inspired propeller 83 3 0.211 

 

 

 

   
          (a)                                                                                  (b) 

Figure 11. Sound spectra comparison between the baseline propeller and bio-inspired propeller 
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3.3 “Free-run” PIV measurement results 

 In addition to the force and sound measurements, the flow field measurements downstream of the propellers were 

achieved through a high-resolution PIV system. Akin to the sound measurements, the flow structure measurements 

were also conducted at hover motion, where the flow field is azimuthally axisymmetric. The ensemble-averaged 

velocity distribution results of a typical “free-run” PIV measurement of both the baseline and bio-inspired propellers 

are shown in figure 12. The term “free-run” means the images taken were not harmonic with the propeller rotation. 

The X and Y axes were normalized based on the propeller radius (120mm). The induced airflow direction is denoted 

by the red arrow. The large blue region is the quiescent flow region, where the flow velocity is low. It indicates the 

rotating propeller did not affect this area significantly. The region above propeller is the inflow region. Due to the 

propeller rotation, the flow was sucked into the rotating plane. Another region is the induced flow region, also known 

as slipstream14. At there, the velocity is higher compared to other two regions. This is due to the propeller pushing the 

air. The pressure difference between inflow and induced flow region resulted in a thrust generated from propeller. The 

black lines shown in the plot are the streamlines. The densely streamlined area is the flow boundary between quiescent 

and induced flow region.  

 Compared with the baseline propeller, the flow speeds at quiescent and inflow region of bio-inspired propeller 

were almost the same. However, the velocity distribution of these two propellers were different at the induced flow 

region. The bio-inspired propeller had larger velocity gradient from flow boundary towards rotating axis compared 

with baseline propeller. Figure 13 shows the velocity profile at different downstream locations (0.166R, 0.5R, and 

1R). The induced flow velocities downstream were almost same from tip to 0.75R for both propellers. Compared with 

baseline propeller, the bio-inspired propeller generated higher induced flow velocity in the region between 0.5R and 

0.75R, where it has larger chord length. Meanwhile, the induced velocity of the bio-inspired propeller was lower than 

baseline propeller from center to 0.5R. Although the velocity distributions are different, the mass flow rate of both 

propellers were same, which are confirmed by the force measurement results.  

  

  

 
               (a)                                                                                  (b) 

Figure 12. “Free-run” PIV measurement results_ensemble-average velocity distribution  

 

Based on the rotational speeds and chord lengths at different span-wise locations of both propellers, the chord 

Reynolds number distributions along the blade could be obtained. As shown in figure 15 (a), the bio-inspired propeller 

operated at higher AOA from 0.4R to 0.9 R compare to baseline propeller, which is mainly due to the large chord 

length at these locations. Because of the small chord length at the tip, the bio-inspired propeller operated at a lower 

AOA compare to baseline propeller. With the induced velocities provided by PIV measurements and the rotational 
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speeds at hover motion, the operating AOA at different span-wise locations could be calculated. It was discovered in 

figure 15 (b) that the bio-inspired propeller operated at almost constant AOA, which was around 6 degrees. The 

operating AOA of baseline model varied from 11 to 4 degrees from the root to 0.85R. For both propellers, there is a 

large jump from 0.85R to 0.9R, which is mainly due to the large gradient of the induced velocity. From 0.85R to 0.9R, 

the induced velocities dropped from around 8.4 m/s to about 3.7 m/s for both propellers, and the rotational speed 

increased from 54 m/s to 60 m/s. According to blade element diagram (figure 14), the inflow angle of attack (Φ) 

decreased from 9 degrees to 3.5 degrees. Since the twist angle (Ɵ) varied smoothly, the sudden change of the inflow 

AOA would lead to the operating AOA (α) jump. The U, UP, and UT represent the relative velocity, induced velocity, 

and rotational velocity, respectively. 

 

  
        (a)                                            (b)             (c) 

Figure 13. Velocity distribution comparison at different downstream location 

 

 
Figure 14. blade element  

 

 
     (a)  Re distribution                                              (b) AOA distribution 

Figure 15. Reynolds number and operating AOA along the propellers 
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3.4 “Phase-locked” PIV measurement results 

 A “phase-locked” PIV measurement was also conducted at hover motion to illustrate the detailed flow 

characteristics of the downstream flow for the two different types of propellers. The term “phase-locked” means the 

images taken were harmonic with propeller rotation, so that the propeller appears in the same orientation every time 

an image is obtained. The phase angle was defined as the angle between position of a pre-marked blade and the 

measurement plane. In this study, the phase angles ranged from 0 to 330 degrees with incremental changes of 30 

degrees, which could provide detailed information of the wake generation and translation within a full cycle of 

propeller rotation.     

