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Abstract
While dielectric-barrier-discharge (DBD) based plasma actuation systems have been successfully demonstrated to suppress
massive flow separation over wind turbine blades to reduce the transient aerodynamic loadings acting on the turbine blades, it
is still a non-trivial task to establish a best combination of various operating parameters for a DBD plasma actuation system to
achieve the optimized flow control effectiveness. In the present study, a regression Kriging based metamodeling technique is
developed to optimize the operating parameters of a DBD plasma actuation system for suppressing deep stall over the surface
of a wind turbine blade section/airfoil model. The data points were experimentally obtained by embedding a nanosecond-
pulsed DBD (NS-DBD) plasma actuator at the leading edge of the airfoil model. The applied voltage and frequency for
the NS-DBD plasma actuation were used as the design variables to demonstrate the optimization procedure. The highest
possible lift coefficient of the turbine airfoil model at deep stalled angles of attack (i.e., α � 22° and 24°) were selected as the
objective function for the optimization. It was found that, while the metamodeling-based procedure could accurately predict
the objective function within the bounds of the design variables with an uncertainty ~2%, a global accuracy level of ~97%
was achieved within the whole design space.

Keywords Wind turbine aerodynamics · Dielectric-barrier-discharge (DBD) plasma actuation · Active flow control · Wind
turbine airfoil stall suppression

1 Introduction

Wind energy industry is currently undergoing a period of
rapid growth on a global scale fueled by increasingly strin-
gent norms on the utilization of conventional fossil fuels
for power production. For instance, the U.S. Department of
Energy (DOE) initiated theWindVision studywhere the costs
and benefits of continued investments on wind energy was
quantified. The study evaluates an ambitious, yet credible
scenario in which wind energy will serve 20% of the nation’s
total electric power demand by 2030, and 35% by 2050 [1].
Other countries have increased their wind power capacity as
well in recent years. For example, wind power installation in
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China has been growing recently by an annual rate of ~10%
until 2020 [2].

Attempts to extract more energy from the wind has led to
bigger and bigger rotor diameters ofwind turbines.While tur-
bine rotor diameters of ~120 meters is quite common today,
one of the major challenges faced by large-scale wind tur-
bines is the constant variations in the direction and speed
of the turbulent atmospheric boundary layer (ABL) winds
which the turbines are exposed to. The ability of a wind tur-
bine to respond to the rapid fluctuations of ABL winds in
both speed and direction is hindered by the massive rota-
tional inertia of the large-scale turbine assembly as a whole.
Thus, wind turbine blades often operate under less than opti-
mal conditions in relation to the instantaneous ABL wind
speeds and directions [3]. The highly turbulent nature of the
ABL winds would induce unsteady wind loadings acting on
the turbine blades, which has become a severe problem with
larger rotor diameters. If the unsteady wind loads can be
reduced to a lower level, it will lead to a lighter structure and
longer fatigue lifetime of the turbine blades, thereby, better
economics of power production [4]. Experimental investiga-
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tions to understand the effects of incoming surface wind on
the turbine wake and the wake interference among upstream
and downstream wind turbines has been conducted in the
past [5]. Mitigating the unsteady wind loads acting on a tur-
bine blade, could be realized by using various flow control
methods, including mechanically operated flaps or adding
momentum to the flow at specific locations on the turbine
blades [6]. For example, van Dam et al. [7] suggested to
utilize trailing edge flaps to control flow separation over tur-
bine blades. While the use of trailing edge flaps has been
revealed to be effective in providing unsteady wind load
mitigation, the major disadvantage of such a method is the
mechanical complexity, added mass, and additional mainte-
nance requirements. Such drawbacks could be avoided if the
flow control devices devoid of moving parts could be used
instead. Plasma-based flow control approach has been sug-
gested to be a potential solution for flow separation control to
mitigate the unsteady wind loadings acting on wind turbine
blades [8].

Roth et al. [9] are among the first to report that dielectric-
barrier-discharge (DBD) plasma actuation would have favor-
able effects on flow control about two decades ago. Since
then, numerous studies have been conducted to employ
DBD plasma actuation for various flow control applications
[10–16]. Plasmabasedflowcontrol is still an actively pursued
area of research and finds applications on airfoils, as well as
road vehicles [17–22] Plasma based flow control technique
has several advantages in comparison to other traditional
techniques used for active flow control. It does not involve
anymoving parts which significantly reduces themechanical
wear and tear. The response time of DBD plasma activation
is very short and it instantaneously activates when triggered
with the high voltage pulses [14]. DBD plasma actuators can
be surfacemounted and require lower electrical power for the
flow control operations [23]. Due to relatively simple system
setup for DBD plasma generation, DBD plasma actuators
can also be incorporated into existing structures easily.

Figure 1 shows the schematic of a typical DBD plasma
actuator used for flow control. As shown in the figure, a
dielectric layer is sandwiched between two metal electrodes
and thewhole systemcan then beflushmounted to the surface
over which the flow control is desired. The material used as
the dielectric layer is typically an electrical insulator, such as
Teflon, Kapton, Poly-Vinyl Chloride (PVC), glass, ceramic
or Plexiglas. The air close to the electrode would get ionized
and creates the surface plasmawhenhigh voltages are applied
to the exposed electrode with the other (encapsulated) elec-
trode electrically grounded. DBD plasma actuation has been
found tomodify the flowfields over airfoil surfaces favorably
under controlled conditions when operated within a range of
Reynolds number and angles of attack [10–16].

