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Abstract
This paper presents an analytical model to solve the linear wave diffraction problem using a truncated cylinder with an arbi-
trary smooth cross section. Using the method of separation of variables, the boundary condition equations for the surface of 
a truncated cylinder are derived. Based on the condition that the radius function of a cylinder surface can be expanded into 
a Fourier series, the unknown coefficients of the diffraction potential can be obtained from a linear system equation. The 
surface elevation and wave force are calculated and analyzed in terms of the total velocity potential for different cases. The 
truncated error introduced in the solving process is discussed. Then, the accuracy of this method is verified by comparison 
with the results of the boundary element method. Finally, this method is further extended to a practical engineering applica-
tion with a quasi-ellipse caisson for different drafts and exposures.

Keywords Wave diffraction · Truncated cylinder · Non-circular cross section · Analytical solution · Quasi-ellipse cross 
section

1 Introduction

Wave action on a floating cylinder is of considerable interest 
to design engineers and scientists. To estimate the hydro-
dynamic coefficients thereof, numerous analytical solutions 
and simulations of diffraction and radiation problems have 
been researched for decades. Garrett [1] studied the scatter-
ing problem of linear waves around a circular dock in finite-
depth water using analytical and numerical methods. The 
analytical method was extended by Yeung [2] to solve the 
radiation problem for a single truncated cylinder oscillating 

in finite-depth water and deep water. Bhatta and Rahman 
[3] used the separation of variables technique to analyze 
the diffraction and radiation problem for a floating vertical 
cylinder in finite-depth water and presented the analytical 
solutions for the surge, heave, and pitch motion cases. Later, 
the effect of depth-to-radius and draft-to-radius ratios on the 
hydrodynamic coefficients of the heave motion of a vertical 
cylinder was studied by Bhatta [4]. Based on previous stud-
ies, Finnegan et al. [5] presented an approximation analytical 
expression for a floating vertical cylinder in water of infi-
nite depth. His results were verified by comparison with the 
experimental results obtained by Fonseca et al. [6]. For the 
case of extremely shallow water, Drobyshevski [7] derived a 
closed asymptotic formula to study the hydrodynamic coeffi-
cients of a floating cylinder. A set of theoretical added mass, 
damping coefficient, and exciting force expressions is given 
for the heave, surge, and pitch motions. Jiang et al. [8, 9] 
gave the analytical solution to a wave diffraction problem 
and radiation problem on a submerged vertical cylinder at a 
finite water depth.

For the diffraction problem of multi-body interaction, a 
general interaction theory was derived by Kagemoto and 
Yue [10], which obtains the total potential from the dif-
fraction solutions of individual members. This method was 
extended by Siddorn and Taylor [11] to investigate the wave 

 * Anxin Guo 
 guoanxin@hit.edu.cn

1 Key Lab of Structures Dynamic Behavior and Control 
of the Ministry of Education, Harbin Institute of Technology, 
Harbin 150090, China

2 Key Lab of Smart Prevention and Mitigation of Civil 
Engineering Disasters of the Ministry of Industry 
and Information Technology, Harbin Institute of Technology, 
Harbin 150090, China

3 Department of Aerospace Engineering, Iowa State 
University, Ames, IA 50011, USA

4 China Railway Bridge Science Research Institute, Ltd, 
Wuhan 430034, China

http://orcid.org/0000-0003-3464-9222
http://crossmark.crossref.org/dialog/?doi=10.1007/s00773-017-0516-0&domain=pdf


867Journal of Marine Science and Technology (2018) 23:866–876 

1 3

excitation and response of truncated cylinders that are free to 
oscillate independently, as well as the associated free surface 
behavior. A complete analysis within a unified framework is 
provided and discussed in this study.

Regarding the problem of diffraction and radiation around 
a cylinder over a caisson fixed at the bottom in finite-depth 
water, Wu et al. [12, 13] presented an analytical approach 
and studied the added masses, damping coefficients, and 
exciting forces according to the size of the caisson. Similar 
problems were analyzed by Hassan and Bora [14], who con-
sider a system consisting of a buoy floating vertically on the 
free surface above a bottom-mounted caisson. Further work 
was conducted with two coaxial vertical cylinders, where 
one is a riding hollow cylinder and the other a solid cylinder 
of greater radius, at some distance above an impermeable 
horizontal bottom [15].

