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a b s t r a c t

This paper numerically investigates the effectiveness of the control of steady suction on a
stationary circular cylinder with several isolated suction holes on the surface at a sub-
critical Reynolds number. The control effectiveness as a function of the azimuthal position,
spanwise spacing and suction flow rate of the suction holes on the control of the aero-
dynamic forces on the cylinder and the suppression of alternate vortex shedding are taken
into account. The study of the azimuthal location of the suction holes indicates that azi-
muthal angles of θ¼90° and 270°, which are close to the separation point, provide the
most substantial decreases in the aerodynamic forces. When restricted to the most
effective azimuthal angle, a remarkable control effectiveness can be achieved when the
axial spacing between two neighboring suction holes is less than a minimum value even
under a small suction momentum coefficient. However, if the axial spacing exceeds the
minimum spacing, the control effectiveness will not be saturated even under a very large
suction momentum coefficient. Thus, the cause of the effective aerodynamic force control
is suggested to be a result of obvious three-dimensional phenomenon in the near wake,
which is characterized by the generation of a convergent flow between two neighboring
suction hole sections and a stronger, larger three-dimensional vortex pair adjacent to the
convergent flow. It has been suggested that this strongly three-dimensional flow pattern
is induced by the strong interaction between two neighboring but counter-rotating three-
dimensional vortices separately produced by two neighboring suction holes. Moreover,
the effects of such three-dimensional flow patterns are investigated in detail based on
variations in the flow field and sectional aerodynamic forces in different cross sections.
Finally, the upper limit of the axial spacing between two neighboring suction holes to
form such a three-dimensional flow pattern is suggested to be between 0.75 D and 1.5 D
when the suction flow rate exceeds a certain value.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The flow around a circular cylinder has always been important for researchers and engineers because of its widespread
practical applications (e.g., offshore risers, bridge piers, towers and cables). In the civil engineering field, inclined cables are
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key components of long-span bridges that are prone to wind-induced vibration or aerodynamic instability due to the low
stiffness and damping rate. Thus, flow control around a circular cylinder is of great significance.

Flow control methods can be divided into two general types: passive and active flow control. The introduction of a
splitter plate (aligned with the oncoming flow) downstream of a bluff body is one widely used passive control method
(Roshko, 1993; Bearman and Branković, 2004). Owen et al. (2001) attached hemispherical humps to circular cylinders to
control the fluctuating amplitudes of the vortex-induced vibrations of cable models.

Active flow control approaches include forced rotary oscillation, moving-wall, blowing and suction flow control. Toku-
maru and Dimotakis (1991) examined the control efficacy of the sinusoidal oscillatory cylinder rotation for actively con-
trolling the cylinder wake in their experimental study. A significant drag reduction of 80% was achieved at the Reynolds
number (Re) of 15 000 for the optimal frequency and amplitude parameters of the rotary oscillation. Shiels and Leonard
(2001) conducted a numerical simulation to explore the same flow control method, but with a larger range of Reynolds
numbers (i.e., from 150 to 15 000). They confirmed the experimental observations at Re¼15 000 by Tokumara and
Dimotakis (1991) and further suggested that higher control effectiveness of drag could be obtained at higher Reynolds
numbers. Wu et al. (2007) employed a flexible surface on the downstream half of the circular cylinder to generate a tra-
veling wave when Re¼500. This moving-wall control method successfully impeded the flow separation near the wall even
under a strong adverse pressure gradient and eliminated the vortex shedding in the wake. Amitay et al. (1998) and Glezer
and Amitay (2002) investigated the interactions of synthetic jets with cross-flows. The overall flow configurations around
bluff bodies were modified dramatically by the formation of synthetic flow recirculation regions near the locations of the
synthetic jets. While synthetic jets were usually placed near the separation points for flow control, Feng et al. (2010) and
Feng and Wang (2012) applied synthetic jets in the rear stagnation points of circular cylinders and temporally alternated
suction and blowing of synthetic jests. By increasing the suction duty cycle factor (defined as the ratio of the time duration
of the suction cycle to the blowing cycle), a flow separation delay and drag reduction by up to 29% were realized.

Suction flow control methods have also been applied to various flow configurations. The surface suction slot seems to be
used most widely among them, e.g., to a turbulent junction flow by Seal and Smith (1999), a wall-mounted hump by
Greenblatt et al. (2006), an airfoil at transonic speeds by Qin et al. (1998) and Chng et al. (2009). Fransson et al. (2004)
studied the flow field around a smooth, porous cylinder with flow suction pores uniformly distributed over its entire surface.
Distinctly different from these suction methods, Chen et al. (2013a),(2013b) and Chen et al. (2014) introduced a limited
number of small, isolated suction holes to manipulate vortex shedding in the wake behind a circular cylinder. Because of its
steady suction, this method is called the steady suction flow control method. The method has several attractive advantages
in comparison with other flow control techniques. For example, the control effectiveness of the model is considerably high
(e.g., reduction of lift fluctuation by 80%). Experimental results showed that the azimuthal locations of the suction holes
with respect to the oncoming airflow, the spanwise spacing between the suction holes and the suction flow rate through the
suction holes have a significant effect on the wake flow characteristics, surface pressure distribution and the resultant
dynamic wind loads. However, a deeper and systematic understanding of the underlying mechanism of the suction flow
control is still needed, which is very useful for various practical engineering applications and further developments.