Alternating current based dielectric barrier discharge (i.e.,
AC-DBD) plasma and nano-second based dielectric barrier

Exposed electrode
Plasma

High voltage supply

Dielectric layer

Encapsulated electrode

Induced airflow

Fig. 1 Schematic diagram of a DBD plasma actuator

discharge (i.e., NS-DBD) plasma are two most commonly
used DBD plasma configurations used for flow control stud-
ies. AC-DBD plasma, activated by an alternating current
at relatively high voltages (typically about 10–30 kV) has
been found to be able to induce an ionic wind in quies-
cent conditions with flow velocities typically of the order of
4–7 m/s [15, 24]. This induced velocity is primarily respon-
sible for the flow separation control. In the case of NS-DBD
plasma, intermittent high voltage pulses at some predefined
frequency are applied with pulse rise times lasting for only a
few nanoseconds as opposed to the continuous sinusoidally
varying alternating currents in AC-DBD plasma generation.
While NS-DBD plasma actuation induces lower momentum
effects in comparison to AC-DBD plasma [13], it was found
to exhibit a superior flowcontrol performance due to the rapid
deposition of energy by the short plasma pulses to cause steep
thermal gradients in the localized area. The fast thermaliza-
tion of NS-DBD plasma has also found to induce a shock
wave and associated secondary vortex which will interact
with the main flow by exciting the inherent flow instabilities
to augment the flow control effects [12, 13, 25].

While majority of the previous studies of plasma-based
flow control focused on suppression flow separation over
the surfaces of airfoil/wing models designed for aeronautical
applications, only limited attempts can be found in literature
to apply plasma-based technique to control flow separation
or/and airfoil stall for wind turbine applications. Nelson et al.
[8] proposed a novel smartwind turbine blade concept, where
the effectiveness of plasma-based flow control was exploited.
The regions over thewind turbine blades requiring individual
control could be identified and mounted with DBD plasma
actuators and separate control strategies could be devised to
meet multiple control objectives. More recently, Hikaru et al.
[26] investigated numerically the effectiveness of active flow
control using plasma actuators on NREL S825 wind turbine
airfoil. They reported that, by turning on the DBD plasma
actuator, a partial reattachment was realized and the lift-to-
drag ratio was found to increase from 2.24 to 6.53.

It should be noted that, there are a number of operating
parameters (design variables) involved in a well-designed
DBD plasma actuator, including the applied voltage and
frequency of the activation, the width of the exposed and
encapsulated electrodes, the material and thickness of the
dielectric layer. Forte et al. [15] conducted a comprehen-
sive investigation on the effects of all the important design
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variables for an AC-DBD plasma actuator by varying one
parameter at a time, while the others remained constant.
Dawson et al. [13] also conducted a similar study for
NS-DBD plasma actuation. While these previous studies
have contributed immensely to a better understanding about
plasma-based flow control techniques, only a small fraction
of the entire parametric design space was explored due to the
inherent nature of varying only a parameter at a time. The
cost of the experiments can severely limit the optimization
and design space exploration.

Use of metamodel-based optimization technique could be
a solution to this problem.Metamodeling techniques are gen-
erally used to for parametric optimization when conducting
simulations or experiments to explore the entire design space
is very expensive [27, 28].Metamodeling-basedoptimization
techniques allow multiple design variables to be simulta-
neously varied and have been applied to several expensive
parametric optimization studies in recent years, including
rotor blade design and optimization [29], high speed civil
transport [30], airfoil shape optimization [31], diffuser shape
optimization [32] and supersonic turbine [33, 34]. Kriging
is one of the most popularly used metamodeling techniques
[35]. Kriging metamodels could be based on an interpolating
scheme or a regression scheme. Interpolating scheme would
ensure that the model passes through all the sample data
points. While a noisy data resulting from an experimental
error could affect the prediction accuracy of the interpolation
Kriging metamodel, the random error in physical experi-
ments lends itself to the use of a regression model as a noise
filter which would not restrict the model to go through all the
points [35].

In the present study, we report the progress made in our
recent efforts to conduct a parametric optimization of design
variables of DBD plasma actuation using a metamodeling-
based technique in order to suppress the massive flow
separation over the surface of a wind turbine airfoil in deep
stall. A turbine blademodel with DU-96-W-180 airfoil shape
in cross-section was designed and manufactured for the
present study. A DBD plasma actuator working in nano-
second mode (i.e., NS-DBD) was embedded at the leading
edge of the turbine airfoil model for flow separation con-
trol. The parameters of interest (design variables) used in
the present study are the applied voltage and frequency of
the NS-DBD plasma pulses. The turbine airfoil model was
mounted in a low-speed wind tunnel at the angle of attack
of α � 24° with a chord-based Reynolds number of Re �
200×103. The objective of the present study is to find the
optimum combination of these design variables of the NS-
DBD plasma actuation for maximizing the lift coefficient
(Cl) of the turbine airfoil model at the given angle of attack.
The design variables are simultaneously varied in the design
space as per a sampling scheme obtained using the Latin
hyper cube (LHS) sampling technique. The turbine airfoil

model was also subjected to a different Reynold number and
angle of attack (i.e., with theReynolds number ofRe� 300×
103 and α � 22°) in order to verify the effects of Reynolds
number and the angle of attack on the optimum parameters.
The data points used for the optimization procedure were
obtained experimentally by integrating the measured surface
pressure distributions over the wind turbine airfoil model to
obtain the lift coefficients (Cl). These Cl values obtained
served as evaluated objective function values at the initial
sample locations for the metamodel. A digital Particle Image
Velocimetry (PIV) system was also used in the present study
to quantify the airflow field over the airfoil surface for the
selected cases.

It should be noted that, while a wide variety of previous
studies have been conducted onDBDplasma-basedflowcon-
trol, parametric optimization of DBD plasma actuation using
themetamodeling-based techniquehas never been attempted.
To the best of authors’ knowledge, this is the first attempt
to combine experimental measurements with metamodeling-
based techniques in order to establish the best combination
of various operating parameters (design variables) of a DBD
plasma actuation system. The present study aims to demon-
strate that parametric optimization of the whole design space
could be accomplished with lesser number of sample data
points and yet maintain reasonable accuracy of prediction
of the objective function within the bounds of design vari-
ables. Suchmetamodeling based techniques could drastically
reduce the number of experiments required for characterizing
the whole design space.

