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a b s t r a c t

This paper presents a methodology to estimate the wave force on a bottom-mounted
cylinder using the measured signals of wave surface elevation around the body surface
of the cylinder. Based on the potential theory, the formulae are derived in a general
manner for bottom-mounted cylinders of arbitrary cross section. Considering the difficulty
of decomposing the signal of wave surface elevation measured by wave gauges, a linear
estimation method is developed to achieve an approximate estimation of the wave loads
on cylinders. A hydrodynamic experimentwas conducted on a circular cylinder in a random
wave field to validate the effectiveness of the proposedmethod. The horizontal wave forces
and bending moments directly measured by force balance are employed for the validation
of the proposed estimated results using the measurement of the wave surface elevation by
wave gauges. Error analysis is also conducted in the frequency domain to investigate the
effects of the linear approximation. The analysis results indicate that the proposedmethod
can effectively estimate the wave loads acting on the cylinder. The linear approximation
method slightly underestimates the wave loads of the difference-frequency component,
while overestimating that in the sum-frequency region.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A cylinder is a widely used structural component in coastal and offshore engineering, such as wind turbines, oil platforms
and bridges. In a hostile marine environment, the water wave is a primary natural hazard that threatens the safety of the
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coastal structures. Understanding the wave–structure interaction mechanism and establishing an appropriate method for
estimating the wave loads is fundamentally important for ensuring the safety of the structures.

For a small-scale cylinder, Morison et al. (1950) proposed a semi-empirical method, the so-called Morison equation, for
calculating the inline wave force on structure in oscillatory flow. The Morison equation is composed of an inertial force in
phase with the local flow acceleration and a drag force proportional to the square of the instantaneous flow velocity. When
the diameter of cylinder becomes large, an obvious disturbance on the incident wave, which is generally called diffraction,
becomes obvious. In such case, two dimensionless quantities, D/L and KC , are typically used to distinguish the flow regimes
of diffraction (Isaacson, 1979), where D is the characteristic length of the cross-section, L is the wave length, and KC is the
Keulegan–Carpenter number (Keulegan and Carpenter, 1956). It was found that the diffraction effect cannot be neglected
when the ratio of D/L becomes larger than 0.2. In addition, the KC number should be less than the value of 0.44/(D/L)
to prevent wave breaking. With these conditions, using potential theory, MacCamy and Fuchs (1954) formulated a linear
solution for the diffraction problem of a regular wave around a large-scale bottom mounted cylinder.

Compared with a regular wave, a random wave more commonly appears in the ocean environment. When an offshore
structure sustains the attack of random waves, the prediction of the wave load acting on the cylinders becomes more
complex. Previous works attempted to extend the Morison equation from the condition of regular waves to random waves
(Borthwick, 1989; Burrows et al., 1997; Li et al., 1997; Tung, 1996). Recently, Boccotti et al. (2012) conducted a comparison
between the in-site measured wave force and the prediction results using theMorison equation acting on a vertical cylinder
in a random wave field. In that study, the inertia and drag coefficients for the Morison equation were written as functions
of the KC number and the Reynolds (Re) number to improve the accuracy of estimation. Lotfollahi-Yaghin et al. (2012) used
an approach based on artificial neural network (ANN) to establish the predictive relationship between the hydrodynamic
inline force and the wave surface elevation on a vertical cylinder. The advantage of the ANNmethod is that it is a model-free
method. The results indicated that the predicted results of using ANN matched well with that of Morison equation.

With the application of a structural health monitoring technique in coastal engineering, such as an ocean wind turbine
and an offshore platform (Hosseinlou and Mojtahedi, 2016; Jamalkia et al., 2016; Martinez-Luengo et al., 2016; Mojtahedi
et al., 2011), the real-time estimation of the wind and wave loads becomes an important issue to assess the structural
safety with the in-situ measured data. Although some theoretical methods have been developed for calculating the wave
loads, those methods have some limitations for real-time estimation of the wave force, including: (1) because most of the
theoretical methods were developed based on the regular wave action, in a randomwave field, they are always not effective
for computing the wave force; (2) the wave properties of the un-disturbed wave field, such as wave height and wave period,
should be known. However, on the site of the structure, it is always difficult to measure the un-disturbed wave properties
because of the influence of the structure, especially for multi-body cases, which contains the scattering wave and radiation
wave from other bodies.

For large-scale structures, the previous studies (Chan et al., 1995; De Vos et al., 2007; Deng et al., 2016; Li et al., 2012,
2014; Niedzwecki and Duggal, 1992) found that there exists a correlation between the wave run-up and the wave force.
Based on this conclusion, it is possible to determine a method to monitor the wave force acting on the cylindrical bodies
through measurement of the wave surface elevation around the cylinders. Based on this philosophy, this paper presents a
methodology to estimate the wave force of bottom-mounted cylinders by the measured data of wave gauges around the
body surface. The main contents of this study are organized into three sections. First, the definition of the physical problem
and the methodology for the wave load estimation are presented in §2. Next, a linear estimation method for the wave loads
is introduced in §3 by using the recorded data of wave surface elevation around the cylinders. To validate the effectiveness
of the proposed method, the results of a hydrodynamic experiment performed with a circular cylinder under random wave
field is presented in §4. Finally, the main findings of the present work are summarized.