    
                                        (a)                                                     (b)               (c) 

Figure 16. “Phase locked” PIV measurement results_velocity distribution of baseline propeller  

 

    
                                        (a)                                                     (b)               (c) 

Figure 17. Phase locked PIV measurement results_vorticity distribution of baseline propeller 

 

Figure 16 shows the velocity distribution of the “phase-locked” PIV measurement results of the baseline propeller at 

0, 60 and 120 degree phase angles. The 0 degree phase angle indicates that the propeller was just crossing the 

measurement plane. The three flow regions (inflow, induced flow and quiescent) can be visualized clearly in these 

plots, which are similar to the results achieved from the “free-run” PIV measurement. One phenomenon which was 

not captured by the “free-run” PIV measurements was the periodic velocity deficit close to the boundary between the 

induced flow and quiescent regions, which is due to the blade tip cutting flow and results in the formation of the tip 

vortices. Several strip shape, low-speed areas within the induced flow region also were not observed in the “free-run” 

PIV measurement. This phenomenon is due to the propeller cut–in. The circular motion of the streamline represents 

the tip vortex structure. The vorticity distribution is displayed in figure 17. The tip vortex structure is shown clearly 

in figures (a) through (f). With the phase angle increasing, the tip vortex structure shrinks inward and travels towards 

the downstream direction. The positive and negative vorticity region located in the induced flow area is due to the 
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flow passing the trailing edge. Due to the velocity difference, these vortices travel faster compared to tip vortices. As 

a result, the coming tip vortex starts to interact with the previous one at around the 70% radius downstream. This 

phenomenon is generally observed in rotor hover condition. Through flow visualization, Leishman14 also observed 

this phenomenon in the wake of hovering helicopter blade. After the interaction, a pair of tip vortices will form one. 

The strength of it dropped dramatically and dissipated quickly. 

  

 
(a)                                                                                (b) 

 
                                                    (c)                                                                                 (d) 

Figure 18. Velocity distribution comparison results at 30 and 90 degree phase angle 
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(a)                                                                                (b) 

 
                                                    (c)                                                                                 (d) 

Figure 19. Vorticity distribution comparison results at 30 and 90 degree phase angle 
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Figure 20. Normalized T.K.E distribution comparison results at 30 and 90 degree phase angle 

 

The comparative results of the velocity distributions of baseline and bio-inspired propellers at 30 and 90 degrees phase 

angle are shown in figure 18. Compared with the baseline propeller, the induced velocity of bio-inspired propeller was 

higher at the outer part of the induced flow region, and lower at the inner part. The velocity gradient from the flow 

boundary towards rotating axis of the bio-inspired propeller was larger than that of the baseline propeller. Figure 19 

shows the comparative results of the vorticity distribution of two propellers. One significant difference between these 

two propellers was the shape of the vortices due to the flow passing trailing edge. As mentioned before, the velocity 

gradient of the baseline propeller along radial direction was small. As a result, the shape of these vortices were almost 

parallel to the rotating disk. However, the shape of the vortices of bio-inspired propeller tilted downward in the wake 

while traveling downstream. Another difference was the vorticity distribution in the induced flow region after 0.5R 

downstream. The vorticity distribution of bio-inspired propeller was less organized than that of the baseline propeller. 

This phenomenon can be observed in figure 20, which represents the normalized turbulent kinetic energy (TKE).  Here, 

the TKE is normalized by the average induced velocity. The high TKE level appears at the tip vortex region, and tip 

vortex interaction region. 

 

3.5 Comparison of the characteristics of the wake flow for both propellers 

 

The wake structure traveling speed was acquired by tracking the location of it at different wake ages. In the wake 

of the propellers, the translation speed of tip vortex was almost half of the tip of the shear layer. This is clearly shown 

in Figure 21 for both propellers. As mentioned before, this is the reason for the tip vortex interaction in the 

downstream. By tracking the center of the tip vortex at different wake age, the flow boundary could be acquired. It 

can be seen in figure 22 (a), the wake size of the bio-inspired propeller is smaller compared with the baseline model’s. 

The tip vortex interaction happened at an earlier stage compared bio-inspired propeller to the baseline propeller. The 

tip vortex interaction of the bio-inspired propeller appeared at around a 700-degree wake age, and this phenomenon 

appeared at about an 800-degree wake age for baseline propeller. The figure 22 (b) reveals this comparison of the tip 

vortex strengths. At early wake age, two propeller had similar strength. After 500 degrees, the vorticity value of the 

tip vortices was lower for the bio-inspired propeller, as compared with the baseline propeller. This indicates the tip 

vortices decay rate of the bio-inspired propeller was faster than baseline. 
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   (a)                                                                                  (b) 

Figure 21. Vortex location at different wake age 

 

   
   (a)                                                                                  (b) 

Figure 22. Tip vortex location and strength comparison 

 

 

IV. Conclusion 

In conclusion, a comparative experimental study on the aerodynamics and aeroacoustics characteristic between a 

baseline and a bio-inspired propeller was conducted through force measurements, as well as sound and flow filed 

measurements. In this study, the design thrust and aerodynamic area were kept the same for both propellers. The force 

measurement results revealed that the bio-inspired propeller could generated same thrust as the baseline propeller 

under same power input. However, the rotational speed of bio-inspired propeller was slower than baseline at hover 

flight condition. The sound measurement results indicated that the bio-inspired propeller could reduce noise up to 4dB 

compared to baseline propeller at hover motion. Through PIV measurements, the velocity and vorticity distribution in 

the downstream are obtained. Compared with baseline, the bio-inspired propeller generated a smaller wake region and 

demonstrated a faster decay rate of the tip vortex strength.  
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