2 Problem definition for the optimization

The present study utilizes a metamodel-based optimization
technique to estimate the optimum values of the applied volt-
age and frequency of aNS-DBDplasma system for obtaining
the maximum lift coefficient (Cl) of a turbine airfoil oper-
ating in deep stall condition. An increase in the Cl of the
turbine airfoil model is an indicator of improvement in par-
tial reattachment of the separatedflowover the airfoil surface.
Since surface pressuremeasurements are acquired during the
experiments, the objective function of the present study is
seeking the maximum possible Cl, (Clmax) and the combi-
nation of design variables which could achieve that value.
The bounds on the design variables were decided based on
previous experiments using a similar configuration. It was
observed that applied voltages to the DBD plasma actuator in
excess of 17 kV tends to burn through the dielectric layer (i.e.,
for the given dielectric layer used in the present study). The
frequency of the applied voltage pulses exceeding 500 Hz
and lower than 10 Hz did not seem to have any effects on
the flow separation over the airfoil surface. Accordingly, the
applied voltage was varied between 5.0 kV to 14.0 kV, and
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the range of frequency of the applied voltage pulses was set
to be within 10 Hz to 500 Hz which are the bounds of the
design variables used here.

Thus, the optimization problem is formulated as:

min
x

F(x) � −Cl ,

s.t.xl b ≤ x ≤ xub. (1)

Here, F(x) represent objective or cost function with x �
[V f ]T is a column vector with voltage and frequency as
the design variables. The negative sign is used for maxi-
mizing objective function with minimization optimizer. The
objective function is subjected to design variable bounds
xl b ≤ x ≤ xub, where xl b � [5 1 0]T and xub � [1 4 5 0 0]T

are the lower and upper bounds for design variable vector,
respectively.

For comparing the effectiveness of DBD plasma actuation
on improving the lift coefficient of the turbine airfoil model,
the baseline lift coefficient for the test case with a passive
actuator was used. The test case with the passive actuator
refers to the scenario with the DBD plasma actuator being
mounted at the airfoil leading edge but without turning the
plasma actuators on.

3 Experimental setup and test model

3.1 Wind tunnel used for the present study

The experimental study was performed at a low-speed,
closed-circuit wind tunnel located at Aerospace Engineer-
ing Department of Iowa State University. The tunnel has
a test section with a dimension of 0.45 m×0.6 m×
1.45 m (width×height× length) and four optically transpar-
ent walls. It has a relatively large contraction section (i.e.,
10:1 in area ratio) upstream of the test section along with
series of honeycomb, screen structures, and cooling system
installed ahead of the contraction section to provide uniform,
low turbulent incoming flow to enter the test section. The
maximumairflow speed in the test section can go up to 40m/s
with the turbulence intensity level being 0.2%, as measured
using a hotwire anemometer.

3.2 Wind turbine airfoil model used for the present
study

As shown schematically in Fig. 2, a wind turbine blade sec-
tion model with DU-96-W-180 airfoil shape in the cross
section was designed and manufactured for the present
experimental study. The DU-96-W-180 airfoil, which is a
cambered airfoil with a blunt trailing edge and a maxi-
mum thickness of 18% chord length, is a widely-used airfoil

(a) Schematic diagram of the turbine airfoil model 
embedded with the DBD plasma actuator

(b) Distribution of pressure taps around the airfoil model

Fig. 2 Schematic diagram of the turbine airfoil model with a NS-DBD
plasma actuator embedded at the airfoil leading edge

designed specifically for wind turbine applications [36]. The
airfoil shape is known for its favorable aerodynamic per-
formance and strong structural strength, which are very
important for wind turbine blades. The turbine airfoil model
has a chord length of C � 150 mm and spanwise length of
600 mm (i.e., the same as the width of the wind tunnel test
section). It was manufactured by using a rapid prototyping
machine (i.e., 3D printer) with a polymer-composite-based
material. The surface of the turbine airfoil model was coated
with several layers of spray-on primer, and wet-sanded by
using fine sandpapers (up to 2000 grit) to achieve a very
smooth, glossy surface finish with~20 μm in surface rough-
ness. As shown in Fig. 2b, 42 pressure tapswere incorporated
in the design of the airfoil model.

3.3 NS-DBD plasma actuator

A DBD plasma actuator was embedded around the leading
edge of the airfoil model, as shown schematically in Fig. 2a.
Both the encapsulated and exposed electrode had a width of
3.0 mm and was made of~100 μm thick copper film. The
electrodes cover the entire span of the turbine airfoil model to
ensure a spanwise uniform plasma formation to prevent any
three dimensional effects. A layer of PVC film, ~300 μm in
thickness was used as the dielectric layer.
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Fig. 3 Schematic diagram of the experimental setup used in the present study

The DBD plasma actuator was powered by using high
voltage pulses with a FID nanosecond pulse generator (FPG
20-10NM15), which has the capability to generate pulses
up to 20 kV voltage (i.e., ~20 ns in pulse width) and pulse
repetition frequency (PRF) up to 10 kHz. The applied volt-
age and current pulses were monitored by using a Tektronix
MDO3102 Mixed Domain Oscilloscope with 5 GSa/s sam-
pling rate. It should be noted that, NS-DBD plasma actuation
could create electromagnetic interference (EMI) effects to
nearby electronic components. The EMI effects were mit-
igated by proper grounding of all equipment and covering
the test section and all the electronic components and cables
with a curtain of conductive metallic fabric.