An analytical model using an imaging method [16] for the 
three-dimensional wave diffraction and radiation problem 
of a floating cylinder located in front of a vertical wall at a 
finite water depth was formulated [17, 18]. The influence 
of the distance between the cylinder and vertical wall, draft 
of the cylinder, and water depth on the hydrodynamic coef-
ficients is discussed.

However, to the best of the authors’ knowledge, analytical 
studies of the diffraction problem around a truncated cylin-
der with an arbitrary section have seldom been attempted. 
With the demands of offshore engineering, such a study is 
required. For instance, during the construction period of the 
new Tacoma Narrows Bridge [19], the caisson was floated in 
the river using buoyancy and moored in place to resist wave 
and current action. The security of the floating caisson in 
the construction period is significantly affected by its hydro-
static and hydrodynamic properties. Although the boundary 
element method can solve these problems accurately and 
effectively, an analytical solution is still necessary to provide 
a reference in terms of numerical results.

The method presented in this paper allows the solution for 
the linear diffraction problem of a truncated cylinder with 
arbitrary cross section. The present study follows from the 
authors’ previous work [20]. The solving process is the same 
as that used by Bhatta and Rahman [3], where the unknown 

coefficient can be determined from the boundary conditions 
by expanding the radius function of a truncated cylinder into 
a Fourier series. The analytical solution for diffracted poten-
tials is obtained, and the wave elevation and wave excitation 
forces for different cases are then calculated using the pre-
sent analytical model. The accuracy of the method presented 
in this paper is verified by comparing with the results of the 
numerical method. A practical example was demonstrated with 
a quasi-ellipse caisson, which is frequently used as the founda-
tion of cross-strait bridges.

2  Formulation of the hydrodynamic 
problem

Figure 1 shows a schematic of the wave diffraction around a 
truncated cylinder with an arbitrary smooth section. In the 
following analysis, the origin of the global coordinate system 
is fixed on the still water lever with the z-axis pointing verti-
cally upward. The polar coordinate (r, �, z) of the truncated 
cylinder is set inside the cross section. The cylinder is exposed 
to a plane wave with a frequency � and linear amplitude A, 
propagating in the positive direction of the x-axis. In this study, 
it was assumed that the radius function for the cross section 
could be expanded into a Fourier series based on the assump-
tion of a smooth cylinder surface. The water depth is h and the 
draft of the truncated cylinder is b. The radius function r(�) for 
the cross section of the cylinder in the local polar coordinate 
can be written as:

  

where nr ∈ Z.
The surface function, S, for the truncated cylinder can be 

given by:

(1)r(�) =

∞∑
nr=−∞

bnre
inr� ,

(2)S(r, �) = r −

∞∑
nr=−∞

bnre
inr� .

Fig. 1  Definition sketch for the 
diffraction problem of a trun-
cated vertical cylinder



868 Journal of Marine Science and Technology (2018) 23:866–876

1 3

As in the studies by Yeung [2] and Bhatta and Rah-
man [3], the fluid domain is divided into an interior 
region Ω1(S ⩽ 0, − h ⩽ z ⩽ −b) and an exterior region 
Ω2(S ⩾ 0, − h ⩽ z ⩽ 0).

The velocity potential of the fluid with a linear assump-
tion should satisfy Laplace’s equation and the corresponding 
boundary conditions. Herein, the governing equation and 
boundary conditions for the wave potential are summarized 
as follows:

Laplace’s equation:

Free surface condition (z = 0):

where g is the gravitational acceleration.
Seabed condition ( z = −h):

Cylinder surface condition:

where �⃗�s is the normal vector on the surface of the cylinder.
The total velocity potential can be written in the following 

form:

where

in which �I represents the velocity potential of the incident 
wave in the exterior region; �e

S
 and �i

S
 represent the velocity 

potential of the diffraction wave in the exterior and interior 
regions, respectively.

The incident wave potential in the polar coordination sys-
tem is:

in which Jm(⋅) is a first-kind Bessel function with order m. �0 
satisfies the relation �2 = �0g tanh(�0h).

The diffraction wave potentials �e

S
 and �i

S
 have different 

forms in the exterior and interior regions. Furthermore, the 
diffraction wave �e

S
 in the exterior region should also satisfy 

the Sommerfeld radiation condition at the far field:

(3)∇2Φ=0.