2. Methodology

Simulation of the wave–structure interaction, which is a very complicated physical phenomenon, is a difficult problem.
To make the problem manageable, several assumptions were made to simplify the analysis (Sarpkaya, 2010), including:

(1) the fluid is inviscid and incompressible;
(2) the flow is unseparated around the solid structure;
(3) the effects of surface tension, dissolved gases, cavitation, density and temperature gradients of the water are

negligible;
(4) the cylinder is rigid and bottom-mounted at the seabed with uniform shape.
Under the action of the gravity waves, the flow field can be represented by a scalar velocity potential. Without loss of

generality, the rigid body is assumed to have an arbitrary cross-sectionwith smooth surface. For the convenience of analysis,
a rectangular and a polar coordinate are defined, as shown in Fig. 1. For the two coordinate systems, the x − y or r −θ planes
are all set at the still water level (SWL), and the origin is inside the cross-section of the cylinder. The z-axis is perpendicular
to the SWL and positive upward.

The following derivation was formulated for the cylinder whose cross-section is arbitrary and can be represented by a
Fourier series. The radius function, r (θ), of the cross-section in the polar coordinate was then written in the following form
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Fig. 1. Definition of the physical problem.

with the Fourier expansion

r (θ) =

∞∑
nr=−∞

bnr e
inr θ (1)

where bnr are the Fourier coefficient of radius function, and nr ∈ Z . Thus, the surface function, S, for the cross-section can
be given by

S (r, θ) = r −

∞∑
nr=−∞

bnr e
inr θ (2)

The wave surface elevation around the structure can be represented by the velocity potential as

η (θ, t) = −
1
g
Re

{
∂8

∂t

⏐⏐⏐⏐
z=η,S=0

}
−

1
2g

Re
{
∇8 |z=η,S=0

}
· Re

{
∇8|z=η,S=0

}
(3)

where8 is the complex-form velocity potential around the cylinder; g is the gravity acceleration. According to the Bernoulli
equation, the pressure on the cylinder can be written as

P (r, θ, z, t) = −ρgz − ρRe
{

∂8

∂t

}
−

ρ

2
Re {∇8} · Re {∇8} (4)

where ρ is the density of water. Therefore, the resultant force acting on the cylinder by the waves, as shown in Fig. 1, can be
calculated by integrating the pressure on the body surface as

F0 (θ0, t) =

∫
S=0

∫ η(θ,t)

−h
P
(
−

→

n S

)
·

→

n0dzds =

∫
S=0

∫ η(θ,t)

−h
P
(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

=

∫ 2π

0

∫ η(θ,t)

−h

(
−ρgz − ρRe

{
∂8

∂t

}
−

ρ

2
Re {∇8} · Re {∇8}

)⏐⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

=

∫ 2π

0

∫ η(θ,t)

−h

(
−ρRe

{
∂8

∂t

}
−

ρ

2
Re {∇8} · Re {∇8}

)⏐⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

= Fξ (θ0, t) + Fζ (θ0, t)

(5)

where θ0 is the angle between the direction of F0 and x-axis, as shown in Fig. 1;
→

n S is the unit normal vector on the cylinder
surface;

→

n0 is the unit normal vector in the direction of resultant wave force, as shown in Fig. 1; h is the water depth; r̃(θ ) is
a function of θ , which has the following relationship with the radius function

r̃(θ ) =

√(
dr(θ )
dθ

)2

+ (r(θ ))2 (6)

Similar to the resultant wave force, the resultant bending moment at the cylindrical base can also be written as

M0 (θ0, t) =

∫
S=0

∫ η(θ,t)

−h
P (h + z)

(
−

→

n S

)
·

→

n0dzds

= Mξ (θ0, t) + Mζ (θ0, t) + F0 (θ0, t) h

(7)

Detailed derivation of Eq. (7) is given in Appendix A.
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In Eqs. (5) and (7), the totalwave force andbase bendingmoment are separated into two and three terms at the right-hand,
respectively, as given by

Fξ (θ0, t) =

∫ 2π

0

∫ η(θ,t)

−h

(
−ρRe

{
∂8

∂t

})⏐⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ (8)

Fζ (θ0, t) =

∫ 2π

0

∫ η(θ,t)

−h

(
−

ρ

2
Re {∇8} · Re {∇8}

)⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ (9)

Mξ (θ0, t) =

∫ 2π

0

∫ η(θ,t)

−h

(
−ρzRe

{
∂8

∂t

})⏐⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ (10)

Mζ (θ0, t) =

∫ 2π

0

∫ η(θ,t)

−h

(
−

ρz
2

Re {∇8} · Re {∇8}

)⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ (11)

For the flow field with random waves, the velocity potential can be expressed by the superposition of linear complex
wave potential as

8 =

∞∑
n=1

fn (knz) gn (kn, r, θ, t) (12)

where kn is the wave number; fn (knz) is a real function of z; gn (kn, r, θ, t) is a complex function of r , θ and t; the real part
of the wave potential can be written as

Re {8} =

∞∑
n=1

Re {fn (knz) gn (kn, r, θ, t)}

=

∞∑
n=1

fn (knz) Re {gn (kn, r, θ, t)}

(13)

To simplify the notation, the real symbol, Re, of function gn (·) is ignored and written as gn in the following derivation.
Substituting Eq. (13) into Eq. (3), the wave surface elevation around the cylinder can be written in the same form as Eq. (5):

η (θ, t) = ηξ (θ, t) + ηζ (θ, t) (14)

in which

ηξ (θ, t) = −
1
g
Re

{
∂8

∂t

⏐⏐⏐⏐
z=η,S=0

}
=

∞∑
n=1

(
−

1
g
fn (knη)

∂gn (kn, r, θ, t)
∂t

)⏐⏐⏐⏐
S=0

=

∞∑
n=1

ξn (θ, t)