Following the experimental work of Chen et al. (2013b), (2014), the authors take advantage of more detailed information
obtained by numerical simulation under the same physical conditions to further investigate the steady suction control
method. Another spanwise arrangement of suction holes is also simulated. We attempt to (1) verify the applicability of the
CFD technique to the suction flow control method, (2) discover the causes of the effective suction control of aerodynamic
forces and vortex shedding of a circular cylinder and (3) provide further discussion on how to obtain effective control by
employing this method.
2. Numerical method and validation

2.1. Governing equations

An incompressible and viscous fluid with a uniform velocity U1 at infinity is assumed to flow past a stationary circular
cylinder. For transient flows, the incompressible ensemble-averaged governing equations (or called unsteady Reynolds
averaged Navier–Stokes equations) are
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2.2. Numerical method and model

The Reynolds number used in the present study (ReE3.0�104), which is close to that of Chen et al. (2014), is within the
range where wind-induced vibrations of stay cables were observed in the field studies of Zuo et al. (2008) and Zuo & Jones
(2010). All flow simulations were performed using the commercial software ANSYS CFX 14.0 (ANSYS CFX, 2011). The spatial
discretization method is the finite volume method (FVM). The convection scheme and transient scheme are “high resolu-
tion” and “second order backward Euler”, respectively. An unsteady RANS turbulence model based on the eddy-viscosity
hypothesis was adopted, i.e., the shear stress transport (SST) turbulence model first proposed by Menter (1994). Because of
space limitations, the SST governing equations and related parameters are not presented here; they can be found in Menter
(1994) and Menter et al. (2003). Conceptually speaking, the SST model applies two blending functions to combine different
elements of conventional turbulence models and ultimately achieves the desired features in the different regions of a
complex flow. The blending functions result in a certain amount of blending of the k–ω model (Wilcox, 1988) with the k–ε
model in the wake region and highly accurate predictions of the onset and amount of flow separation under adverse
pressure gradients.

Fig. 1 shows the computational domain with 17 D�6 D�6 D (D¼50.8 mm, where D is the diameter of the cylinder). The
width and height are the same as the size of the wind tunnel used by Chen et al. (2014) to enable comparison between the
numerical and experimental results, unfortunately resulting in a relatively small aspect ratio (L/D¼6) and high blockage
ratio (B¼16.7%). The effects of the end walls on the flow characteristics in the central region of the test model are believed to
be quite small at the Reynolds number levels of the present study, based on the findings described in Szepessy and Bearman
(1992) and Norberg (1994). The boundary conditions are defined as follows: the left side is the velocity inlet with a uniform
flow velocity perpendicular to the boundary of U1¼8 m/s; the right side is set as the “outlet” with a pressure of 0 Pa
relative to the reference pressure (1 atmospheric pressure); the upper, lower and side boundaries are defined as “wall”
boundaries under the free slip condition; and the surface of the cylinder is set as a no-slip wall. It should be noted that the
suction holes are set as velocity outlets where fluid will flow out of the region perpendicular to the cylinder's surface, which
can be realized in cylindrical coordinates.
Fig. 1. The computational domain of unsteady flow around a cylinder.

Fig. 2. Suction cases of different axial distribution modes and azimuthal positions of suction holes, citing θ2¼90° (270.0°). (a) Model 1 (L/8@L/4@L/4@L/
4@L/8), (b) Model 2 (L/4@L/8@L/4@L/8@L/4), (c) Model 3 (5L/16@L/8@L/8@L/8@5L/16) and (d) Azimuthal positions of suction holes.
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Three parametric variations are under consideration to study the control effectiveness of the steady suction method:

(1) The azimuthal locations of the suction holes are selected from five angles: θ1¼67.5° (292.5°), θ2¼90.0° (270.0°),
θ3¼112.5° (247.5°), θ4¼135.0° (225.0°) and θ5¼157.5° (202.5°). That is, each numerical model has two suction holes
with the same diameter of 3.0 mm located symmetrically with respect to the oncoming flow in each crossplane. Fig. 2
uses the example of θ1¼90° (270.0°) to illustrate the following three axial spacing arrangements and the possible
azimuthal positions of the suction holes.

(2) The axial spacing arrangements of the small-diameter suction holes are model 1 (L/8@L/4@L/4@L/4@L/8), model 2 (L/
4@L/8@L/4@L/8@L/4) and model 3 (5L/16@L/8@L/8@L/8@5L/16), where L denotes the total axial length of the cylinder.

(3) Each steady suction control is performed at one of five suction flow rates, Q¼20, 40, 60, 80 and 95 L/min, where
“steady” means that the suction rate remains constant in time. The suction flow rates can be converted to the corre-
sponding flow velocity in each hole, that is, Usuc¼5.89, 11.79, 17.68, 23.58 and 28.00 m/s, respectively. Following the
work of Chen et al. (2014), the suction momentum coefficient is defined as the ratio of the suction momentum flux to
the oncoming free-stream momentum flux Cμ ¼ 2 Usuc=U1

� �2
Ssuc=DLref
� �

. Here, Ssuc is the area of the suction holes in
each suction section, and Lref is the effective spacing, which is L/4 for model 1 (L/4 equally distributed), 3L/16 for model 2
(L/8 and L/4 alternately distributed) and L/8 for model 3 (L/8 equally distributed). The suction flow rate, the flow velocity
and the corresponding suction momentum coefficients Cμ for each case are listed in Table 1.