(4)
�Φ

�z
−

�2

g
Φ = 0,

(5)
�Φ

�z
= 0.

(6)∇Φ ⋅ 𝐧𝐬 = 0,

(7)Φ(r, y, �, t) = �(r, �, z)e−i�t,

(8)� = �i

S
(Ω1); � = �I + �e

S
(Ω2),

(9)�e

I
= −i

gA

�

cosh �0(z + h)

cosh �0h

∞∑
m=−∞

Jm(�0r) ⋅ e
im

�

2 eim� ,

(10)lim
r→∞

√
r

�
��e

S

�r
− ik�e

S

�
= 0.

The diffraction wave �e

S
 in the exterior region can be con-

structed as follows:

where qmn (n = 0, 1, 2, …) represents unknown con-
stants; Hm(⋅) is the Hankel function of the first kind 
and Km(⋅) is the modified Bessel function of the sec-
ond kind with order m; �j satisfies the relation 
�2=�0g tanh(�0h) = −�jg tan(�jh) (j = 1, 2,…) Hence, the 
set of functions {cosh �0(z + h), cos �j(z + h)}, j = 1, 2,… 
could form an orthogonal set defined in the interval 
−h ⩽ z ⩽ 0 , and the orthonormal set can be constructed 
provided:

where

The diffraction wave velocity potential in the interior 
region can be constructed as follows [11]:

where pmn (n = 0, 1, 2, …) represents unknown constants, 
kn = n�∕(h − b) represents the eigenvalues, and Im(⋅) is the 
modified Bessel function of the first kind with order m.

In polar coordinates, the normal vector, �⃗�s , on the side 
surface of the cylinder is given by:

where �S
��
= −

∑∞

nr=−∞
inrbnre

inr� .

The boundary conditions are:

(11)

�e

S
= −i

gA

�

∞∑
m=−∞

[
cosh �0(z + h)

cosh �0h
qm0Hm(�0r)

+

∞∑
n=1

cos �j(z + h)

cos �jh
qmjKm(�jr)

]
⋅ eim� ,

(12)Z�0(z) = N
−1∕2

�0
cosh �0(z + h),

(13)Z�j (z) = N
−1∕2

�j
cos �j(z + h),

(14)N�0
=

1

2

[
1 +

sinh 2�0h

2�0h

]
,

(15)N�j
=

1

2

[
1 +

sin 2�jh

2�jh

]
.

(16)

�i

S
= −i

gA

�

∞∑
m=−∞

[
pm0r

|m| +
∞∑
n=1

pmnIm(knr) cos kn(z + h)

]
⋅ eim� ,

(17)
�⃗�s =

1√
1 +

(
1

r

�S

��

)2

(
1

1

r

�S

��
0

)
,
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with −b ⩽ z ⩽ 0, and

with −h ⩽ z ⩽ −b.

To determine the coefficients pmn and qmn in the above 
equation, the Hankel function, Bessel function, modified 
Bessel functions and their derivatives are expanded into a 
Fourier series with S = 0 as follows:

To simplify the derivation process, the function of the 
radius with S = 0 can be written as:

where qr ∈ Z.

The Fourier coefficients, dmqr , d̃mqr , fmqr , f̃mqr , gmqrj,

g̃mqrj, lmqrj, l̃mqrj, b̃nr and hmqr , can be obtained from:

where ℜn represents the Fourier coefficients and Ψ(�) rep-
resents the functions to be expanded, which are defined in 
Eqs. 21–25.

(18)

(
r2
��e

S

�r
+

�S

��

��e

S

��

)|||||S=0
+

(
r2
��e

I

�r
+

�S

��

��e

I

��

)|||||S=0
= 0,

(19)�e

S
+ �e

I
=�i

S
,

(20)

(
r
2
��e

S

�r
+

�S

��

��e

S

��

)|||||S=0
+

(
r
2
��e

I

�r
+

�S

��

��e

I

��

)|||||S=0
=

(
r
2
��i

S

�r
+

�S

��

��i

S

��

)||||||S=0
,

(21)

Hm(𝜆0r)
||S=0=

∞∑
qr=−∞

dmqre
iqr𝜃 , H�

m
(𝜆0r)

||S=0=
∞∑

qr=−∞

d̃mqre
iqr𝜃 ,

(22)