(15)

ηζ (θ, t) = −
1
2g

Re
{
∇8|z=η,S=0

}
· Re

{
∇8|z=η,S=0

}
=

∞∑
n=1

∞∑
m=1

−
1
2g

[
fn(knη)fm(kmη)(gn)′r (gm)

′

r

+
fn(knη)fm(kmη)(gn)′θ (gm)

′

θ

r2
+ gngmknkm ḟn(knη)ḟm(kmη)

]⏐⏐⏐⏐⏐
S=0

=

∞∑
n=1

∞∑
m=1

ζnm (θ, t)

(16)

where ∇ =
∂
∂r

→

e r +
1
r

∂
∂θ

→

e θ +
∂
∂z

→

e z ; ξn (θ, t) and ζnm (θ, t) represent the component of ηξ (θ, t) and ηζ (θ, t), respectively,
with different n andm; (·)′r =

∂(·)
∂r , (·)

′

θ =
∂(·)
∂θ

and ḟn(knz) =
dfn(knz)
d(knz)

.
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Further substituting Eq. (13) into Eqs. (8) and (10), the first term of the resultant wave force and base bending moment
can also be rewritten as

Fξ (θ0, t) =

∞∑
n=1

∫ 2π

0

∫ η(θ,t)

−h

(
−ρfn (knz)

∂gn
∂t

)⏐⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

=

∞∑
n=1

∫ 2π

0

(
−ρ

fn (knη) ∂gn
∂t

)⏐⏐⏐⏐
S=0

λn (η)

(
−

→

n S

)
·

→

n0 · r̃(θ )dθ

=

∞∑
n=1

ρg
∫ 2π

0
λn (η) ξn (θ, t)

(
−

→

n S

)
·

→

n0 · r̃(θ )dθ

(17)

Mξ (θ0, t) =

∞∑
n=1

∫ 2π

0

∫ η(θ,t)

−h

(
−ρzfn (knz)

∂gn
∂t

)⏐⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

=

∞∑
n=1

∫ 2π

0

(
−ρ

fn (knη) ∂gn
∂t

)⏐⏐⏐⏐
S=0

ϑn (η)

(
−

→

n S

)
·

→

n0 · r̃(θ )dθ

=

∞∑
n=1

ρgh
∫ 2π

0
ϑn (η) ξn (θ, t)

(
−

→

n S

)
·

→

n0 · r̃(θ )dθ

(18)

where

λn (η) =

∫ η(θ,t)
−h fn (knz) dz

fn (knη)
(19)

ϑn (η) =
1
h

∫ η(θ,t)
−h zfn (knz) dz

fn (knη)
(20)

The second term of the wave force and bending moment, given in Eqs. (9) and (11), can also be given by

Fζ (θ0, t) =

∞∑
n=1

∞∑
m=1

ρg
∫ 2π

0
{ζnm (θ, t) αnm(η) + δnm(η)}

(
−

→

n S

)
·

→

n0 · r̃(θ )dθ (21)

Mζ (θ0, t) =

∞∑
n=1

∞∑
m=1

ρgh
∫ 2π

0
{ζnm (θ, t) βnm(η) + σnm(η)}

(
−

→

n S

)
·

→

n0 · r̃(θ )dθ (22)

where

αnm(η) =

∫ η(θ,t)
−h fn (knz) fm (kmz) dz

fn(knη)fm(kmη)
(23)

δnm(η) =
gngmknkm

fn(knη)fm(kmη)

[
fn(knη)fm(kmη)

∫ η(θ,t)

−h
ḟn (knz) ḟm (kmz) dz

− ḟn(knη)ḟm(kmη)z

∫ η(θ,t)

−h
fn (knz) fm (kmz) dz

] (24)

βnm(η) =
1
h

∫ η(θ,t)
−h zfn (knz) fm (kmz) dz

fn(knη)fm(kmη)
(25)

σnm(η) =
1
h

gngmknkm
fn(knη)fm(kmη)

[
fn(knη)fm(kmη)

∫ η(θ,t)

−h
zḟn (knz) ḟm (kmz) dz

− ḟn(knη)ḟm(kmη)
∫ η(θ,t)

−h
zfn (knz) fm (kmz) dz

] (26)

Detail derivation of Eqs. (21) and (22) are given in Appendix A. Herein, the term of δnm(η) and σnm(η) are first assumed
to be negligible. The induced error will be discussed later in the next section. With Eqs. (17) and (21), the wave force as
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described in Eq. (5) can be written as

F (θ0, t) =

∫ 2π

0
ρg η̃F

(
−

→

n S

)
·

→

n0 · r̃(θ )dθ (27)

where

η̃F (θ, t) =

∞∑
n=1

ξn (θ, t) λn(η) +

∞∑
n=1

∞∑
m=1

ζnm (θ, t) αnm(η) (28)

Similarly, with Eqs. (18) and (22), the base bending moment described in Eq. (7) can also be written as

M (θ0, t) =

∫ 2π

0
ρgh̃ηM

(
−

→

n S

)
·

→

n0 · r̃(θ )dθ (29)

where

η̃M (θ, t) =

∞∑
n=1

ξn (θ, t) (ϑn(η) + λn(η))

+

∞∑
n=1

∞∑
m=1

ζnm (θ, t) (βnm(η) + αnm(η))

(30)