The grid system is structural with an O-block surrounding the cylinder, as shown in Fig. 3. The near-wall region matches
the height of the first cell near the cylinder well with Δy¼0.06 mm. In total, the grid system contains 7.0 million hexahedral
elements. The detailed parameters of the grid system are shown in Table 2. The suction holes on the cylinder surface are
discretized by nine elements in the circumferential direction.

2.3. Validation of the uncontrolled baseline case

The flow past an uncontrolled circular cylinder was first simulated to validate the above numerical method and model
and to provide a baseline for the steady suction cases. The comparison between the present numerical results and the
Table 1
The suction flow rate and corresponding suction momentum coefficients.

Suction flow rate (L/min) 0 20 40 60 80 95
Suction flow velocity (m/s) 0 5.89 11.79 17.68 23.58 28.00
Suction momentum coefficient Model 1 with Lmin¼1.5 D 0 0.0040 0.0159 0.0357 0.0635 0.0895

Model 2 with Lmin¼0.75 D 0 0.0053 0.0212 0.0476 0.0846 0.1193
Model 3 with Lmin¼0.75 D 0 0.0079 0.0317 0.0713 0.1269 0.1790

where Lmin denotes the minimum spacing between two suction sections for each model.

Fig. 3. Discretization of the 3D fluid region around the circular cylinder. (a) Whole mesh, (b) Close-up of the region near cylinder and (c) Close-up of a
suction hole.
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available experimental data under similar conditions is shown in Table 3. The blockage ratio (B), aspect ratio (L/D) and
longitudinal turbulence intensity (Iu) are included. It is should be noted that the present numerical force coefficients, unless
otherwise stated, were obtained based on the entire spanwise length, and the experimental force coefficients were cal-
culated based on the sectional pressure integration. The time-averaged drag coefficient and the Strouhal number (i.e.,
St¼ f sD=U1) of the present numerical simulation are found to be in a good agreement with the experimental results under
similar conditions. Furthermore, the present separation angle (see Table 3) and the formation length of the primary vortices
in the near wake (according to the streamlines of the time-averaged velocity in Fig. 12(a)), which are very important flow
characteristics for the steady suction control method, are also found to be consistent with the PIV results reported by Chen
et al. (2014). The root mean square (r.m.s.) of the total lift coefficient is 0.63 in the present numerical simulation. Although
the r.m.s. of the total lift coefficient was not provided explicitly in Chen et al. (2014), it could be roughly estimated by
comparing the fluctuations of the velocity in the wake shown in Fig. 12(a). The turbulent kinetic energy (i.e.,
T:K:E:¼ 0:5� u0u0 þv0v0

� �
=U2

1, where the overbar indicates time averaging) in the wake was overpredicted to a small degree
in the present simulation. The reason possibly lies in the inherent limitations of URANS modeling, where the two-
dimensionality of the periodic Karman vortices is possibly enhanced to some degree in the absence of sufficient pertur-
bations from three-dimensional random turbulent motions. Because the discrepancies of the turbulent kinetic energy in the
uncontrolled case are within a reasonably small range, they will not affect the objectives of the present study in general (i.e.,
to evaluate the effectiveness of the steady suction control method and to elucidate the underlying mechanism of the
effective control). More detailed evidence will be provided in Section 4.2, and the validation of the control cases will
accompany the numerical results of the steady suction control method.
Table 2
Grid parameters.

Grid parameters

Central O-block grid 360�90�103
Total number 7.0 million
Resolution in span-wise direction 0.059 D
Height of the nearest cell to cylinder 0.0012 D
Nodes of holes in circumferential direction 10
Nodes of holes in span-wise direction 2

Table 3
Summary of the experimental results under similar conditions. The span-wise aspect ratio (L/D), blockage ratio (B) and longitudinal turbulence intensity
(Iu) are also reported.

References Re (�104) L/D B(%) Iu(%) Cx St θs

West and Apelt, 1982 3.0 6 15.2 r0.15 1.35 0.21 –

Braza et al., 2006 6.5 4.8 20.8 1.5 1.62 0.21 –

Chen et al., 2014 3.0 6 16.7 0.8 1.24 0.21 � 90
Present 2.8 6 16.7 1 1.27 0.22 88

where the experimental drag coefficients Cx were based on the sectional pressure integration, while the present numerical drag was obtained based on the
whole span-wise length; the separation points θs are estimated as the angular distance where the velocity gradient at the wall begins to change from
positive to negative.

Fig. 4. Variation trend of reduction factors of (a) mean drag coefficient and (b) the fluctuation of lift coefficient against suction azimuthal angle for the
same suction rate 95 L/min. Note: The simulation of model 3 is only performed for the azimuthal angle of the suction holes between 0° and 112.5°.
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3. Suction control effectiveness under various suction conditions

3.1. Effect on the total aerodynamic characteristics

First, the suction rates are restricted to the maximum value tested in the present research (i.e., 95 L/min) to study the
effect of the azimuthal locations of the suction holes on the control effectiveness for all three models with different axial
spacing arrangements. The force reduction factor, written in the form f¼Cx_with_suction_control/Cx_without_control, is adopted
according to Chen et al. (2014) to evaluate the control effectiveness on the time-averaged drag coefficients and r.m.s. of the
lift coefficients. Fig. 4 shows the trends in the variations of the reduction factors as a function of the azimuthal angle of the
suction holes. In general, the steady suction control method executes significantly better control over the fluctuation of the
lift coefficient than the mean drag coefficient, regardless of the suction angle. Between 0° and 112.5°, the aerodynamic force
coefficients present a coincidental trend for all three models. Quantitatively speaking, all three models have similar
reduction factors when the azimuthal angle is 67.5°, which is upstream from the separation point. When the azimuthal
angle is 90°, which is very close to the separation point (88°), the reduction factors decreased to the lowest level, specifically
0.72 and 0.07 for the drag and lift coefficients, respectively. Therefore, it is suggested that the suction flow control method
has less effect on the aerodynamic force coefficients when the suction holes are located in front of the separation point or
deep in the flow separation region. The method can achieve the greatest control when the azimuthal location of the suction
holes is θ2¼90°, which is very close to the separation point.