Jm(𝜆0r)
||S=0=

∞∑
qr=−∞

fmqre
iqr𝜃 , J�

m
(𝜆0r)

||S=0=
∞∑

qr=−∞

f̃mqre
iqr𝜃 ,

(23)

Km(𝜆jr)
|||S=0=

∞∑
qr=−∞

gmqrje
iqr𝜃 , K�

m
(𝜆jr)

|||S=0=
∞∑

qr=−∞

g̃mqrje
iqr𝜃 ,

(24)

Im(𝜆jr)
|||S=0=

∞∑
qr=−∞

lmqrje
iqr𝜃 , I�

m
(𝜆jr)

|||S=0=
∞∑

qr=−∞

l̃mqrje
iqr𝜃 .

(25)

r2(𝜃)
|||S=0=

∞∑
nr=−∞

b̃nre
inr𝜃 , rm(𝜃)|S=0=

∞∑
qr=−∞

hmqre
iqr𝜃 ,

(26)ℜn=
1

2�

�

∫
−�

Ψ(�)e−in�d�,

On multiplying Eq. 19 by 2 cos kñ(z + h)
/
(h − b) on both 

sides and integrating with respect to z over the region of 
−h ⩽ z ⩽ −b, the boundary condition of Eq. 19 becomes

where

As a simplification, the substitution of Eqs. 12, 13 into 
Eq. 28 yields:

Equation 27 can be rewritten as a linear system of equations 
according to the functions of eim̃𝜃 as follows:

where Lm̃(qmn, pmn) represents linear functions composed of 
unknown constants qmn and pmn; Rm̃ represents the coeffi-
cients of eim̃𝜃 . To solve the linear system, the order of m, n, 
and m̃ are truncated at a specific order to balance the accu-
racy and computational efficiency. Therefore, their ranges in 
the following calculation are:

Then, Eq. 31 can be organized into the following matrix 
form:

The sizes of each matrix are:

(27)

∞∑
m=−∞

∞∑
qr=−∞

[
𝜉𝜆0ñqm0dmqr +

∞∑
j=1

𝜉𝜆j ñqmjgmqrj

]
⋅ ei(m+qr)𝜃

+

∞∑
m=−∞

∞∑
qr=−∞

𝜉𝜆0ñfmqr ⋅ e
im

𝜋

2 ei(m+qr)𝜃

=

∞∑
m=−∞

∞∑
qr=−∞

[
2pm0hmqr𝛿0ñ + (1 − 𝛿0ñ)pmñlmqrñ

]
⋅ ei(m+qr)𝜃 ,

(28)𝜉𝜆ñ =
2

h − b

−b

∫
−h

Z𝜆(z)

Z𝜆(0)

−b

∫
−h

cos kñ(z + h)dz.

(29)𝜉𝜆0ñ =
2 ⋅ (−1)n(h − b)𝜆0 sinh 𝜆0(h − b)

{(h − b)2𝜆2
0
+ ñ2𝜋2} cosh 𝜆0h

,

(30)𝜉𝜆j ñ =
2 ⋅ (−1)n(h − b)𝜆j sin 𝜆j(h − b)

{(h − b)2𝜆2
j
− ñ2𝜋2} cos 𝜆jh

.

(31)Lm̃(qmn, pmn)e
im̃𝜃 = Rm̃e

im̃𝜃 , (m̃ = −∞,… ,+∞),

(32)
m = −M, … ,M; m̃ = −M, … ,M; ñ = 0, 1,… ,Nj.

(33)�ñ� + �ñ = �ñ�ñ, (ñ = 0, 1,… ,Nj).

�ñ (2M + 1) × ((2M + 1) ⋅ (Nj + 1))

� ((2M + 1) ⋅ (Nj + 1)) × 1

�ñ (2M + 1) × 1

�ñ (2M + 1) × (2M + 1)

�ñ (2M + 1) × 1

.
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Composing the matrices with all values of ñ yields:

where

Then, matrix p can be represented by q as follows:

The boundary conditions of Eqs. 18 and 20 are translated 
by multiplying with Z�

/
h on both sides and integrating with 

respect to z over the regions −b ⩽ z ⩽ 0 and −h ⩽ z ⩽ −b , 
respectively. Next, the addition of the translation results yields:

where

Comparison with Eq. 28 gives the following relation:

Then, Eq. 39 can be organized into the following matrix 
form:

The sizes of each matrix are:

(34)�� + � = ��,

(35)� =

⎡
⎢⎢⎢⎢⎣

�0

�1

⋮

�Nj

⎤
⎥⎥⎥⎥⎦
, � =

⎡
⎢⎢⎢⎢⎣

�0

�1

⋮

�Nj

⎤
⎥⎥⎥⎥⎦
, � =

⎡
⎢⎢⎢⎢⎣

�0

�1

⋱

�Nj

⎤
⎥⎥⎥⎥⎦
,

(36)� =

[
�0 �1 ⋯ �Nj

]T
, �j =

[
q(−M)j ⋯ qMj

]
,

(37)� =

[
�0 �1 ⋯ �Nj

]T
, �j =

[
p(−M)j ⋯ pMj

]
.

(38)� = �−1(�� + �).

(39)

∞�
nr=−∞

∞�
qr=−∞

∞�
m=−∞

⎡
⎢⎢⎢⎢⎢⎣

𝛿𝜆0𝜏

Z𝜆0(0)

�
b̃nr𝜆0d̃qr + mnrbnrdqr

�
qm0

+

∞�
j=1

𝛿𝜆j𝜏

Z𝜆j(0)

�
b̃nr𝜆jg̃qrj + mnrbnrgqrj

�
qmj

⎤
⎥⎥⎥⎥⎥⎦

⋅ ei(m+qr+nr)𝜃

+

∞�
nr=−∞

∞�
qr=−∞

∞�
m=−∞

𝛿𝜆0𝜏

Z𝜆0(0)
e
im

𝜋

2

�
b̃nr𝜆0 f̃qr + mnrbnr fqr

�
⋅ ei(m+qr+nr)𝜃

=

∞�
nr=−∞

∞�
qr=−∞

∞�
m=−∞

⎡
⎢⎢⎢⎣

�
b̃nr �m�h(m−1)qr + mnrbnrhmqr

�
𝜍𝜏0pm0+

∞�
n=1

�
b̃nr knl̃mqrj + mnrbnr lmqrj

�
𝜍𝜏npmn

⎤
⎥⎥⎥⎦
⋅ ei(m+qr+nr)𝜃 ,

(40)��n =
1

h

−b

∫
−h

Z�(z) cos kn(z + h)dz.

(41)��n =
Z�(0)(h − b)

2h
��n.

(42)��� + �� = ���, (� = 0, 1,… ,Nj).

Composing the matrices with all values of � yields:

where

Substituting Eq. 38 into Eq. 43 yields:

Finally, matrix � can be obtained from the follow equation:

 and � can be obtained from Eq. 38.
Once matrices � and � are obtained, the velocity potential of 

the incident and diffraction waves in the exterior and interior 

regions can be obtained. With the velocity potential, the free 
surface elevation can be computed by:

The pressure in the fluid domain is given by:

With the pressure applied on the cylinder, as shown in 
Fig. 2, the vibration wave forces acting on the cylinder along 
the x- and y-axes are then computed by:

  

�� (2M + 1) × ((2M + 1) ⋅ (Nj + 1))

�� (2M + 1) × 1

�� (2M + 1) × ((2M + 1) ⋅ (Nj + 1))

.

(43)�� + � = ��,

(44)� =

⎡
⎢⎢⎢⎢⎣

�0

�1

⋮

�Nj

⎤
⎥⎥⎥⎥⎦
, � =

⎡
⎢⎢⎢⎢⎣

�0

�1

⋮

�Nj

⎤
⎥⎥⎥⎥⎦
, � =

⎡
⎢⎢⎢⎢⎣

�0

�1

⋮

�Nj

⎤
⎥⎥⎥⎥⎦
.

(45)�� + � = ��−1(�� + �).

(46)� = (� − ��−1�)−1(��−1� − �).

(47)�(r, �, t) = Re

{
−
1

g

�Φ

�t

||||z=0
}
.

(48)P(r, �, z, t) = −�gz − �Re
{
�Φ

�t

}
.
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 in which �⃗�X and �⃗�Y are unit vectors along the x- and y-axes, 
respectively. In the following equation, a dimensionless 
hydrodynamic force related to the vibration amplitude is 
adopted in the analysis.

 in which a
0
 is the coefficient of ein� (n = 0) in Eq. 1. The 

dimensionless bending moment along the x- and y-axis is 
defined as:

In Eq. 51 and 52, FX or Y-am and MX or Y-am are the vibration 
amplitude of the wave force  and  bending moment along 
the x- or  y-axis.