3.4 Surface pressure measurements

As shown in Fig. 2b, 42 pressure taps were arranged in
the mid-section of the turbine airfoil model to measure
the surface pressure distribution around the airfoil sur-
face. The pressure taps were connected to two units of
miniature digital pressure scanners (Measurement Special-
ties Inc, Model number 32HD-0411021120, 32 channels per
unit) with Tygon tubing of 1.5 mm diameter and 0.5 m
length. The miniature digital pressure scanners incorporate
temperature-compensated piezo-resistive pressure sensors
with a pneumatic calibration valve, RAM, 16bit A/D con-
verter, and a microprocessor in a compact self-contained
module. The precision of the pressure acquisition system
is±0.03% of the±10 inch H2O full scale range (1 inch �
25.4 mm). During the experiments, the instantaneous sur-
face pressure measurement data were acquired for 10 s at
a data acquisition rate of 1000 Hz. It should also be noted

that, since the exposed electrode of the DBD plasma actua-
tor (~100μm in thickness) was placed at the leading edge of
the airfoil model, it would cover a few pressure taps near the
airfoil leading edge on the suction side. The surface pressure
values at these locations will be obtained by extrapolating
the surface pressure values measured at the neighbors taps.
Similar extrapolation schemes were widely used in similar
studies with plasma flow control [23].

3.5 Particle image velocimetry (PIV) measurements

In addition to the surface pressure measurements, a digital
particle image velocimetry (PIV) system was also used to
conduct airflow field measurements to quantify the changes
of the flow characteristics around the airfoil model with and
without the NS-DBD plasma actuation. As shown schemat-
ically in Fig. 3, the PIV measurements were conducted in
the vertical planes near the mid-section of the airfoil model
(i.e., slightly away from the middle plane with the pressure
taps). For the PIV measurements, the oncoming airflow was
seeded with 1–5 μm oil droplets by using a seeding genera-
tor. Illumination was provided by a double-pulsed Nd:YAG
laser (Evergreen, Big Sky Laser) adjusted on the second har-
monic and emitting two pulses of 200 mJ at the wavelength
of 532 nm with a repetition rate of 10 Hz. The laser beam
was shaped to a thin sheet by a set of mirrors, spherical, and
cylindrical lenses. The thickness of the laser sheet in themea-
surement region was about 1.0 mm. A high-resolution 12-bit
digital camera (2048 pixel by 2048 pixel resolution, PCO-
Tech) with a Nikon Nikkor 60 mm 1:2.8 D lens was used
to acquire images of tracer particles for the PIV measure-
ments. The digital camera and the double-pulsed Nd:YAG
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Fig. 4 Flowchart of the metamodeling procedure

lasers were connected to a workstation (host computer) via a
Digital Delay Generator (Berkeley Nucleonics, Model 565),
which controlled the timing of the laser illumination and the
image acquisition for the PIV measurements.

After acquiring the PIV images, instantaneous velocity
vectors were obtained by frame to frame cross-correlation
of the patterns of particle images, using an interrogation
window size of 32 pixels×32 pixels. An effective overlap
of 50% of the interrogation windows was employed in PIV
image processing. In the present study, a cinema sequence
of about 300 instantaneous PIV measurements were used
to calculate the ensemble-averaged flow field around the
airfoil model for the test cases with and without the NS-
DBD actuation. The measurement uncertainty level for the
instantaneous PIV measurements is estimated to be within
5.0%, while the uncertainty level for the measurements of
the ensemble-averaged flow field being about 3.0%.

4 Metamodeling-based optimization

4.1 Optimization algorithm

Figure 4 shows the flowchart of the optimization algorithm
which subsequently improves metamodel with infill crite-
ria. The details of the optimization algorithm are explained
below.

The optimization algorithm starts with generation of ini-
tial samples in design domain. Latin Hypercube sampling
(LHS) technique is used for generating initial design sam-
ples (x1, x2, . . . , xns ), where xi represents ith sample in total

ns design samples. For this study, voltage and frequency are
considered as design variables as mentioned earlier. LHS
method ensures the good distribution of sampling points
over the entire design space such that entire range of each
design variable is covered. This is done by dividing consid-
ered cumulative probability distribution [0 to 1] of points in
equal parts and randomly sampling each interval to recreate
input probability distribution [37]. Additionally, to ensure
space fillingness property of the design space, the Morris-
Mitchell criterion is used. More details on this scheme is
given by Morris and Mitchell [38].

One of the challenges of surrogate based optimization
study is to decide required number of initial samples for accu-
rate construction of metamodel. Having higher number of
samples are always preferred for ensuring metamodel accu-
racy. However, in the present study, 12 samples per design
variable are selected as initial sampling plan considering high
cost of experimental evaluation of objective function (i.e., for
two design variables, applied voltage and frequency, 24 sam-
ple points were used).

4.2 Regression Kriging

The surrogate based optimization techniques are widely used
in field of optimization especially when objective function
evaluation is expensive. In this technique an approximate
cost function of expensive experiments are constructedwhich
then is used in conjunction with a global optimizer to find
optimum result. Kriging is a popular geostatistical technique
which has been extensively used for multidisciplinary design
and optimization studies [25]. Kriging method is named
after the pioneering work of Krige [39], which was formally
developed by Matheron [40]. Kriging method (interpolation
kriging) generally assumes that the objective function value
evaluated at sample points, which is used for generating
the metamodel, does not have an error and represents true
value. This method is capable of capturing complex multi-
modal landscape of the objective function. However, when
themethod is presentedwith noisy data, as that obtained from
experiments, it could produce incorrect global optimum.
In such cases regression Kriging method which extracts a
smooth trend from the data and filters noise is preferred [35].

Regression Kriging method is primarily an extension of
the interpolation Kriging method. The interpolation Krig-
ing method is hereafter called as Kriging method. Therefore,
first the Krigingmethod is presented. Later the modifications
to handle noisy data is addressed through regression Krig-
ing method. Kriging model start with set of sample data ns
observed at initial sampling plan obtained by LHS method.
Kriging metamodel is built as a combination of a global
approximation function plus a localized departure as

y(x) � g(x) + Z(x), (2)
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where y(x) is the unknown function sought and Z(x) is real-
ization of a normally distributed Gaussian random process
with zero mean, variance σ 2 and nonzero covariance [27].
Function g(x) is a global approximation of the design space
and Z(x) represents the localized deviations from global
function over design domain with ns sampled data points
(x1, x2, . . . , xns ) where xi � [x1, x2, . . . , xK ]T ⊂ R

K .
Function Z(x) has a covariance matrix given by

Cov
[
Z
(

xi
)
, Z

(
x j

)]
� σ 2R

([
R
(

xi , x j)
)])

, (3)

where R represents the correlation matrix and R
(
xi , x j

)
is

a correlation function between any two sampled data points
xi and x j . This makes R a (ns , ns) symmetric matrix with
ones along the diagonal. The correlation function R is a user
defined function and for this study we have used Gaussian
correlation function of the form

R
(

xi , x j
)

� exp

[
−

K∑
k�1

θk

∣∣∣xik − x j
k

∣∣∣
2
]
, (4)

where θk represents the unknown correlation parameters
which determines shape of gaussian correlation function and
xik and x j

k represents kth component of any two sample points
xi and x j .