Based on the above analyzes, a suction angle of 90° (270°) is the optimal choice for steady suction flow control among all
tested azimuthal positions. Thus, the suction angle is fixed at 90° (270°), and the influence of the suction flow rate and axial
arrangement models on the drag and lift coefficients can then be explored, as shown in Fig. 5. It is clear that the control
effectiveness over the lift coefficient is significantly larger than over the drag coefficient. In terms of the effect of axial
spacing, the control effectiveness of model 2 and model 3 significantly exceed that of model 1. An increase in suction flow
rate leads to a continuous decrease in force coefficients for model 1. In contrast, model 2 and model 3 present a distinct
phenomenon from model 1. Specifically, the mean drag coefficient and the r.m.s. of the lift coefficient are reduced as the
suction momentum coefficient increases from 0 to 0.03; however, when the suction momentum coefficient exceeds 0.03,
the reduction factors from the drag and lift reach a plateau and become stable. That is, a further increase in suction strength
has little or no influence on the control effectiveness after the suction flow rate exceeds a certain “threshold” value. The
control effectiveness of model 2 is slightly higher than that of model 3 when Cμ is approximately 0.03 although models
2 and 3 behave generally similar. Moreover, the sectional force coefficients by Chen et al. (2014) are added in Fig. 5, where
MP1 is the pressure measurement plane at the mid-span of the test model, and MP2 is in the suction hole section. The
Fig. 5. Contrast of drag and lift reduction factor against suction momentum coefficients and axial spacing arrangement, with fixed 90° suction angle. In
Chen et al. (2014)'s results, MP1 means the pressure measurement at the mid-span section of the test model, and MP2 is at the suction hole section.

Fig. 6. Frequency reduction factor against suction momentum coefficients and axial spacing arrangement, with fixed 90° suction angle.
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numerically obtained total forces and the experimental sectional forces exhibit a similar variation tendency against both the
axial spacing of suction holes and the suction flow rate. For model 3, the numerical results of the total drag are intermediate
between the experimental results obtained based on two cross sections, which agree with each other reasonably well. The
discrepancy between the numerical and experimental lift reductions may be attributed to the limitation of the URANS
turbulence model for accurately predicting the random turbulent motions, which will be discussed further in Section 4.2.

Fig. 6 shows the reduction factors of the vortex shedding frequency versus suction momentum coefficients and axial
spacing arrangements under a fixed 90° (270°) suction angle. For all of the cases of model 1 and the cases with Cμo0.02 for
models 2 and 3, the frequency increases by approximately 10% relative to the baseline case. As opposed to the reduction
factor of 1.1 obtained for model 1 when Cμ40.02, the frequencies of models 2 and 3 decrease and stabilize at approximately
0.85. If roughly imagining the wake flow according to the frequency, two distinct flow types could be recognized based on
the two frequency plateaus. One is true for all cases of model 1, and the cases with Cμo0.02 for models 2 and 3 featured a
higher shedding frequency, and the opposite is true for the cases of models 2 and 3 with Cμ40.02, which are characterized
by much lower shedding frequencies.

3.2. Effects on alternate vortex shedding

In Fig. 7(a), instantaneous spanwise vorticity contours from the suction hole section are shown for model 2 with different
suction momenta and a 90° (270°) suction angle. The PIV results (Chen et al., 2013(a)) are also attached to the numerical
Fig. 7. Instantaneous span-wise vorticity distribution on suction holes section. (a) Model 2, (b) Model 3, (c) Model 1. It is noticed that the PIV results (Chen
et al., 2013a, 2014) are also attached to the numerical cases with the same suction conditions in the (a) and (b), and the scales of numerical and
experimental figures are the same.
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Fig. 8. Time-averaged stream-wise velocity distribution on mid-span section. (a) Model 1 and (b) Model 3.
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cases with the same suction conditions, and the scales of the numerical and experimental figures are the same. For the
uncontrolled or 20 L/min (i.e., Cμ¼0.0053) controlled cylinder, the wake is the strongly periodic vortex shedding pattern.
When the suction rate increases from 40 L/min (i.e., Cμ¼0.0212) to 95 L/min (i.e., Cμ¼0.119), the periodic and concentrated
Karman vortex shedding pattern is replaced by the symmetric and distributive vortex strip pair in the near wake. In the case
of a sufficiently large suction rate of 40 L/min (i.e.,Cμ¼0.0212) for model 2, the shear layer on one side does not have enough
energy to draw the opposite-sign shear layer on the other side in the absence of an increasing accumulation of vorticity on
either side. This violates the precondition for alternate vortex shedding from a circular cylinder, according to the physical
interpretation of vortex shedding proposed by Gerrard (1966) and Coutanceau et al. (1988). As expected, alternate vortex
shedding in the near wake is suppressed by the steady suction method under certain arrangements and suction strengths of
suction holes. They are in good agreement with the PIV measurements by Chen et al. (2013(a)) shown in Fig. 7(a), which
suggests that the alternating vortex shedding changed to a symmetrical pattern in the near wake. As the suction flow rate
varied from 40 to 95 L/min (i.e.,Cμ varying from 0.0317 to 0.179), the suppression of alternate vortex shedding is also
achieved in model 3 as shown in Fig. 7(b). The phenomenon also agrees with the PIV measurements in the near wake (Chen
et al., 2014). However, even when the suction rate is increased to 95 L/min (i.e.,Cμ¼0.0895), model 1 with its larger axial
spacing is still not able to suppress the alternate vortex shedding, as shown in Fig. 7(c).