(49)F̄X =

0

∫
−b

∫
S=0

P(−�⃗�S) ⋅ �⃗�Xdsdz,

(50)F̄Y =

0

∫
−b

∫
S=0

P(−�⃗�S) ⋅ �⃗�Ydsdz,

(51)FX =
F̄X-am

𝜌gA𝜋a2
0

; FY =
F̄Y-am

𝜌gA𝜋a2
0

,

(52)MX =
M̄X-am

𝜌gA𝜋a2
0
h
; MY =

M̄Y -am

𝜌gA𝜋a2
0
h
.

The dimensionless wave run-up can also be defined as:

in which Δmax is the wave run-up around the cylinder 
surface.

3  Validation and case study

3.1  Validation

A vertical truncated cylinder with cosine-type radial pertur-
bations is used to validate the present method. The geometric 
surface of such a section is expressed by the radius function 
of the cross section as:

in which a0 is the radius of the circular section, � is the per-
turbation value of the radius, and � is the rotation angle, as 
shown in Fig. 2.

In the calculation process, the order, qr , needs to be trun-
cated to an order Nq . To analyze the effect of the truncation 
error on qr , a relative error function is defined as follows:

(53)R = Δmax∕A

(54)r(�) = a0
(
1 + � cos nr(� − �)

)
,

(55)EΨ =

�∫
−�

���Ψ(�) −
∑Nq

n=−Nq
ℜne

in����
2

d�

�∫
−�

�Ψ(�)�2d�
,

Fig. 2  Definition of the rotation 
angle and pressure vector on the 
cylinder surface

Fig. 3  Convergence of the 
Fourier series for the first-kind 
Hankel function, first-kind Bes-
sel function, and their derivation 
( n

r
= 3 , � = 0.1 , and �

0

a
0

= 3 ). 
a m = 10; b m = 20
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 where Ψ and ℜn are defined in Eq. 26.
To analyze the effect of Nq , an example is given with 

geometric parameters nr = 3 and � = 0.1 . Figure 3 shows the 
convergence of the Fourier series for the first-kind Hankel 
and Bessel functions. The various br values shown in this 
figure are defined by the relation br = Nq∕nr , and m is the 
order of the Hankel and Bessel functions. This indicates that 
the Fourier series can give a good repression of the origi-
nal function with br = 3 when m ⩽ 20 . Figure 4 shows the 
effect of �0a0 on the convergence of the Fourier series for 
the first-kind Hankel function with m = 20, and less effect 
of it is found in the figure. A similar regulation was found 
with the modified Bessel function and its derivation, which 
indicates that the truncated error of the Fourier series can 
be neglected for br = 3 . The truncated error of the radius 
function, r|m|(�) , shown in Eq. 16, is shown in Fig. 5. The 
truncated error converges faster at lower values of m. How-
ever, the Fourier series of the radius function still gives a 
good representation with br = 3 when m ⩽ 20 . For the other 

cross section, a convergence analysis is necessary to obtain 
an accurate value of br . The results for this cross section 
show that br = 3 is always suitable for the Fourier expansion 
as the geometry parameters are nr ⩽ 4 and � ⩽ 0.1.

The truncated error for the orders M and Nj is discussed 
based on the section used above, which has parameters of 
� = 0.1 and nr=3 . The depth-to-radius ratio (h∕a0) is 2, and 
the draft-to-radius ratio (b∕a0) is 1. The values of FX and R 
with various Nj and �0a0 are given in Tables 1 and 2, respec-
tively. As shown in these tables, the truncated errors of FX 
and R for Nj = 4 and Nj = 8 are less than 1% compared to the 
results for Nj = 10 . This indicates that the analytical results 
converge in these situations when Nj ⩾ 4.

Figure 6 shows the analytical results of FX and R for dif-
ferent values of M. The order of M has less effect on the 
wave force, FX , as shown in Fig. 6a. The analytical results 
are acceptable, even at M = 3. However, the wave run-up is 
more sensitive than the wave force to the order of M. When 
M = 3, the analytical results have a larger error than the cases 
when M = 12, particularly at higher values of �0a0 . At orders 
of M up to 9, the results of R closely approximate the results 
at M = 12, as shown in Fig. 6b.