3. Calculation of η̃F (θ, t) and η̃M (θ, t)

It is observed from the above derivation that the wave action can be estimated if the wave surface elevation around
the cylinder can be measured by using the wave gauges. However, how to obtain η̃F (θ, t) and η̃M (θ, t) from the measured
η (θ, t) around the cylinder is still a problem. To solve this problem, the component of the potential gn (kn, r, θ, t) in Eq. (12)
is first separated in the spatial and time domains as

gn (kn, r, θ, t) = Re
{̃
gn (kn, r, θ) · e−iωnt

}
(31)

where ωn is the circular frequency matching the dispersion relationship

ω2
n = kng tanh knh (32)

The product terms of gn · gm is then obtained to be

gn · gm =
1
2
Re
{̃
gn (kn, r, θ) g̃m (km, r, θ) · e−i(ωn+ωm)t

+ g̃n (kn, r, θ) g̃∗

m (km, r, θ) · e−i(ωn−ωm)t} (33)

where g̃∗
m (·) is the conjugate function of g̃m (·).

Substituting Eq. (33) into Eqs. (15) and (16), the equations can be rewritten as

ξn (θ, t) = Re
{
A (·) · e−iωnt

}
(34)

ζnm (θ, t) = Re
{
B (·) · e−i(ωn+ωm)t}

+ Re
{
C (·) · e−i(ωn−ωm)t} (35)

where

A (·) ≈ i
1
2

ωn

g
fn(knη)̃gn (kn, r, θ) (36)

B (·) = −
1
4g

[
fn(knη)fm(kmη) · (̃gn)′r (̃gm)

′

r+
fn(knη)fm(kmη)

r2
· (̃gn)′θ (̃gm)

′

θ

+ knkm ḟn(knη)ḟm(kmη) · g̃ñgm
] (37)

C (·) = −
1
4g

[
fn(knη)fm(kmη) · (̃gn)′r (̃g

∗

m)
′

r+
fn(knη)fm(kmη)

r2
· (̃gn)′θ (̃g

∗

m)
′

θ

+ knkm ḟn(knη)ḟm(kmη) · g̃ñg∗

m

] (38)
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Next, substituting Eqs. (34) and (35) into Eq. (14), the measured signal of wave surface elevation around the cylinder can
be rewritten in the form of

η (θ, t) =

∞∑
n=1

Re
{
A (·) · e−iωnt

}
+

∞∑
n=1

∞∑
m=1

Re
{
B (·) · e−i(ωn+ωm)t}

+

∞∑
n=1

∞∑
m=1

Re
{
C (·) · e−i(ωn−ωm)t} (39)

It is observed from Eq. (39), that the measured wave surface elevation around the cylinder can be decomposed into three
terms. Similarly, substituting Eqs. (34) and (35) into Eqs. (28) and (30), the η̃F (θ, t) and η̃M (θ, t) can be rewritten as

η̃F (θ, t) ≈

∞∑
n=1

λnRe
{
A (·) · e−iωnt

}
+

∞∑
n=1

∞∑
m=1

αnmRe
{
B (·) · e−i(ωn+ωm)t}

+

∞∑
n=1

∞∑
m=1

αnmRe
{
C (·) · e−i(ωn−ωm)t} (40)

η̃M (θ, t) ≈

∞∑
n=1

(ϑn + λn) Re
{
A (·) · e−iωnt

}
+

∞∑
n=1

∞∑
m=1

(βnm + αnm) Re
{
B (·) · e−i(ωn+ωm)t}

+

∞∑
n=1

∞∑
m=1

(βnm + αnm) Re
{
C (·) · e−i(ωn−ωm)t}

(41)

From the above-described equation, it can be found that the next step is to derive the coefficients ofλn (η) , ϑnm(η), αnm(η)
and βnm(η). It is well known that function of fn (knz) in Eq. (12) can be given as

fn (knz) = an ·
cosh kn (z + h)

cosh knh
(42)

The self-product of fn (knz) and ḟn (knz) are then obtained as

fn (knz) · fm (kmz) = anam ·
cosh kn (z + h)

cosh knh
cosh km (z + h)

cosh kmh
(43)

ḟn (knz) · ḟm (kmz) = anam ·
sinh kn (z + h)

cosh knh
sinh km (z + h)

cosh kmh
(44)

Substituting Eq. (42) into Eqs. (19) and (20) with the assumption of η (θ, t) ≪ h, the following is obtained:

λn (η) =
tanh kn (η + h)

kn
≈

tanh knh
kn

(45)

ϑn (η) =
η

hkn
tanh kn (η + h) −

1
hk2n

+
1
hk2n

1
cosh kn (η + h)

≈
1
hk2n

(
1

cosh knh
− 1

) (46)

Further substituting Eqs. (43) and (44) into Eqs. (23) and (25), the formulae for αnm (η) and βnm (η) can be obtained, which
can be found in Appendix B.

From the above derivation, it can be found that the following assumptions are utilized: (1) the random incident wave
is assumed to be comprised of a series of linear wave, as seen in Eq. (12); (2) the coefficients λn (η) , ϑnm(η), αnm(η) and
βnm(η) are derived based on the condition of η (θ, t) ≪ h. However, it can be observed that the estimated wave force
and base bending moment shown in Eqs. (27) and (29) still include nonlinear terms caused by the product term of wave
potential, despite the linear assumption of the random incident wave. Generally, the function of g̃n is very complex, so that
high accuracy decomposition of linear term and nonlinear term of η (θ, t), as given in Eq. (39), is difficult to obtain. Therefore,
an approximate method is developed to calculate the value of η̃F (θ, t) and η̃M (θ, t) for estimating the wave action.