Fig. 8 shows the time-averaged streamwise velocity profiles in the downstream direction to evaluate the control
effectiveness of the formation lengths of primary vortices. For model 1, the formation lengths are larger than the uncon-
trolled case and gradually increase with the suction flow rate. However, for model 3, the formation lengths are evidently
divided into the case with Cμ¼0.0079 and the cases with CμZ0.0317, where the cases in the latter category are very close to
each other and much larger than the former. Such flow features in the wake are in agreement with the changes in the
aerodynamic forces with changes in the spacing arrangements and suction flow rates. It is worth noting that model
2 behaves similarly to model 3 in terms of their velocity profiles. It also should be noted that more information about the
variations along the span of both the time-averaged velocity and the velocity fluctuations in the near wake will be discussed
in more detail in the Section 4.2.
4. Three-dimensional effects in the near wake

4.1. Strongly three-dimensional flow pattern

Summarizing the above results, one can divide the 90° angle cases into two distinct groups: One group comprises model
1 and model 2 with Cμo0.0212 and model 3 with Cμo0.0317. These cases cannot suppress alternate primary vortex
shedding behind the circular cylinder and still have relatively high drag and lift reduction factors. The second group is
characterized by effective control of the aerodynamic forces (i.e., the reduction of the lift fluctuation by 80%) and sufficient
suppression of alternate vortex shedding, including model 2 with CμZ0.0212 and model 3 with CμZ0.0317. Their control
effectiveness is very close to each other among the various cases in the latter group, which has been demonstrated by the
similar reduction factors of the aerodynamic forces and the sufficient suppression of primary vortex shedding in the cross
section perpendicular to the axis of the cylinder. Hereafter, the latter group is called the effective controlled cases.
Fig. 9. Near wake flow divided into two patterns. (a) Pattern A, example from Cμ¼0.0053 of model 2, (b) Pattern B, example from Cμ¼0.1193 of model 2.
The central three-dimensional structures are iso-surfaces of Q value, but colored by the cross-stream (y direction) voriticty component. The surrounding
two-dimensional sliced sections are the contours of span-wise (ωz), stream-wise (ωx) and cross-stream (ωy) vorticity components respectively on the same
z–y section, specifically x¼0.78 D.
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Additionally, characterization of the strongly three-dimensional near wake (i.e., pattern B) will be introduced in the fol-
lowing section.

Corresponding to the two groups mentioned above, the near wake can be divided into two different patterns, i.e., pattern
A and pattern B, corresponding to Fig. 9(a) and (b). The Q criterion proposed by Hunt et al. (1988) is employed to show the
three-dimensional flow structures. The definition of Q is taken as Q ¼ �ð1=2Þ ‖S‖2�‖Ω‖2

� �
, where S and Ω denote the strain

and rotation tensor, respectively. The instantaneous three-dimensional flows in the central region of Fig. 9(a) and (b) are the
iso-surfaces of Q values, colored by the vertical vorticity component (ωy). Surrounding it, the contours of the spanwise (ωz),
streamwise (ωx) and cross-stream (ωy) vorticity components are illustrated based on the same z–y plane, specifically the
plane when x¼0.78 D located within the recirculation region. Pattern A (Fig. 9(a)) is actually the result of isolated steady
suction holes independent of each other. In the suction hole section, the flow separation is delayed to a degree that depends
on the suction flow rate. The delay of flow separation enhances the entrainment of the potential flow into the near-wake
recirculation region and tends to narrow the recirculation width. The spanwise vorticity component (ωz) distribution clearly
demonstrates this phenomenon behind each suction hole. However, due to spatial “localization” of the delayed separation, a
difference in the velocity flow occurs between the downstream region of the suction hole and the lower-velocity recircu-
lation region beside it. A streamwise vortex pair and a cross-stream vortex pair will necessarily be produced on both sides of
each independent suction hole. Hereafter, they are called a “three-dimensional vortex pair” based on the difference from the
dominant two-dimensionality of the separated shear layer and Karman vortex. From the ωx and ωy distributions, these
three-dimensional vortex pairs are located at a similar height to the two-dimensional separated shear layer. From the
perspective of the spanwise configuration, the generated three-dimensional vortex pairs are generally independent of each
other. As a result of pattern A, the primary vortex formation length increases somewhat, but the alternate vortex shedding
cannot be completely suppressed, e.g., the wake flow for model 2 with Cμ¼0.0053 in Fig. 7(a).