Predicted estimates of the function sought at the unsam-
pled points are given by

ŷ(xu) � β̂ + rT(xu)R−1
(

y − gβ̂
)
, (5)

where y is a column vector of length ns which holds the
sample values of the response. Function g is a column vector
of similar length filled with ones when g(x) is considered
constant. The function rT(xu) is the correlation vector of
length ns between an untried xu and the sampled data points
(x1, x2, . . . , xns ) given by

rT(xu) �
[
R
(

xu, x1
)
, R

(
xu, x2

)
, . . . .R

(
xu, xns

)]T
, (6)

and β̂ is estimated as

β̂ � (gTR−1g)−1gTR−1y. (7)

Variance between the underlying global model with β̂ and
y is evaluated as

σ̂ 2 �
[(

y − gβ̂
)T

R−1
(

y − gβ̂
)]/

ns . (8)

Finally, Kriging model is trained over sampled data by
maximizing ln-likelihood function given by

l(θk) � −
[
ns ln

(
σ̂ 2

)
+ ln|R|

]/
2, (9)

with parameters θk > 0, where σ̂ 2 and |R| are both func-
tions of θk . The best estimate of θk is obtained by solving the
unconstrained optimization problem with global optimizer
for maximizing the likelihood function. In this work we have
used genetic algorithm, a global search method for maximiz-
ing likelihood function.

As mentioned above, Kriging method could result in
error when presented with noisy data when more points are
included in close proximity to each other. This problem of an
approximating a noisy data is solved by adopting a regression
Kriging technique which allows Kriging model to regress
over data [35]. This is accomplished by adding regularization
parameter λ to the diagonal elements of Kriging correlation
matrix R, making it R + λI for regression Kriging method
where I is an identity matrix. This addition of regularization
parameter does not force predictor to pass through sample
points and it is evaluated by optimizing maximum likelihood
function along with θk parameter. The regression Kriging
predictor is given by

ŷr (xu) � β̂r + rT(xu)(R + λI)−1
(

y − gβ̂r
)
, (10)

where

β̂r � (gT(R + λI)−1g)−1gT (R + λI)−1y, (11)

and variance σ̂ 2
r of regression Kriging model is computed by

σ̂ 2
r �

[(
y − gβ̂r

)T
(R + λI)−1

(
y − gβ̂r

)]

ns
. (12)

The subscript “r” in above equations denotes regression.
The regression Kriging model is described in detail by For-
rester et al. [35].

4.3 Infill criteria

The training of a regression Kriging model with initial sam-
ple data provide an approximation of objective function over
the whole parametric design space. This metamodel can be
further refined by providing more sample data points to the
metamodel in design domain based on infill criteria. Each
infill point is an additional objective function evaluation sup-
plied to the optimizer to create a refined metamodel. The
addition of infill points improves global and local accuracy of
themetamodel offering better estimate of global optimum. In
every optimization iteration regressionKrigingmetamodel is
constructed based on existing points. The newpoint then sug-
gested based on infill criteria. Later that point is added to the
initial sample and metamodel is rebuilt with augmented data
set. This process is followed till metamodel satisfy termina-
tion criteria. In this study we will use expected improvement
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(EI) as an infill criterion for balance exploration and exploita-
tion of objective function [35]. The EI for regression Kriging
is an extension to the EI method for Kriging which uses rein-
terpolation technique [35] for finding new infill point. The
infill point is obtained by maximizing EI improvement func-
tion given by

E[I (x)] �
{ (

ymin − ŷ
)
Φ

(
(ymin−ŷr )

Ŝ

)
+ ŝφ

(
(ymin−ŷr )

Ŝ

)
, ŝ > 0,

0, ŝ � 0,
(13)

where Φ() and φ() are normal cumulative distribution func-
tion and probability density function. The mean square error
of metamodel ŝ2 is given by

ŝ2 � σ̂ 2
ri

[
1 − rTR−1r

]
. (14)

The σ̂ 2
ri is variance of regression Kriging metamodel with

reinterpolation technique and it is given by

σ̂ 2
ri �

[(
y − gβ̂r

)T
(R + λI)−1R(R + λI)−1

(
y − gβ̂r

)]

ns
.

(15)

It should be noted that ŝ goes to zero at already sampled
points [35] which produces zero EI value. This technique
makes sure that existing data point does not resample with
infill criteriawhichmakes this infill procedure eventually find
the global optimum [41]. The EI method for regression Krig-
ing with reinterpolation technique is described in Forrester
et al. [35].

4.4 Termination criteria

It is common to use a preset number of infill points (fixed bud-
get infill process) or overall global accuracy of themetamodel
as the termination criteria. Global accuracy of themetamodel
refers to how accurately the model can predict the objective
function throughout the whole design space and local accu-
racy refers to how accurately the objective function can be
predicted at the optimum point. In this study, a fixed budget
of 10 infill points were used. The optimization was termi-
nated when this fixed budget was exceeded or the global
error reduced to 2%, whichever happened first. The global
accuracy of regression Kriging metamodel is estimated by
generating test data sample and evaluating normalized root
mean squared error (NRMSE) at test data points. A sepa-
rate set of 20 data points as per the LHS sampling technique
distributed throughout the design space was measured. The
metamodel was used to predict the objective function values
at these 20 locations. Later the objective function values at

test data are experimentally measured as discussed earlier.
Then the NRMSE of the metamodel is estimated by

N RMSE �

√∑nT est
i�1

(
Fi
T est−Fi

Metamodel

)2
nTest

Fmax(I S)

, (16)

where FTest and FMetamodel represents objective function
value of test data sample with experimental evaluation and
metamodel prediction respectively. The nTest represents the
number of test data samples (20 in this study). The root mean
squared error is then normalized with maximum objective
function value Fmax(I S) of the initial sampling (IS) plan of
24 data points.

