AerE 344 class notes

Lecture # 04 Pressure Measurement Techniques and Instrumentation

Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A

Measurement Techniques for Thermal-Fluids Studies

PIV examples

• A supportive COVID-19 study: Experimental Investigation on a Human Sneeze

Pressure measurements

- Pressure is defined as the amount of force that presses on a certain area.
 - The pressure on the surface will increase if you make the force on an area bigger.
 - Making the area smaller and keeping the force the same also increase the pressure.
 - Pressure is a scalar

Pressure measurements

$$P_{gauge} = P_{absolute} - P_{amb}$$

Manometer

Mechanical Pressure Gauges -1

Mechanical Pressure Gauges -2

Elastic-element gauges:

- Contain an elastic elements that deforms under pressure and creates a linear or angular displacement
- The displacement is either displayed on a dial by means of purely mechanical linkages or transformed to an electric signal that can be displayed or recorder at will.
- They usually used for monitoring supply pressure

Cross sectional shape

Curved Bourdon tube

Twisted Bourdon tube

Electrical Pressure transducers

- These devices provides an electric output signal that is linearly or nonlinearly dependent on the absolute pressure or a pressure difference.
- They can be categorized as:
 - Molecular transducers:
 - Applied pressure or force produces a change (on the molecular level) of a electrical property of material.
 - Piezo-electric material such as quartz crystal: change in internal dipole moments of the molecules of the crystal when the pressure or force is applied.

- The gross electrical parameter (resistance, inductance, capacitance) of an associate electrical parameter is altered by applied force.
- Variable-capacitance transducer

Wall Pressure measurements -1

• Making small orifice (pressure tap) facing the flow.

$$\Delta p = P_m - P > 0$$

- Machining small hole could be difficult
- *d* = 0.5~3.0mm in practice
- *l/d* = 5 ~ 15 is common used
- Potential effect on the wall roughness
- Effects of unsteady shock wave, and shock boundary-layer interactions for transonic and supersonic flows:
- PSP method to be introduced later

Wall Pressure measurements - 2

- Dynamic response of the pressure transducers
- Dynamic response of the connection tubing
- Remote connection
 - Dynamic response is low
 - Spatial resolution is high
- Cavity mounting
 - Dynamic response is good
 - Spatial resolution is high
- Flush mounting
 - Dynamic response is high
 - Spatial resolution is low

Pressure Measurements inside Flow Field

- Non-intrusive technique is unavailable for direct pressure measurements
 - Based on N-S equation to calculate pressure field using the measured (PIV) velocity field.
- Static probe: for static pressure measurements
- Pitot probe: for total pressure measurements
- Pitot-static probe: for static and total pressures measurements (velocity measurements)
- Multi-hole probe:

mm

m

Pressure Sensitive Paint (PSP) technique

- Composition of Air: 78.08% N₂, 20.95% O₂, 0.93% Ar, 0.03% CO₂, 0.002% Ne, plus lesser amounts of Methane, Helium, Krypton, Hydrogen, Xenon.
- The pressure of air can be determined if the particle pressure of oxygen (i.e. oxygen concentration) can be measured.
- A typical pressure sensitive paint is comprised of two main parts: an oxygen sensitive fluorescent molecule and an oxygen permeable binder

Applications of PSP Technique

PSP measurement result

PSP combined with PIV

Applications of PSP Technique

PSP Technique for Low Speed Applications

PSP measurements of a 2002 Ford Thunderbird

0.04

 $V_{\infty}=50m/s$

AerE344 Lab #03: Pressure Sensor Calibration and Measurement Uncertainty Analysis

- Task #1: Pressure Sensor Calibration experiment
 - A pressure sensor Setra pressure transducer with a range of +/- 5 inH2O
 - It has two pressure ports: one for total pressure and one for static (or reference) pressure.
 - A computer data acquisition system to measure the output voltage from the manometer.
 - A manometer of known accuracy
 - Mensor Digital Pressure Gage, Model 2101, Range of +/- 10 inH2O
 - A plenum and a hand pump to pressurize it.
 - Tubing to connect pressure sensors and plenum
- Lab output:
 - Calibration curve
 - Repeatability of your results
 - Uncertainty of your measurements

Calibration curves

AerE344 Lab #03: Pressure Sensor Calibration and Measurement Uncertainty Analysis

- Task #2: velocity profile measurements of a Wind tunnel
 - A Setra manometer to be used with a Pitot-static probe.
 - A Pitot-static probe mounted to a traverse for measuring velocity profiles in the wind tunnel.
 - A thermometer and barometer for observing ambient lab conditions (for calculating atmospheric density).
 - A computer with a data acquisition system capable of measuring the voltage from your pressure transducer.
- Lab Output
 - Velocity profiles across the wind tunnel test section.

$$p_{0} = p_{stat} + \frac{1}{2}\rho V^{2}, (Bernoulli)$$
$$V = \sqrt{\frac{2(p_{0} - p_{stat})}{\rho}}$$

Velocity profile in the Bill James wind Tunnel

IOWA STATE UNIVERSITY Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

Aerospace Engineering