On the other hand, pattern B (Fig. 9(b)) demonstrates a distinct three-dimensional flow. It is characterized by the
generation of convergent flow between two neighboring suction hole sections and stronger three-dimensional vortex pairs
besides that convergent flow. Herein, convergent flow refers to the entrainment-amplified potential flow behind the suction
holes that travels toward the middle of the two neighboring suction hole sections and tilts toward the horizontal plane at
the middle-height of the cylinder. Obviously, for pattern B, the three-dimensional vortex pair is based on each convergent
flow. From the vorticity component contours, three-dimensional vortex pairs are located at the mid-height region of the
cylinder. As a result of pattern B, a more violent three-dimensionality effect takes place, and the regular and alternate
Karman vortex shedding is successfully suppressed. The three-dimensional flow in Fig. 9(b) is applicable to other flows of
Pattern B including model 2 and model 3 with certain suction flow rates. Fig. 10 shows the three-dimensional flows of model
3 for the cases with suction flow rates of 40 L/min (minimum value for achieving effective control) and 95 L/min (maximum
value for achieving effective control). They are found to be in a similar pattern to those of model 2 (e.g., Fig. 9(b)). Pattern B is
universal for effective suppression of Karman vortex shedding behind circular cylinders, at least for the cases investigated in
the present study.

Next, the transition from pattern A (Fig. 9(a)) to pattern B (Fig. 9(b)) under the same axial arrangement of suction holes is
explained with model 2 as an example. It has been suggested that the main characteristic of pattern B, i.e., the convergent
flow, is induced by the strong interaction between two neighboring three-dimensional vortex pairs, produced separately by
two neighboring suction holes. The strength of the interaction is dependent on the axial distance between the two
neighboring suction holes and the suction flow rate (which directly influences the strength of the three-dimensional vortex
pairs). When the two conditions are satisfied, the interaction between the opposite rotating-direction streamwise vortices,
generated separately by two neighboring suction holes, forces them closer in the spanwise direction and tends towards the
horizontal plane when y¼0. Simultaneously, the counter-rotating cross-stream vortices, concomitant with the streamwise
vortices, are forced closer in the spanwise direction and tend toward the vertical plane when x¼0. One result is the con-
vergence of potential flow into the intermediate region of two suction hole sections and a tendency toward the horizontal
Fig. 10. Three-dimensional flows of pattern B for model 3. (a)Cμ¼0.0317, the minimum suction moment coefficient with effective control, (b)Cμ¼0.1790,
the maximum suction moment coefficient with effective control. The information of quantities shown are the same as Fig. 9.



W.-L. Chen et al. / Journal of Fluids and Structures 59 (2015) 22–36 31
plane when y¼0 and the vertical plane when x¼0. In addition, a stronger three-dimensional vortex pair forms besides the
convergent flow.

The strong three-dimensional effect of pattern B will be examined in more detail in the following subsections based on
the spanwise variation of the flow field and the aerodynamic sectional forces. Conversely, the latter will verify the physical
interpretation of the strongly three-dimensional effect of pattern B.

4.2. Variation of the flow field along the span

Fig. 11 shows the time-averaged velocity vector diagrams in the x–z planes of y¼0, D/6, D/3 and D/2, respectively. These
figures verify the generation of convergent flow and stronger cross-stream vortices besides the convergent flow for flow
pattern B. It clearly shows that the higher-velocity potential flow converges into the intermediate section of the two
neighboring suction hole sections, i.e., H1 and H2 or H3 and H4. Two clear cross-stream vortices (rotating around the y-axis)
are formed on either side of each convergent flow in the x–z planes. The cross-stream vortices are visible over the entire
vertical height range of the cylinder, which indicates larger-scale cross-stream vortices than those of pattern A. Between two
convergent flows, a strong adverse flow towards the cylinder takes place, i.e., between the H2 and H3 suction hole section. It
is worth noting that the cross-stream vortices and a strong adverse flow are also observed by PIV measurements (Chen et al.,
2014).
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Fig. 11. Time-averaged velocity vector diagrams in the x–z planes, where the hollow circles on the z/D coordinate represent the suction holes of model 2,
Cμ¼0.0212. (a)y¼0. (b)D/6. (c)D/3. (d)D/2.
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The distribution of turbulent kinetic energy is shown in Fig. 12, together with streamlines of time-averaged velocity.
Fig. 12(a) shows a quantitative comparison between the uncontrolled case and model 2 with Cμ¼0.1193 in the mid-span
cross section, where experimental results (Chen et al., 2014) are also provided. The contour figures of numerical results and
experimental results have the same scale but not the same legend range of the T.K.E. It can be concluded that the present
numerical results agree qualitatively with the experimental results based on the common facts that the T.K.E. of pattern B is
much smaller than that of the uncontrolled case and that the recirculation region of pattern B is much longer than that of
the uncontrolled case. However, there is still quantitative disparity between the numerical and experimental effectively
controlled cases. The T.K.E. of the effectively controlled case is smaller than that of the experimental result, and the length of
the recirculation region in the effectively controlled case is approximately 0.5 D longer than that of the experimental result.
The authors think that the quantitative difference between the numerical and experimental results possibly relies on the
modeling characteristics of the random turbulent components inherently embedded in the SST (URANS) turbulence model.
In the numerical situation, the time-averaged components and periodic components (related to Karman vortices) are
directly solved while the random turbulent motions are erased to some extent due to modeling based on the eddy-viscosity
hypothesis. Thus, the separated shear layers and the periodic Karman vortices in the near wake can be successfully
z