5 Results and discussions

5.1 Baseline verification

In the present study, a baseline test case with no plasma actu-
ator mounted around the airfoil leading edge was performed
to characterize the aerodynamic performance of the airfoil
model at the Reynolds numbers of Re � 0.2×106 and 0.4×
106 for the angles of attack between − 2° and 30° (i.e.,α
� − 2° to 30°). During the experiments, all the pressure
taps were available for surface pressure measurement as no
plasma actuator was mounted at the airfoil leading edge. The
blockage of the testmodel atα � 10°was only about 4%. The
blockage the highest α tested (i.e., α � 24°) is about 10%.
The airfoil model spanned the entire test section to avoid any
three dimensional effects at the ends of the test model.

The pressure distribution over the surface of the turbine
airfoil model were measured every 2º intervals. The mea-
sured pressure distributions were integrated to obtain the Cl

at the given α’s, as depicted in Fig. 5. The Cl values were
compared with the measurement results reported previously
by other researchers with the test model of same DU-96-W-
180 airfoil shape at the Reynolds number of Re≈1.0×106

[20]. It can be seen clearly that, the measured lift coefficients
of the present study agree well with those reported in the
published work of Timmer and van Rooij [36] until close
to the stall point (i.e., α ≈10°). The measured Cl values of
the present study were found to be lower than those reported
by Timmer and van Rooij [36] at the higher angles of attack
beyond the stall point (i.e., α >10 º) due to the much higher
Reynolds number used in their experiments.

5.2 Sampling points

The sampling points distribution in terms of the design vari-
ables used here (i.e., the voltage and frequency) are shown
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Re
Re
Re

Angle of attack (o)

Fig. 5 Measured lift coefficient of DU-96-W-180 airfoil model without
plasma actuator

Fig. 6 Distribution of the design variables used in the present study

in Fig. 6. As mentioned earlier, 24 LHS sample data points
were used in the present study.

5.3 Pressure measurements with plasma actuator
turning on

Rethmel et al. [42] used NS-DBD plasma for flow separa-
tion control over a NACA-0015 airfoil surface. They found
that the frequency of NS-DBD plasma activation is very crit-
ical to the effectiveness of the flow control. Similar to the
setup used in the present study, since the plasma actua-
tor was mounted at the leading edge of the airfoil model,
some of the pressure taps close to airfoil leading edge were
unavailable for the surface pressure measurements. There-
fore, the magnitude of pressure coefficient at the nearest
measureable point closest to the airfoil leading edge, at dif-
ferent non-dimensional plasma activation frequencies, f +

were compared. As described in Rethmel et al. [42], the fre-
quency of plasma activation in non-dimensional terms, f +.
Non-dimensional frequency is defend as f + � f x

U∞ . In this
equation, f is the frequency of applied plasma pulses, x is the
distance over the suction surface from the leading edge to

Fig. 7 Measured surface pressure distributions over the turbine airfoil
model for some selected frequencies of applied plasma at the Reynolds
number of 200×103 and α=20°

the point of separation of the flow and U∞ is the free stream
velocity.

It was revealed that for relatively lower α’s close to stall,
the pressure coefficient was not sensitive to activation fre-
quency. This refers to a condition where the plasma actuator
merely acts an active trip and no natural flow instabilities
are excited. At higher α, it was found that there was a clear
frequency preference where the optimum non-dimensional
frequency was reported to be 1.9 ( f + � 1.9) indicating exci-
tation of natural flow instabilities. Zheng et al. [12] reports
a similar finding where they categorized the flow control
regime into two based on α. The first regime extended from
the start of leading edge separation to about 2º past this
angle (i.e., αstall < α < αstall + 2°). It was observed that
within this regime, the plasma actuator merely acts like an
active trip where there is no frequency preference. However,
for the second regime which is corresponding to higher α’s
(i.e., α>αstall + 2°), the NS-DBD actuator continues provid-
ing perturbations and generating spanwise vortices, resulting
in a partially reattached flow, i.e., the effect on plasma on
flow control could be observed only beyond 2° past leading
edge separation. Similar observations were also made in the
present study, as shown clearly in Fig. 7.

In the present study, the surface pressure distribution over
the surface of the trubine airfoil model was first obtained
without switching on the NS-DBD plasma actuator (i.e., pas-
sive actuator case) to obtain the baseline for comparison.
Then, the NS-DBD plasma actuator was switched on as per
the applied voltages and frequencies obtained from the sam-
pling scheme given in Fig. 6. It was found that the airflow
would separate almost completely from the entire upper sur-
face starting at the angle of attack of α � 20° without the
plasma activation (i.e., the airfoil enters a deep stall state
at α � 20° without plasma actuation). As revealed from the
measurement results given in Fig. 7, the surface pressure dis-
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Fig. 8 Measured surface pressure distribution over the airfoil surface
for selected sample data points at the Reynolds number of Re� 300×
103 and α=22°

Fig. 9 Predicted lift coefficient contour with the initial sample points
(Re� 200×103 and α� 24°)

tribution shows a partial reattachment at α � 20° when the
plasma actuator is turned on. But the extent of reattachment
does not varywith the frequency of the applied voltage pulses
irrespective of voltage. It indicates that no flow instabilities
are excited by the plasma actuation, and the plasma actuator
would merely act as an active trip. Therefore at α’s less than
20°, the plasma actuator was not found to be effective with
the setup used in the present study.

