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« Calibration: A calibration applies a known input value to a
measurement system for the purpose of observing the system
output value. It establishes the relationship between the input
and output values.

« The know value used for the calibration is called standard.
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« Instrument Resolution represents the smallest increment in the measured
value that can be discerned by using the instrument. In terms of a
measurement system, it is quantified by the smallest scale increscent of least
count.
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e “Accuracy” is generally used to indicate the relative closeness of agreement between
an experimentally-determined value of a quantity and its true value.

e “Error” is the difference between the experimentally-determined value and its true
value; therefore, as error decreases, accuracy is said to increase.

e Since the true value is not known, it is necessary to estimate error, and that estimate
is called an uncertainty, U.

e Uncertainty estimates are made at some confidence level—a 95% confidence
estimate, for example, means that the true value of the quantity is expected to be
within the U interval about the experimentally-determined value 95 times out of
100.

Aarror — Aneasured o Arue — E = An o Arue
E . Aerror

relative ~—
Atrue

Copyright © by Dr. Hui Hu @ lowa State University. All Rights Reserved! @ospa ¢e Engineering




e Total error, U, can be considered to be composed of two components:
— arandom (precision) component,
— a systematic (bias) component,

— We usually don’t know these exactly, so we estimate them with P and B,
respectively.

e Precision Error: Random error
- Normal Distribution or Gaussian Distribution

e Bias Error: Fixed Error, System Error )
Bias error

— Constant Throughout the experiment

A

— Can be positive or Negative

U 2 — B2 + P2 pr cisiio error X

True value measured value
X=100 X=101
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e Precise but biased

e Unbiased but Imprecise
e Biased and Imprecise
e Precise and Unbiased ? \ )
X
O N0 o
Qualification of measurement error: =

E2 = B?+P?
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Repeatability and Reproducibility

e Repeatability is the variability of the measurements obtained by one
person while measuring the same item repeatedly. This is also known | Repeatability
as the inherent precision of the measurement equipment. -

e Consider the probability density functions shown in Figure 1.
The density functions were constructed from measurements of
the thickness of a piece of metal with Gage A and Gage B. The
density functions demonstrate that Gage B is more repeatable
than Gage A.

. Gage B

e Reproducibility is the variability of the measurement system caused
by differences in operator behavior. Mathematically, it is the I avava
variability of the average values obtained by several operators while !
measuring the same item. SNATA
e Figure 2 displays the probability density functions of the
measurements for three operators. The variability of the
individual operators are the same, but because each operator
has a different bias, the total variability of the measurement fh U
system is higher when three operators are used than when one [ \ \ "
operator is used. / / \

Repeatability Precision Error

n.

Reproducibility

Reproducibility Both Bias and Precision Errors
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e We almost always are dealing with a data reduction
equation to get to the final results.

— In this case, we must not only deal with uncertainty in the
measured values but uncertainty in the final results.

e A general form looks like this:
R=R(X,X,,X5,... X, )

— Ris the result determined from J independent variables.
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* Uncertainty in velocity V:

Uz =BZ+P?
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. Streamlines are a family of curves

Generation point Fluid particle

that are instantaneously tangent to Velocity vector

the velocity vector of the flow. These (9 :

show the direction in which a 2 N . '

massless fluid element will travel at >\ O ’ E 3} O O

any point in time (Eularian approach). NNt 5, :
. Streaklines are the loci of points of T

all the fluid particles that have passed [_sueamiine ] [ sueakine | [_pathine ]

continuously through a particular I ectorssmoothly | generated froma pesiion ke e

spatial point in the past. Dye steadily
injected into the fluid at a fixed point
extends along a streakline
(Langragian approach).

. Pathlines are the trajectories that
individual fluid particles follow. These
can be thought of as "recording” the ) ) )
path of a fluid element in the flow over Streamllnes, Streakllnes, and pathllnes
a certain period. The direction the
path takes will be determined by the
streamlines of the fluid at each
moment in time (Langragian
approach).




Lab #1: Flow visualization hy using smoke wind tunnel

« Path line
« Streak lines
« Streamline
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Lah #1: Flow visualization by using smoke wind tunnel
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0 IMEASUREMENT SIGNAL

Signal:
Signal is a function that conveys information about a phenomenon.

+ Voltage, current
+ Sound strength, light intensity or other electromagnetic wave that
carries information
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0 IMEASUREMENT SIGNAL

Signal classifications:

+ Analog signal: Continuous signal for which its variation represents some
other varying quantity.

+ Digital signal: a signal is constructed from a discrete set of values to
represent a physical quantity.
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0 IMEASUREMENT SIGNAL

Analog-to-digital converter (ADC):
ADC is a system that converts an analog signal into a digital signal.

Reverse ADC:
Digital-to-Analog converter (DAC)
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0 IMEASUREMENT SIGNAL
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0 MEASUREMENT SIGNAL
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1 FOURIER TRANSFORM AND SPECTRAL ANALYSIS

e Any complex signal can be broken into set of sine and cosine waves of different periods
and amplitudes.

© 2012 Adrian S. Nastase,
MasteringElectronicsDesign ¢ A

f(x) =ay+ Z(an cosnx + b,, sin nx:a

n=1

0

Fourier series for a periodic function with period of 27
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Let 7 — oo, then a nonperiodic function can be considered as periodic
but with an infinite period 27 — .

%’s are the set of frequencies (spatial or temporal), called frequency
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1 FOURIER TRANSFORM AND SPECTRAL ANALYSIS

Examples of Fourier transform:
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1 FOURIER TRANSFORM AND SPECTRAL ANALYSIS
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