In this approximatemethod, the coefficients αnm and βnm +αnm in Eqs. (40) and (41) are replaced by using λn and ϑn +λn,
respectively, which are dependent on the frequency of ωn ± ωm as follows:

λn =
tanh k±

n h
k±

n

(47)
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Fig. 2. Schematic of experiment setup.

ϑn =
1

h
(
k±

n

)2 ( 1
cosh k±

n h
− 1

)
(48)

where frequency k±

n has the relation of (ωn ± ωm)2 = k±

n g tanh
(
k±

n h
)
; n is an identifier for the frequency of ωn ± ωm. Next,

in Eqs. (39)–(40), the nonlinear part of B (·) and C (·) can be merged into the linear part of A (·). Therefore, the wave surface
elevation around the cylinder can be simplified into the combination of a series of linear components. In such a condition,
the measured signal of the wave surface elevation around the cylinder can also be written as the expansion of the Fourier
series as

η (θ, t) =

∞∑
n=1

an (θ) cos(ωnt + ϕn (θ)) (49)

where an (θ) andϕn (θ) are the amplitude and phase corresponding to the frequency ofωn. Therefore, based on the simplified
forms of Eqs. (40) and (41), η̃F (θ, t) and η̃M (θ, t) can be written as

η̃F (θ, t) =

∞∑
n=1

tanh knh
kn

an (θ) cos(ωnt + ϕn (θ)) (50)

η̃M (θ, t) =

∞∑
n=1

(
1
hk2n

(
1

cosh knh
− 1

)
+

tanh knh
kn

)
an (θ) cos(ωnt + ϕn (θ)) (51)

The linear estimation of the resultant wave force and base bending moment can be easily obtained after substituting
Eqs. (50) and (51) into Eqs. (27) and (29).

4. Experimental validation

4.1. Experiment setup

To validate the proposed method, a hydrodynamic experiment on a circular cylinder under irregular wave actions was
performed at the Wind Tunnel and Wave Flume Laboratory, Harbin Institute of Technology in China. The schematic of
experiment setup is shown in Fig. 2. In this experiment, a bottom-mounted circular cylinder with a radius of 150 mm was
installed in the center of the wave basin. The irregular wave generated by the wave-maker propagated from the right to the
left end with a water depth of 0.8 m. JONSWAP spectrumwas adopted for generating the randomwave field with a period of
1 s. To obtain amore complexmulti-directionwave field, four obstructers, which are used to disturb the wave field, were set
around the cylinder. To acquire the signals of thewave surface elevation around the cylinder, twelvewave gauges, numbered
as shown in Fig. 2, were uniformly distributed around the cylinder, as shown in Fig. 2. To eliminate the effect of the wave
gauges on the test model, the supported rod of the sensors was designed to be embedded into the cylinder, and the sensing
wire of the wave gauges was installed at the outside with a gap of 5mm away from the cylinder surface. As shown in Fig. 3, a
six-component force balance was embedded in the bottom of the cylinder, and the wave force was transferred to the sensor
through the cylinder and the steel keel. During the test, the wave surface elevation and the wave force were recorded at a
sampling frequency of 400 Hz. In the following study, the wave force horizontal (Fx and Fy) and base bending moment (My
andMx) along the x- and y-direction aremainly considered and discussed. A close-up image of the testmodel is also depicted
in Fig. 3.

4.2. Comparison of the tested and estimated results in the time domain

Under the attack of the random waves, the time history of the wave surface elevation around the cylinder was recorded
by the twelve wave gauges. Because of the space limitation, the test data of half wave gauges are shown in Fig. 4 over the
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Fig. 3. Close-up image of the test model in the wave basin.

Fig. 4. Time history of the wave surface elevation around the cylinder recorded by the wave gauges.

time range of 0 ∼ 400 s. In those measured data, the mean values of the signals are extracted from the original data. The
wave force and bending moment along the x- and y-directions were recorded by the force balance simultaneously. Fig. 5
shows a complete signal of the measured horizontal wave force along the x-direction. For convenience of analysis, two parts
of the signals, named as Region 1 and Region 2 corresponding to the stationary and non-stationary stages, respectively, are
separated from the test signal for the following analysis.

Tomore obviously observe the wave action process, themeasured wave elevations (red scatter line) and horizontal wave
forces (blue arrow) at four time instances are shown in Fig. 6. For comparison, the SWL is also shown as a gray circle in
these figures. The wave force is found to have an obvious correlation with the wave surface elevation. When the wave
surface elevation around the cylinder is large at the leading surface, a relative large wave force can also be obtained in the
approaching direction, especially in Fig. 6(a) and (d).
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Fig. 5. Test data of Fx (Region 1: stationary stage; Region 2: non-stationary stage).

Fig. 6. Instantaneous test results of the wave surface elevation around the cylinder and the horizontal wave force: (a) t = 150.2725 s; (b) t = 155.1775 s;
(c) t = 165.7375 s; and (d) t = 170.2700 s.

Using the proposed method, the horizontal wave forces and base bending moment on the bottom mounted circular
cylinder along the two directions are estimated with the data collected by the wave gauges. Taking the signal of Gauge 2 as
an example, the calculated η̃F (π/4, t) and η̃M (π/4, t) with the scope of [140 s 160s] in stationary region is shown in Fig. 7.
To make the data more comparable, the dimensionless values through dividing the max value of themselves, respectively,
are adopted in this figure. In addition, the measured signal of the wave gauge in the same region is also depicted in this
figure. From Eqs. (50) and (51), it can be found that η̃F and η̃M have the same phase with η, the calculated η̃F (π/4, t) and
η̃M (π/4, t) are clearly synchronized well with the measured data.
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Fig. 7. Time histories for the dimensionless value of η̃F , η̃M and η (θ = π/4).