For the cases with higher α’s, the effectiveness of the
plasma actuation for flow separation suppression could be
clearly observed. Figure 8 shows a representative plot of five
different cases of plasma activation under the experimental
conditions of Reynolds number of Re� 300×103 and α �
22°. The no plasma case shows that airfoil is under deep
stall. When the NS-DBD plasma actuator was switched on,
some combination of the applied voltages and frequencies
were found to have less impact on the flow separation con-
trol, while some other combinations were found to be have
more favorable effects.

5.4 Initial regression Krigingmetamodel

The measurement results at α� 24° and Reynolds number
of Re� 200×103 are presented first. As described earlier,
the measured surface pressure distribution for each test case
was integrated to obtain the total lift forces acting on the
airfoil model under the given test conditions (i.e., for the
24 combinations of applied voltage and frequency as in the
sampling scheme). The Cl was thereby obtained for each
of the sample points. Then, a regression Kriging metamodel
was created based on the values of the design variables at
the initial 24 samples data points and the corresponding Cl

values.A regressionKrigingpredictor functionwas thenused
to predict theCl throughout the parametric design space. The
contour plot of the predicted Cl values is shown in Fig. 9.
The initial samples used for creating the metamodel can also
be seen on the contour plot. It may be noted the frequency
has been expressed in non-dimensional terms f +.

5.5 Adding infill points

A set of infill points are used to improve the global and local
accuracy of the metamodel. Each infill point is an additional
value of Cl evaluated at a new sample point at a different
combination of input variables (voltage and frequency in this
study) suggested by the infill criteria explained earlier. Each
infill point was separately added to the metamodel sequen-
tially and a new refined metamodel was created each time
with the latest infill point added to the set of sample points
already available. i.e., each new metamodel has one addi-
tional sample data point compared to the previous one. In
order to estimate the global accuracy of the model, a sep-
arate set of 20 test data points uniformly distributed across
the design space were measured experimentally. The sam-
pling scheme was once again designed based on the Latin
hypercube sampling (LHS) technique mentioned earlier. The
distribution of the test data points is shown in Fig. 10. The
correspondingCl values obtained from the experiments were
compared with the predicted values from the refined meta-
model. The NRMSE of the all the sampling points were
calculated as explained earlier, and the process of adding
infill points was terminated when the fixed budget of 10 infill
points was reached. The fixed budget of 10 infill points were
used up before the global error reduced to 2%. It was found
that the NRMSE was about 2.5% at the end of infill process.
But it could be seen that even before the infill process was
conducted the NRMSE was reasonably low (about 2.75%)
which indicates that regression Kriging technique is well
suited for this optimization and the initial number of sam-
ples chosen (i.e., 24 samples) is reasonable. The resulting
contour plot and NRMSE distribution are shown in Figs. 11
and 12, respectively.
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Fig. 10 20 test data points used to estimate the global accuracy of the
model

Fig. 11 Predicted final lift coefficient contour with the metamodel after
infilling process (Reynolds number 200×103 and α� 24°)

Fig. 12 NRMSE with number of infill points

As described above, a high-resolution digital PIV sys-
tem was used in the present study to quantify the flow field
around the airfoil model in order to reveal the effectiveness
of flow separation suppression by using the NS-DBD plasma
actuation. Figure 13 gives the ensemble-averaged PIV mea-

Fig. 13 PIV measurement results to reveal the dramatic changes of the
flow characteristics around the airfoil model at AOA≈24° before and
after turning on the NS-DBD plasma actuator

surement results for the test cases before and after turning
on the NS-DBD plasma actuator. It can be seen clearly that,
before turning on the plasma actuator, the airfoil was in deep
stall at AOA≈24° with massive flow separation over almost
the entire airfoil upper surface (i.e., flow separation point
locating at very near the airfoil leading edge), as shown in
Fig. 3a. As a result, the lift coefficient of the airfoil model
would be significantly reduced. However, after the plasma
actuator was turned on, the flow separation point over the
upper surface of the airfoil model was found to push much
further downstream as shown clearly in Fig. 13b, and the
flow separation over the front portion of the airfoil model
was found to be suppressed effectively. Here, the optimum
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combination of the design variables corresponding toα� 24°
and Re � 200×103 have been used to activate the plasma.
The applied voltage was 13.8 kV and the f + was 0.4.

a. Before turning on DBD plasma actuation.
b. After turning on DBD plasma actuation.

The final metamodel was used to predict theClmax (objec-
tive function). It was found that the Clmax was predicted at
a voltage of 13.8 kV and non-dimensional frequency, f +,
of 0.4 as shown in Table 1. The Clmax thus obtained was
verified with experiments. It was found that the error in the
predicted Clmax was about 2% of the experimentally verified
value. The results of the study conducted to verify the depen-
dence of optimum parameters on Reynolds number and α are
shown in Figs. 14 and 15. This case corresponds to a different
Reynolds number (Re � 300×103) and α � 22°. The same
sampling scheme and test parameters were used here as in
the previous case. Figure 14 shows the contour plot of the lift
coefficients predicted by the regression Kriging metamodel
created with only the initial 24 samples. Figure 15 shows
the same predicted by the refined metamodel after the infill
process. Again, the fixed budget infill points criterion was
reached before the NRMSE dropped below 2%. The error in
Clmax predicted by this new model was also experimentally
verified to be about 2%. The results of both cases are shown
in Table 1. Case I corresponds to α � 24° at Reynolds num-
ber of 200×103 while Case II corresponds to α � 22° at
Reynolds number of 300×103.

It should be noted that, by comparing the predicted max-
imum lift coefficient from Figs. 9 and 11 that the optimum
parameters before the infill processwereV� 13.5 kV and f +

� 0.25, and after adding the infill points, it was 13.8 kV and
0.4. The difference is more prominent in the case II corre-
sponding to Reynolds number 300×103 and α � 22° which
indicates that the infill points helps to improve the local accu-
racy as well as the global accuracy of the model.

