Lecture #03: Wind Tunnels and Water Tunnels

Dr. Hui Hu

Martin C. Jischke Professor in Aerospace Engineering Department of Aerospace Engineering, Iowa State University Howe Hall - Room 2251, 537 Bissell Road, Ames, Iowa 50011-1096 Tel: 515-294-0094 (O) / Email: <u>huhui@iastate.edu</u>

Function of Wind Tunnels and Water Tunnels

• Producing the desired flow field with controlled conditions

Relative Motion

 In classical physics and special relativity, an inertial frame of reference is a frame of reference that is not undergoing acceleration.

Types of Wind Tunnels

Based on Flow Speed:

- Subsonic or low-speed wind tunnels (M<<1.0)
- Transonic wind tunnels (M≈1.0)
- Supersonic wing tunnels (1.0 <M<5.0)
- Hypersonic wind tunnels (M>5.0)

sketch of the variation of profile drag coefficient with freestream Mach number, illustrating the critical and drag-divergence Mach numbers and showing the large drag rise near Mach 1.

Types of Wind Tunnels

Based on Shape:

• Open circuit wind tunnel:

Open Return Wind Tunnel

• Suction wind tunnel: With the inlet open to atmosphere, axial fan or centrifugal blower is installed after test section.

Blow down wind tunnel: A blower is installed at the inlet of wind tunnel which throws the air into wind tunnel.

Types of Wind Tunnels

Based on Shape:

• Close-circuit wind tunnel:

Components of a Closed-Looped Wind Tunnel

- Test section
- Contraction section
- Diffuser section
- Setting chamber
- Screens and similar structures
- Cooling system / radiators
- Motors /fans

Function of Contraction

Aerospace Engineering

NASA Ames Wind Tunnel (24.4m \times 36.6m test section, 75GW power)

NASA Ames Wind Tunnel (24.4m imes 36.6m test section, 75GW power)

Testing in NASA Ames Wind Tunnel

IOWA STATE UNIVERSITY Copyright © by Dr. 1

Icing Wind Tunnels

Icing Tunnel at NASA Glenn Center

ICING RESEARCH TUNNEL @ IOWA STATE UNIVERSITY (ISU-IRT)

ISU Icing Research Tunnel (ISU-IRT), donated by Collins Aerospace System, is a new refurbished, research-grade multi-functional icing research tunnel.

- The working parameters of the ISU-IRT include:
 - Test section: 0.4m × 0.4m×2.0m
 - Airflow velocity:
 - Temperature:
 - Droplet size:
 - Liquid Water Content:
- $V_{\infty} = 5 \approx 100 \text{ m/s};$ $T_{\infty} = -25 \text{ °C} \approx 20 \text{ °C};$ $D_{droplet} = 10 \approx 100 \text{ }\mu\text{m};$ LWC = 0.1 ~ 10 g/m³
- The large LWC range allows ISU-IRT to be run over a wide range of conditions (i.e., from dry rime to wet glaze icing).
- We received **~\$4.0M in funded research** in the past **5 years** from NASA, NSF, FAA, NAVY, GE, P&W, UTAS, DuPont...

ICING RESEARCH TUNNEL @ IOWA STATE UNIVERSITY (ISU-IRT)

Water Tunnels

Water Tunnels

Saint Anthony Falls Laboratory; University of Minnesota

• Hydro science research laboratory at the University of Iowa

Towing Tank

Lab#02: Wind Tunnel Calibration

If A_A , A_B and A_T are the areas of the different sections, then the conservation of mass principle can be written to relate the mass flow rates between the between the different sections as:

 $\rho_{A}V_{A}A_{A}=\rho_{E}V_{E}A_{E}=\rho_{r}V_{r}A_{r}$

Low speed flows can be treated as inviscid flows, i.e., $\rho_A = \rho_E = \rho_T$. The fluid density can be cancelled from the above relation, therefore,

 $V_A A_A = V_E A_E = V_\Gamma A_\Gamma.$

Squaring the above equation, and multiplying through $\underline{by}_{...}\rho/2$ yields

$$\frac{1}{2}\rho_{A}V_{A}^{2}A_{A}^{2} = \frac{1}{2}\rho_{E}V_{E}^{2}A_{E}^{2} = \frac{1}{2}\rho_{T}V_{T}^{2}A_{T}^{2}.$$

Lab#02: Wind Tunnel Calibration

 $q_A = C_2 q_E \qquad (3)$ $q_E = C_3 q_T \qquad (4)$

Using (3) and (4) into equation 2 yields :

$$p_{A} - p_{E} = C_{3}q_{F} + C_{1}C_{3}q_{F} - C_{2}C_{3}q_{F} = (\mathbf{1} + C_{1} - C_{2})C_{3}q_{F}$$
(5)

Note: No assumptions have been made between E and T, i.e., $P_{0E} = P_{0T}$. Now, if $A_E = A_T$ then $C_3 = \frac{A_T^2}{A_E^2} = 1$, and equation (5) reduces to $p_A - p_E = \Delta p = (1 + C_1 - C_2) q_T$ or $\Delta p = C q_T$,

where C is determined by calibration. C₂ is determined by measuring areas. C₁ is calculated from $C_1=C+C_2-1$.

 $K = 1/C = q_r / \Delta p$ is defined as the wind tunnel calibration constant.

$$p_A - p_E = \Delta p$$
$$= C * q_T$$
$$= C * \frac{1}{2} \rho V^2$$

Lab#02: Wind Tunnel Calibration

Aerospace Engineering

Before you do the Labs...

- Choose 1~2 member as the Lead Operators
- Bring you own flash drive for the data storage.
- Do not touch other research equipment's in the wind tunnel laboratory.
- Keep the wind tunnel laboratory clean and organized.