x
P8 P6 P5 P4 P3 P2 P1P7
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Wind speed
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Fig. 12. (a) Comparison of streamlines of time-averaged velocity and distributions of turbulent kinetic energy between present numerical and experi-
mental data by Chen et al. (2014); the left are uncontrolled cases while the right are effective controlled cases of mode 2 at Cμ¼0.1193, at the mid-span
cross section P1. (b) Comparison along the span, also including the instantaneous span-wise vorticity component.
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controlled in both the numerical simulation and the experiment. The effects of three-dimensional random turbulent
motions can be identified by comparing the experimental results with the URANS simulation results. The quantitative
difference in the T.K.E. in the near wake (associated with the r.m.s. of the lift) as well as the slight difference in the
instantaneous spanwise vorticity distribution in the far wake (shown in Fig. 7) demonstrate a common fact that the
blending of random turbulent motions in the experiment promotes the fluctuations of shear layers far away from the
cylinder, finally generating weak vortex shedding in the far wake. This is also the reason that the length of the recirculation
region in the experiment is shorter than that in the numerical simulation in the presence of random turbulent motions.
However, it is believed that the averaging-out of random turbulent fluctuations by URANS modeling will not influence the
gross controlled flow configuration of pattern B significantly even at such high Reynolds numbers. The conceptual bases are
that the separated shear layers are principally two-dimensional (Williamson, 1996) and remain laminar near the separation
point; the suction holes are located at 90°, very close to the separation point; and the vigorous coherent Karman vortices
dominate the near wake and are two-dimensional along the span on average even at such high Re (Szepessy, 1994). Thus,
the two-dimensionality of the near wake even at such high Re opens the way to the achievement of the steady suction
control method whose fundamental mechanism is to change it to strongly three-dimensional near wake.

For convenience, the various cross sections perpendicular to the axis of cylinder are named using P plus a number, as
shown in Fig. 12(b), which will be employed hereafter, unless otherwise noted. The variation along the span of the
instantaneous spanwise vorticity component, the distributions of the T.K.E., and the streamlines of the time-averaged
velocity can be clearly seen in Fig. 12(b). In contrast, with the distribution of separated shear layers parallel to the oncoming
flow direction in sections P1 and P3, a significantly narrowed recirculation region occurs in section P4, which is the result of
convergent flow towards the horizontal plane when y¼0 and the vertical plane when x¼0. The small fluctuation in T.K.E.
suggest that the averaged flow is similar to the instantaneous ones. Consequently, it seems reasonable to approximate the
near-wake of pattern B as a semi-steady one.

4.3. Sectional aerodynamic characteristics

After analyzing the three-dimensional flow in the near wake, it is necessary to measure its effect on the sectional
aerodynamic characteristics on the circular cylinder. Thus, the sectional drag coefficient (CD0 ) and lift coefficient (CL0 ) are
introduced and estimated using the forces acting on a discretized cylinder surface with a finite spanwise distance lc (herein,
lc/D¼0.075{1), as defined below:

CD0 ¼ D0

1
2ρU

2
1lcD

ð4Þ

CL0 ¼
L0

1
2ρU

2
1lcD

ð5Þ

where D0 and L0 are the drag and lift, respectively, in terms of segment lc.
Fig. 13 shows the spanwise distribution of the mean sectional drag coefficient (a) and the r.m.s. of the sectional lift

coefficient (b) for three models. It should be noted that half of the spanwise length of cylinder is shown accounting for the
symmetry about the mid-span center, where z/D¼0 is the end boundary and z/D¼3 is the mid-span center. In addition, the
notation of suction holes mentioned in the following discussion is the same as in Fig. 12(b). Model 1 is typical for pattern A,
and model 2 with Cμ¼0.0212 and model 3 with Cμ¼0.0317 are typical for pattern B. For pattern A, only the sectional drag
and lift coefficients near the localized suction holes are smaller than in the other sections because of the delay of flow
separation behind the suction holes, together with the independence of the localized flow behind each suction hole. On the
other hand, for pattern B, the sectional drag coefficients between H2 and H3 (located in the other half of the spanwise
Fig. 13. Spanwise distribution of (a) the mean sectional drag coefficient and (b) r.m.s of sectional lift coefficient. Model 1 with Cμ¼0.0357 is typical for
patter A. Model 2 with Cμ¼0.0212 and model 3 with Cμ¼0.0317 are typical for pattern B; z/D¼0 is the end boundary and z/D¼3 is the mid-span center; H1
and H2 are the suction holes.



W.-L. Chen et al. / Journal of Fluids and Structures 59 (2015) 22–3634
length) are much lower, which plays a key role in reducing the total drag forces. Surprisingly, the values between H1 and H2
reach the peak level. In contrast to the sectional drag coefficients, not only the range between H2 and H3 but also the
sectional lift coefficients between H1 and H2 remain at low values. The decrease in the fluctuating sectional lift coefficients
between H1 and H4 can be explained by the semi-steady near-wake flow of pattern B.