For the circular cylinder, the unit normal vector on the circular cylinder surface is
→

n S =
(
cos θ sin θ 0

)
(52)

and the unit vector,
→

n0, in the force direction is
→

n0 =
(
cos θ0 sin θ0 0

)
(53)

Substituting Eqs. (52) and (53) into Eqs. (27) and (29), the wave force and base bending moment can be obtained as

F (θ0, t) = −ρgr0

∫ 2π

0
η̃F (θ, t) cos (θ − θ0) dθ

= −ρgr0
12∑
n=1

η̃F (θn, t) cos (θn − θ0) 1θ

(54)

M (θ0, t) = −ρghr0

∫ 2π

0
η̃M (θ, t) cos (θ − θ0) dθ

= −ρghr0
12∑
n=1

η̃M (θn, t) cos (θn − θ0) 1θ

(55)

where r0 is the radius of the circular cylinder; 1θ = π/6 and θn is

θn =
(n − 1) π

6
+

π

12
, n = 1, 2, . . . , 12 (56)

Based on the above-describe specific conditions for the circular cylinder, the wave force and base bendingmoment of the
test model are estimated by using the measurement of the wave gauges and the proposedmethod described above. Fig. 8(a)
shows the comparison of measured and estimated wave force in the x-direction, Fx, in Region 1 within the time interval of
140–200 s. The figure indicates that the estimatedwave force from themeasurement of thewave gauges coincides well with
the measured wave force by the force balance. Using the same method, the transverse wave force in the y-direction, Fy, is
also calculated and depicted in Fig. 8(b) together with the measured wave force by the force balance. The transverse wave
force acting on the cylinder is found to be smaller than that in the longitudinal direction.

Similarly, the comparison of My and Mx between the estimated and measured results is also shown in Fig. 9. The
figure provides evidence that the proposed linear estimation method can also achieve a good result for the base bending
moment.

Table 1 shows the statistic results of the measured and estimated wave force and base bending moment in Region 1.
The root-of-mean-square (RMS) values of Fx in this region are calculated to be 15.68 N and 15.46 N for the estimated and
measured wave forces, respectively, with an error of 1.42%. The corresponding RMS values of Fy are obtained to be 6.98 N
and 7.08 N for the estimated and measured wave forces, respectively, with a similar small error of 1.41%. As for the base
bending moment, a relative larger estimated errors is found to be 2.88% and 3.36% forMy and Mx, respectively.

In the non-stationary stage, the proposed method is also utilized to estimate the wave action based on the test results
of the wave gauges. Although the recorded data in this region is non-stationary, it can be extended to a period signal
through periodic repetition. Therefore, the assumption used in Region 1 can also be used for estimating thewave force of the
non-stationary region. Fig. 10 shows the comparison results of the wave force and bending moment in Region 2. Because
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Fig. 8. Comparison between the measured and estimated wave force in Region 1: (a) Fx; and (b) Fy .

Table 1
Comparison between the statistic results of measured and estimated wave
action.

Item Estimated results Experimental results Estimated error

Fx 15.68 N 15.46 N 1.42%
Fy 6.98 N 7.08 N 1.41%
My 8.77 N · m 9.03 N · m 2.88%
Mx 3.74 N · m 3.87 N · m 3.36%

of the space limitation, only the comparison results of the wave force, Fx, and the bending moment, My, are given as
examples. The figure shows that a good coincidence can also be found between the results obtained from two different
methods. The decay trend of the wave action in transient process can also be effectively estimated using the proposed
method.

4.3. Frequency domain and error analysis

To further investigate the error of the linear estimationmethod, frequency analyses of the estimated andmeasured wave
forces are conducted. Fig. 11(a) shows the power spectral density (PSD) of the tested and estimated results of the horizontal
wave force along the x-direction in the stationary region. The PSD of the estimated wave force is observed to approximately
overlap with that of the test results. However, some slight differences also exist within the frequency range of [0.7–0.9] Hz.
It can also be observed from the comparison of the PSD of the bending moment My that the linear estimation method also
slightly underestimates the peak value at 1 Hz, as shown in Fig. 11(b). From the above comparison of the measured and
estimated wave action, it can be concluded that the proposed linear estimation method is effective for the prediction of the
wave force using the wave surface elevation signals around the circular cylinder.

From the above PSD curves, it is also observed the phenomenon that the wave action underestimates the higher-
frequency components of the wave force, whereas it overestimates the wave force at the low-frequency region. Although
those errors are negligible because of the small energy in those regions compared to that near the dominated frequency,
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Fig. 9. Comparison between the measured and estimated base bending moment in Region 1: (a)My; and (b)Mx .

the reason for this phenomenon is also shown in the following. To more clearly observe the error between the tested and
estimated results, the PSDs, as shown in Fig. 11(a), is redrawn in logarithmic coordinate, as shown in Fig. 12.

It is observed from the above derivation that a linear approximation is adopted for calculating the value of η̃F (θ, t)
based on the test data of wave gauges. However, it is easily noted that the actual measured wave surface elevation around
the cylinder, η (θ, t), by the wave gauges also includes the nonlinear components in terms of the sum frequency and the
difference frequency. It can be found that the terms of the sum frequency and the difference frequency in Eq. (40) are actually
divided by λn rather than αnm to achieve Eq. (50). In this process, errors are introduced because of the linear simplification. To
gain insight into this error source, the frequency f0, which is the sum of f1 and f2, is first investigated. According to Eqs. (47)
and (B.1), the values of λn and αnm can be computed, as shown in Fig. 13(a). In this figure, the blue region denotes the range
of values of αnm with a different group of f1 and f2, and the red line is the value of λn. It can be found that the value of αnm is
always greater than that of λn. When αnm is replaced by λn in the linear simplification process, it underestimates the wave
action because of the effect of the sum term that mainly exists in the higher-frequency region in Fig. 12.