The numerical simulation results obtained from the open 
source code NEMOH [21], which is a software code for 
solving the linear hydrodynamic problem of offshore struc-
tures, are presented in Figs. 7 and 8 for comparison with the 
analytical results. Based on the discussion of the truncated 
error, the parameters for the calculation are Nj = 4 , M = 12 , 
and br = 3 . For the cross section with � = 0.1 and nr = 2 , 
the analytical results for the wave force and wave run-up are 
in good agreement with the experimental results, as shown 

Fig. 4  Convergence of the Fourier series for the first-kind Hankel 
function, H

m
(⋅) ( n

r
= 3 , � = 0.1 , and m = 20)

Fig. 5  Convergence of the Fourier series for the radius function, r|m| 
( n

r
= 3 and � = 0.1)

Table 1  Effects of the truncated error of F
X
 with various N

j

M = 12, � = 0.1 , and n
r
= 3 . E

i
 is the error function defined as ||Vi

− V
10

||
/
V
10

 , where V
i
 is the value at N

j
=i

�
0

a
0

N
j
= 4 N

j
= 8 N

j
= 10 E

4

 (%) E
8

 (%)

0.5 0.7103 0.7128 0.7132 0.41 0.06
1.0 0.8858 0.8880 0.8884 0.29 0.05
2.0 0.5782 0.5789 0.5790 0.14 0.02
3.0 0.3703 0.3705 0.3706 0.08 0.03

Table 2  Effects of the truncated error of R with various N
j

M = 12, � = 0.1 , and n
r
= 3 . E

i
 is the error function defined as ||Vi

− V
10

||
/
V
10

 , where V
i
 is the value at N

j
=i

�
0

a
0

N
j
= 4 N

j
= 8 N

j
= 10 E

4

 (%) E
8

 (%)

0.5 1.2746 1.2815 1.2845 0.77 0.23
1.0 1.8087 1.8184 1.8218 0.72 0.19
2.0 2.1436 2.1492 2.1505 0.32 0.06
3.0 2.1622 2.1643 2.1652 0.14 0.04
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in Fig. 7a, b. The same conclusion is found in Fig. 8, which 
concerns the cross section with the parameters � = 0.1 and 
nr = 3 . The results of the comparisons demonstrate that the 
present method yields an accurate prediction of wave action 
on a truncated cylinder.

3.2  Practical example

In the construction process of the caisson foundation for 
a cross-strait bridge, engineers first construct the caisson 
in the harbor. Then, the uncompleted caisson is dragged 
to the construction site by tugboats. It is floated in water 
using the balance of gravity and buoyancy. With continued 
construction, the caisson sinks gradually until it reaches the 

seabed. The period over which the foundation floats on the 
water represents a dangerous situation that involves wave 
forces. In this subsection, the wave force and wave run-up 
of a quasi-ellipse caisson foundation for a cross-strait bridge 
pylon, which is floating in the ocean, are analyzed using the 
present method. The schematic of the foundation is shown in 
Fig. 9. The caisson foundation has an approximately ellipti-
cal section with dimensions of 60 × 80 m, combining a cen-
tral rectangle of 20 × 60 m and two external half circles with 
a radius of 30 m.

The water depth, h, at the construction site of the bridge 
is 46.64 m. The extreme sea state with a return period of 
25 years is used for the structural design according to mete-
orological and hydrological data. The wave period, T, and 

Fig. 6  Effects of the truncated 
errors for cylinders with various 
M ( N

j
= 8 , � = 0.1 , and n

r
= 3 ). 

a Maximum dimensionless 
wave force in the x-direction 
and b dimensionless wave 
run-up

Fig. 7  Comparative results of 
the cylinder with � = 0.1 and 
n
r
= 2 . a Maximum dimen-

sionless wave force in the 
x-direction and b maximum 
dimensionless wave run-up

Fig. 8  Comparative results of 
the cylinder with � = 0.1 and 
n
r
= 3 . a Maximum dimen-

sionless wave force in the 
x-direction and b maximum 
dimensionless wave run-up



874 Journal of Marine Science and Technology (2018) 23:866–876

1 3

the wave height, H, corresponding to the extreme sea state 
are 8.7 s and 7.1 m, respectively. The wave number for the 
sea state can be calculated easily as 0.0539 rad/m. To inves-
tigate the influence of drafts on the wave action, twelve types 
of drafts ranging from 11.64 to 46.64 m are evaluated in 
the following calculation. By a convergence analysis of this 
case, it showed that the truncated order for nr can be set 
as 14 to obtain an accurate representation of original cross 
section. From the convergence analysis, it is found that the 
wave force and wave run-up are acceptable with br = 2 , 

Nj = 8 and M = 34, respectively. Therefore, those parameters 
described above are adopted for the following analysis.