Fig. 14(a)–(d) shows the distributions with angle θ of the mean pressure and fluctuating pressure coefficients for the mid-
span section. The characteristics of the pressure distributions roughly coincide with those of the force coefficients discussed
in Section 3.1. Specifically speaking, model 1 has a gradually changing tendency against suction momenta, whereas the
pressure curves overlap each other when Cμ¼0.0212�0.119 for model 2 and Cμ¼0.0317�0.179 for model 3. The latter
phenomenon is attributed to the universality of pattern B. It is noticed that only model 2 is shown here due to space
constraints. Fig. 14(e) shows the time-averaged pressure distributions at different cross sections for pattern B, taking model
2 with Cμ¼0.0212 as an example. The hump-shape at approximately 180° of P1 and P2 results from the high-velocity
reverse flow towards the rear of the cylinder. It induces a small mean sectional drag within the mid-span region (i.e.,
between H2 and H3). However, for the P4 section, the lower pressure regions at approximately 120° and 240° (marked by
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Fig. 14. Pressure distribution with azimuthal angle of (a) and (b) model 1 and (c) and (d) model 2 at the mid-span section. The left is the mean pressure
coefficients while the right is the fluctuating pressure coefficients, (e) Distribution of fluctuating pressure at different cross sections for model 2 with
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the green ellipses in Fig. 14(e)) means that the negative-pressure shear layers separate very close to the wall of cylinder
when the convergent flow happens. Ultimately, it results in a peak value of the mean sectional drag coefficient between H1
and H2, which contributes to larger force reduction factors (i.e., lower control effectiveness) of the total integrated drag than
of the total lift.
4.4. Axial spacing of the suction holes to generate pattern B

The axial spacing of the suction holes is more critical than the suction flow rate, as indicated by the phenomenon that
model 1 cannot reach pattern B evenwhen the suction flow rate is more than two times that of models 2 and 3. As discussed
in Section 4.1, the convergent flow between two neighboring suction holes is the key to produce the strong three-
dimensionality effect and thereby control the aerodynamic forces effectively. In some sense, the convergent flow of pattern
B between two original suction holes plays the role of “a larger suction hole”. Model 2 and model 3 have the same minimal
axial spacing, and the near wake convergent flow behaves similarly under a certain suction flow rate. Thus, it seems
arguable that the minimal axial spacing would be the critical length scale determining whether strongly three-dimensional
flow takes place. The upper limit of axial spacing is suggested to be between 0.75 D (the minimal spacing of model 2 and
model 3) and 1.5 D (the minimal spacing of model 1). Furthermore, the axial distance between two convergent flows (or two
neighboring “larger suction holes”) is also suggested to have an upper limit to maintaining effective suppression of alternate
vortex shedding within this axial range. Thus, more cases are needed to determine the upper limits of both the axial spacing
between two isolated suction holes to generate the convergent flow and the axial distance between two convergent flows to
maintain the suppression of alternate vortex shedding.
5. Conclusions

The control effectiveness of the steady suction method on a stationary circular cylinder with several isolated suction
holes on the surface was investigated numerically. An effective combination of azimuthal position, axial spacing and suction
flow rate of the suction holes was determined to significantly reduce the fluctuating lift force acting on the circular cylinder
and suppress the alternate vortex shedding in the near wake.

First, the azimuthal location of the suction holes is found to be vital. Among all tested azimuthal positions, the positions
(θ¼90° and 270°) close to the separation point are optimal to decrease the aerodynamic forces on the cylinder for all three
models. Restricting to the most effective azimuthal angles (θ¼90° and 270°), both the axial spacing between two neigh-
boring suction holes and the suction flow rate determine the control effectiveness. For model 1 (with minimum spacing
1.5 D), the increase in the suction momentum coefficient Cμ (ranging from 0 to 0.0895) gradually results in the reduction of
the mean drag and r.m.s. of lift. However, the performances of models 2 and 3 (with minimal spacing of 0.75 D) are
remarkably different from that of model 1. When Cμ exceeds 0.0212 for model 2 and 0.0317 for model 3, much more
effective control of aerodynamic forces (i.e., reduction of lift fluctuation by 80%) and the successful suppression of alternate
vortex shedding in the near wake can be achieved, but a further increase in suction strength has no or little influence on the
control effectiveness.

Next, an explanation of the cause of effective control was provided based on the three-dimensional near-wake flow. It
was discovered that the near wake can be divided into two different patterns: pattern A and pattern B. Pattern A is the result
of independent controlled flows by each isolated suction hole, inducing the preservation of alternate vortex shedding in the
wake. However, effective aerodynamic control is closely related to obvious three-dimensionality phenomenon in the near
wake, i.e., pattern B. Pattern B is characterized by the generation of convergent flow between two neighboring suction hole
sections and stronger, larger-scale three-dimensional vortex pairs adjacent to that convergent flow. In terms of the side-
view section, pattern B successfully suppresses the regular and alternate vortex shedding. The transition from pattern A to
pattern B is suggested to be induced by the strong interaction between two neighboring but counter-rotating three-
dimensional vortices produced separately by two neighboring suction holes. The effects of flow pattern B on the variation of
the flow field and sectional aerodynamic forces or pressure in different cross sections are investigated in detail. Pattern B has
very low turbulent kinetic energy in the near wake in different cross sections, resulting in low fluctuation of the sectional
lift. The convergent flow between two neighboring suction holes increases the sectional drag because of the negative-
pressure shear layers separating close to the wall of the cylinder. In contrast, the high-velocity adverse flow towards to the
rear of the cylinder decreases the sectional drag between two convergent flows, which leads to the lower control effec-
tiveness of the total drag coefficient compared with the total lift coefficient.

Finally, the parameters required to achieve effective control (i.e., to generate pattern B) have been discussed. The upper
limit of the axial spacing between two neighboring suction holes to form pattern B is suggested to be between 0.75 D and
1.5 D when the suction momentum exceeds a certain value.
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