The error induced by the difference frequency term is similar as that of the process of sum frequency term. The difference
frequency is given by

f0 = f1 − f2 (0 ≤ f2 ≤ f1, f0 ≥ 0) (57)

As shown in Fig. 13(b), the values ofαnm are always less than those ofλn as opposed to the sum frequency terms. Therefore,
when the linear approximate process replaces αnm by λn in the difference frequency term, it would induce the phenomenon
of overestimating the wave action in the lower-frequency region, as shown in the left side of Fig. 12. Similar regulation for
η̃M (θ, t) can also be found by using the same method for the coefficients of (ϑn + λn) and (βnm + αnm), as shown in Fig. 14.
Therefore, it can be concluded that the linear approximate method proposed in this study would underestimate the sum
frequency term and overestimate the difference frequency term for both wave force and wave bending moment.

During the derivation of in Eqs. (27) and (29), the effect of coefficient δnm(η) and σnm(η) are neglected, which also induces
error of the estimated wave action. To analyze the effects of this simplification, error analysis is also conducted regarding
this issue. However, note that the formulation of δnm(η) and σnm(η) containing the unknown function of gn · gm are complex
and difficult to obtain from the information of the measured wave surface elevation by the wave gauges. To evaluate the
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Fig. 10. Comparison of the wave action along the longitudinal direction in Region 2: (a) Fx; and (b)My .

Fig. 11. PSDs of the wave force and bending moment in the stationary region: (a) Fx; and (b)My .

Fig. 12. PSD of Fx in stationary region with logarithmic coordinate.
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Fig. 13. Error analysis for the coefficients of λn and αnm: (a) Sum frequency; and (b) difference frequency.

Fig. 14. Error analysis for the coefficients of (ϑn + λn) and (βnm + αnm): (a) Sum frequency; and (b) difference frequency.

effect of δnm(η), an error function is defined as following:

Eδ =

⏐⏐⏐⏐ δnm (η)

gngmknkm ḟn(knη)ḟm(kmη)αnm(η)

⏐⏐⏐⏐⏐⏐⏐⏐
η=0

(58)

where the denominator of Eδ is part of ζnm (θ, t) αnm(η) in Eq. (A.2) of Appendix A.
For the frequency groups (f1, f2) of two arbitrary superimposed wave, the error function is calculated and shown in

Fig. 15(a). As shown in the figure, the values of Eδ are higherwhen the frequency groups close to zeros, i.e., the effect becomes
more significant for the waves with long period.

Similarly, an error function for σnm(η) can also be defined as

Eσ =

⏐⏐⏐⏐ σnm (η)

gngmknkm ḟn(knη)ḟm(kmη)βnm(η)

⏐⏐⏐⏐⏐⏐⏐⏐
η=0

(59)

where the denominator of Eσ is part of ζnm (θ, t) βnm(η), as shown in Eq. (A.3) of the Appendix. Likewise, the relationship
between Eσ and frequency group (f1, f2) are also calculated and shown in Fig. 15(b). The same conclusion can be found from
this figure.When the nonlinear part ofwave action is very small, the error can be neglected; even the values of Eδ and Eσ reach
to 0.65 and 0.80, respectively. It can also be found from Fig. 15 that the effects of δnm(η) and σnm(η) for the case of frequency
group with small wave periods is very small. However, when the nonlinearity is very strong, the effects of coefficient δnm(η)
and σnm(η) on the wave force estimation should be further investigated for such cases.

5. Conclusions

This paper presented amethodology to estimate thewave action on rigid bottom-mounted cylinders using themonitoring
information of wave surface elevation around the structure surface. Formulas are derived based on the potential theory, and
a hydrodynamic experiment was performed on circular cylinder to validate the proposed method. The major conclusions
include:

(1) There is an inherent relationship between the wave surface elevation around the bottom-mounted cylinders and the
wave loads acting on the structure. The classic potential theory can be used to estimate the wave force on the cylinder
without the need to know the velocity potential of the whole wave field.



212 J. Liu et al. / Journal of Fluids and Structures 78 (2018) 197–214

Fig. 15. Error analysis for the coefficients. (a) Eδ ; (b) Eσ .

(2) The formulae of the proposed method are derived in a general way. Considering the difficulty of including all of
the nonlinear terms in the estimation process, a linear approximate method is proposed from a simplified integral
formula of wave surface elevation. The test results demonstrated that the approximate method can also achieve a
good estimation of the wave loads on the cylinders.

(3) The error induced by the simplification can be explained from the frequency domain analysis of the function of
the concerned coefficients. The linear estimation method slightly underestimates sum frequency term, whereas it
overestimates the difference frequency term.