It should be pointed out that, there is no common con-
sensus on the optimum f + as it is found to be different for
different studies. For instance, Zheng et al. [25] conducted
experiments on the use of NS-DBD plasma on a NACA
0015 airfoil model at Reynolds number of 468×103 and
α ranging from 16.5° to 21°. It was found that the optimum
forcing frequency ( f +), using the maximum lift coefficient
as a performance indicator was around 0.4–0.5. This range
was maintained even at a different Reynolds number of Re
� 268×103 over a similar range of α’s, indicating that the
optimum non-dimensional forcing frequency using a given
performance indicator may not vary with α and Reynolds
number. However, the study by Rethmel et al. [42] on flow
separation control over same airfoil using NS-DBD plasma
reported the optimum f + to be 1.9. This could be due to
different performance indicators used in studies. The former

Fig. 14 Predicted lift coefficient contour plot with the initial sample
points (Re� 300×103, α� 22°)

Fig. 15 Predicted final lift coefficient contour with the metamodel after
infilling process (Re� 300×103 and α � 22°)

study used Cl and the latter study used the pressure coef-
ficient at the nearest measurable point as the performance
indicator.

Such parametric evaluations of the objective function
using metamodeling techniques over the whole design space
could be used for optimizing economics of power produc-
tion. The average electrical power consumed by the plasma
actuator operating in nano-second mode may be estimated
from the instantaneous voltage and current measurements as

Pavg�
1

t2 − t1

t2∫

t1

V (t)I (t)dt, (17)

where V is the instantaneous applied voltage in Volts, I is the
instantaneous current generated in amperes and t is the time
in seconds.

The instantaneous voltage and current were measured
using a voltage probe and current probe connected to the
oscilloscope. The energy consumed in a single pulse is first
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Table 1 Summary of the final results

Parameters Case I
Re � 200×103, α � 24°

Case II
Re � 300×103, α � 22°

Description

Cl 0.830 0.869 Measured Cl value without NS-DBD
Plasma actuation

Predicted Clmax 1.169 1.132 Predicted Clmax value (with plasma)

V 13.8 13.8 Predicted voltage (kV)

f + 0.4 0.4 Predicted actuation Frequency, f +

Measured Clmax 1.145 1.109 Experimentally measured Clmax value

Error 2.10% 2.07% Relative prediction error

Fig. 16 Power consumed by the plasma actuator as a function of the
applied voltage

estimated from the oscilloscope data and it can be converted
to electrical power based on number of pulses per second
(frequency of plasma). The optimum forcing frequency for
Case I in dimensional terms is ~50 Hz. Figure 16 shows
the electrical power consumed by the plasma actuator as a
function of applied voltage for a fixed frequency of 50 Hz.
NS-DBD plasma power consumption is a linear function of
frequency. The power consumed is expressed in W/m length
of the actuator. It may be observed from Fig. 11 that a reduc-
tion in voltage from about 14 to 12 kV would reduce the
Clmax negligibly (~1.5%) whereas from Fig. 14 it could be
seen that this would reduce the power consumption from
3.5 to 2.75 W/m which is ~20% less electrical power being
consumed. Since active flow control continuously consumes
energy for operation, having a metamodel which could accu-
rately predict the whole parametric design space could help
to achieve a tradeoff between power consumption and eco-
nomics of power production in large wind farms.

6 Conclusion

While DBD plasma-based approach has been demonstrated
recently to be effective to suppress flow separation/airfoil

stall to improve turbine power production performance and
mitigate the unsteadywind loadings acting on turbine blades,
it is still a non-trivial task to optimize the design variables of a
DBD plasma actuation system to maximum its effectiveness
for flow control. In the present study, a regression Kriging-
based metamodeling technique is employed to optimize the
operation parameters of a DBD plasma system to suppress
the massive flow separation/airfoil stall over the surface of a
wind turbine airfoilmodel.Whilemost of previous studies on
DBD plasma-based flow control varied only one parameter
at a time, the present study used a regression Kriging based
metamodel approach to explore the whole design space by
varying multiple design variables, which could drastically
reduce the number of experiments required for the operation
parameter optimization.

In the present study, a wind turbine blade section model
with DU-96-W-180 airfoil profile in the cross section was
designed/manufactured and mounted in a low-speed wind
tunnel for an experimental investigation. A DBD plasma
actuation system was embedded around the leading edge of
the turbine airfoil model in order to demonstrate the use of
regression Kriging metamodeling technique for parametric
optimization of input parameters. During the experiments,
the DBD plasma system was operated in a nanosecond-
pulsed plasma actuation mode (i.e., NS-DBD plasma). Two
operation parameters (i.e., applied voltage and frequency) for
the NS-DBD Plasma actuation were varied simultaneously
as per a predefined sampling scheme to create a metamodel.
The lift coefficient of the turbine airfoil model at a typ-
ical deep stall α� 24° at the Reynolds number level of
Re� 200×103 was chosen as the objective function to be
optimized. The surface pressure distribution over the airfoil
model was measured and integrated to obtain the lift coeffi-
cient of the airfoil model at the selected sample points. The
data set served as the evaluations of the objective function
at the sample points to be fed to the metamodel. An ini-
tial regression Kriging metamodel was created which was
further improved by adding infill points to create the final
refined model. A metamodel trained prediction function was
then established to predict the lift coefficient of the airfoil
model throughout the whole two-dimensional design space.
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The final value of the lift coefficient of the airfoil model
predicted via the metamodeling was experimentally verified,
and the error was found to be about 2.0%. The global error
of the metamodel within the entire design space were found
to be about 3.0%. The procedure was also repeated at α �
22° at the Reynolds number of Re� 300×103 to verify
the sensitivity of the optimum parameters to the Reynolds
number and α. It was demonstrated successfully that the
Metamodeling-based optimization technique would save the
cost of extensive experimentation required to explore the
whole design space by performing experiments only at sam-
ple locations, yet without much loss in accuracy.
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