The results for the dimensionless wave force with two 
different rotation angles, α = 0° and 90°, for each draft are 
shown in Fig. 10. It is clear that the wave force at α = 0° 
is considerably larger than that at α = 90° as the projected 
area in the direction of the incident wave is larger at α = 0°.

The dimensionless bending moment acting on the 
structure consists of two parts: wave pressure on the side 
boundary ( −b ⩽ z ⩽ 0, S(r, �) = 0 ) and bottom bound-
ary ( z = −b, r ⩽ r(�) = 0 ). The tendency of MY shown in 
Fig. 11 is no longer monotonous with the increase in draft. 
The bending moment first decreases and then increases 
after the lowest point, which is caused by the difference 
in phase between the two parts. When the draft value is 
small, the bending moment is controlled by the second 
part on the bottom boundary. As the draft increases, the 
second part decreases gradually, and the first part on the 
side boundary increases. The dominant parts of the bend-
ing moment change with the draft, and the minimum value 
is close to zero in some situations.

Similar to the wave force in the horizon, the values of 
the wave run-up around the caisson are larger at α = 0° 
than at α = 90°, as shown in Fig. 12. With increasing 
draft, the wave run-up for both angles increased consist-
ently. However, the dimensionless results of wave run-up 

Fig. 9  Schematic of the caisson 
foundation

Fig. 10  Dimensionless wave force versus different drafts

Fig. 11  Dimensionless wave 
force and wave run-up versus 
different drafts. a Wave force 
and b wave run-up



875Journal of Marine Science and Technology (2018) 23:866–876 

1 3

increased sharply at the beginning and are less influenced 
by the draft as b ⩾ 20 m.

Figure 13 shows the normalized wave amplitude around 
the caisson at four different drafts and two angles. As 
shown, the wave amplitude as a whole for the caisson 
floating in the water at b = 11.64 m is smaller than that of 
the bottom-mounted cases. The results of the other drafts 

are similar to the bottom-mounted cases, which means 
that the effect of the draft is much less when the draft is 
sufficiently large. Figure 14 shows the 2-D contour plot 
around the caisson with α = 0° and two different drafts 
of b = 11.64 and 46.64 m, respectively. The major differ-
ences between the two drafts occur at the head–body and 
after-body in the wave direction. A lower wave amplitude 
is found in these locations for a low value of b = 11.64, 
because incident waves pass under the floating body. A 
similar conclusion can be drawn from Fig. 15 with α = 90° 
between the two drafts.

4  Conclusion

An analytical method is presented in this study to investi-
gate the linear wave diffraction around a truncated cylin-
der with a noncircular cross section. Numerical analysis 
was carried out to examine the analytical results with dif-
ferent exposures and cross sections. This shows that the 
present method can successfully predict the wave action 
on a truncated cylinder with an arbitrary smooth cross 

Fig. 12  Dimensionless d wave run-up versus different drafts

Fig. 13  Dimensionless wave 
amplitude around the caisson. a 
α = 0° and b α = 90°

Fig. 14  Contour plot of normalized wave amplitude around caisson. a Floating case (b = 11.64 m) and b bottom-mounted case (b = 46.64 m)
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section. The wave force and free surface elevation can 
be obtained easily once the total potential is calculated. 
To obtain convergence of the final results, the truncated 
errors were eliminated by increasing the truncated order 
of the Fourier series. A larger truncated order is required 
to ensure the accuracy of the final results with increasing 
wave number. The effect of the draft and rotation angle on 
the wave force and wave run-up is discussed in terms of a 
truncated caisson foundation for a bridge pylon. It suggests 
that the effect of draft on the horizontal wave force would 
decrease as the increasing of it, and the bending moment 
can be zero under specific conditions.
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