This study provides a possible novel approach for real-time monitoring the wave loads acting on the bottom-mounted
cylinders using the wave surface elevation around the coastal cylindrical structure. Although the experiment was conducted
on a circular cylinder, it can also be used for predicting thewave loads of rigid bottom-mounted cylinder with arbitrary cross
sections. As a pioneering investigation, further study is still required on this topic in the future, such as:

(1) Use fewer wave gauges to obtain acceptable estimated results, and analyze the effect of location of wave gauges on
the estimated results;

(2) Develop a nonlinear estimation method that include the sum frequency and difference frequency terms to obtain
more accurate results.
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Appendix A

The detailed derivation of Eq. (7) is given as follows:

M0 (θ0, t) =

∫
S=0

∫ η(θ,t)

−h
P (h + z)

(
−

→

n S

)
·

→

n0dzds =

∫ 2π

0

∫ η(θ,t)

−h
P (h + z)

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

=

∫ 2π

0

∫ η(θ,t)

−h

(
− ρgz (h + z) − ρ (h + z) Re

{
∂8

∂t

}
−

ρ

2
(h + z) Re {∇8} · Re {∇8}

)⏐⏐⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

=

∫ 2π

0

∫ η(θ,t)

−h

(
−ρzRe

{
∂8

∂t

}
−

ρ

2
zRe {∇8} · Re {∇8}

)⏐⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

+ F0 (θ0, t) h

= Mξ (θ0, t) + Mζ (θ0, t) + F0 (θ0, t) h

(A.1)

whereMξ (θ0, t) and Mζ (θ0, t) are shown in Eq. (10) and (11), respectively.
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The detailed derivation of Eq. (21) is given as follows:

Fζ (θ, t) =

∫ 2π

0

∫ η(θ,t)

−h

(
−

ρ

2
Re {∇8} · Re {∇8}

)⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

=

∞∑
n=1

∞∑
m=1

−
ρ

2

∫ 2π

0

∫ η(θ,t)

−h

{
fnfm(gn)′r (gm)

′

r +
fnfm
r2

(gn)′θ (gm)
′

θ

+ gngmknkm ḟn ḟm

}(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

=

∞∑
n=1

∞∑
m=1

−
ρ

2

∫ 2π

0

{
(gn)′r (gm)

′

r

∫ η(θ,t)

−h
fnfmdz +

(gn)′θ (gm)
′

θ

r2

∫ η(θ,t)

−h
fnfmdz

+ gngmknkm

∫ η(θ,t)

−h
ḟn ḟmdz

}(
−

→

n S

)
·

→

n0 · r̃(θ )dθ

=

∞∑
n=1

∞∑
m=1

−
ρ

2

∫ 2π

0

{[
fn(η)fm(η)(gn)′r (gm)

′

r +
fn(η)fm(η)(gn)′θ (gm)

′

θ

r2

+ gngmknkm ḟn(knη)ḟm(kmη)

]
αnm(η) + δnm(η)

}(
−

→

n S

)
·

→

n0 · r̃(θ )dθ

=

∞∑
n=1

∞∑
m=1

ρg
∫ 2π

0
{ζnm (θ, t) αnm(η) + δnm(η)}

(
−

→

n S

)
·

→

n0 · r̃(θ )dθ

(A.2)

where αnm(η) and δnm(η) are shown in Eqs. (23) and (24), respectively.
The detailed derivation of Eq. (22) is given as follows:

Mζ (θ, t) =

∫ 2π

0

∫ η(θ,t)

−h

(
−

ρz
2

Re {∇8} · Re {∇8}

)⏐⏐⏐
S=0

(
−

→

n S

)
·

→

n0 · r(θ )dzdθ

=

∞∑
n=1

∞∑
m=1

−
ρ

2

∫ 2π

0

∫ η(θ,t)

−h
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′

r + z
fnfm
r2
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′

θ

+ zgngmknkm ḟn ḟm

}(
−

→

n S

)
·

→

n0 · r̃(θ )dzdθ

=
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n=1

∞∑
m=1

−
ρ

2

∫ 2π

0

{
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′

r

∫ η(θ,t)

−h
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θ
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zḟn ḟmdz
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)
·

→
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n=1
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m=1

−
ρ

2
h
∫ 2π

0
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fn(η)fm(η)(gn)′r (gm)

′

r +
fn(η)fm(η)(gn)′θ (gm)

′

θ

r2

+ gngmknkm ḟn(knη)ḟm(kmη)

]
βnm(η) + σnm(η)

}(
−

→

n S

)
·

→

n0 · r̃(θ )dθ

=

∞∑
n=1

∞∑
m=1

ρgh
∫ 2π

0
{ζnm (θ, t) βnm(η) + σnm(η)}

(
−

→

n S

)
·

→

n0 · r̃(θ )dθ

(A.3)

where βnm(η) and σnm(η) are shown in Eqs. (25) and (26), respectively.

Appendix B

The formulae for αnm (η) and βnm (η) are

αnm(η) =

1
kn+km

sinh (kn + km) (η + h) +
1

kn−km
sinh (kn − km) (η + h)

cosh (kn + km) (η + h) + cosh (kn − km) (η + h)

≈

1
kn+km

sinh (kn + km) h +
1

kn−km
sinh (kn − km) h

cosh (kn + km) h + cosh (kn − km) h

(B.1)
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βnm(η) =

1
h

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

kn + km

{
η sinh (kn + km) (η + h) −

1
(kn + km)

(cosh (kn + km) (η + h) − 1)
}

+

1
kn − km

{
η sinh (kn − km) (η + h) −

1
(kn − km)

(cosh (kn − km) (η + h) − 1)
}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
cosh (kn + km) (η + h) + cosh (kn − km) (η + h)

≈

1
h(kn+km)2

(1 − cosh (kn + km) h) +
1

h(kn−km)2
(1 − cosh (kn − km) h)

cosh (kn + km) h + cosh (kn − km) h

(B.2)
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