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Lecture # 07:     Laminar and Turbulent Flows

AerE 344 Lecture Notes

Sources/ Further reading:
Munson, Young, & Okiishi, “Fundamentals of Fluid 

Mechanics,” 4th ed, Ch 8

Tropea, Yarin, & Foss, “Springer Handbook of Experimental 

Fluid Mechanics,” Part C Ch 10

Tritton, “Physical Fluid Dynamics,”  2nd ed, Chs 2, 19–21

Sources/ Further reading:
Schlichting, “Boundary Layer Theory,” any ed

White, “Viscous Fluid Flow,” 3rd ed. 

Kundu & Cohen, “Fluid Mechanics,” 3rd ed.
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Laminar Flows and Turbulence Flows 

• Laminar flow, sometimes known as streamline flow, occurs when a fluid 

flows in parallel layers, with no disruption between the layers. Viscosity 

determines momentum diffusion.

– In nonscientific terms laminar flow is "smooth," while turbulent flow 

is "rough." 

• Turbulent flow is a fluid regime characterized by chaotic, stochastic 

property changes. Turbulent motion dominates diffusion of momentum 

and other scalars. The flow is characterized by rapid variation of 

pressure and velocity in space and time. 

– Flow that is not turbulent is called laminar flow
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Reynolds’ experiment



DU
=Re

• Reynolds number:
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Turbulent flows in a pipe

Empirically, 

• Re < 1,000, laminar flow

• Re  1,000 ~ 3,000, transition

• Re > 3000, turbulent flow. 

ReC ~ critical Reynolds number,

above which flow exhibits turbulent 

characteristics

VD
=Re
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Characterization of Turbulent Flows
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Turbulence intensities
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Turbulent Shear Stress
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Turbulent flows:
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(a) laminar flow (b) turbulent flow
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Quantification of Boundary Layer Flow
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Boundary Layer Theory
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Boundary Layer Theory
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Boundary Layer Flows
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Which one will induce more 

drag? 

Laminar boundary layer? 

Turbulent boundary layer? 
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Boundary Layer Flows

• Which one will induce more drag? 

• Laminar boundary layer? Turbulent boundary layer? wall
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Laminar Flows and Turbulent Flows

Total Drag =  Friction Drag + Form Drag

• Friction Drag: due to friction force at the surface 

• Form Drag: also known as Pressure Drag or Profile 
Drag, due to unbalanced pressure distribution

Total drag 

Friction drag 

Form drag 
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Flow Around A Sphere with laminar and Turbulence Boundary Layer
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Golf Ball Aerodynamics

• Aolf ball aerodynamics
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Automobile aerodynamics
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Automobile aerodynamics 

Mercedes Boxfish
Vortex generator above a Mitsubishi rear window

http://www.recumbents.com/car_aerodynamics/diffuser.jpg
http://upload.wikimedia.org/wikipedia/en/2/2b/Truck_aerodynamics.jpg
http://www.cartuningcentral.com/wp-content/uploads/2008/07/ferrari-aerodynamics.gif
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Flow Separation on an Airfoil
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Conventional vs Laminar Airfoils

• Laminar flow airfoils are usually thinner than the 

conventional airfoil.

• The leading edge is more pointed and its upper 

and lower surfaces are nearly symmetrical. 

• The major and most important difference 

between the two types of airfoil is this, the 

thickest part of a laminar wing occurs at 50% 

chord while in the conventional design the 

thickest part is at 25% chord.

• Drag is considerably reduced since the laminar 

airfoil takes less energy to slide through the air.

• Extensive laminar flow is usually only 

experienced over a very small range of angles-of-

attack, on the order of 4 to 6 degrees.

• Once you break out of that optimal angle range, 

the drag increases by as much as 40% 

depending on the airfoil 
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Aerodynamic performance of an airfoil
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Flow Separation and Transition on  Low-Reynolds-number 

Airfoils

• Low-Reynolds-number airfoil (with Re<500,000) 

aerodynamics is important for both military and 

civilian applications, such as propellers, sailplanes, 

ultra-light man-carrying/man-powered aircraft, high-

altitude vehicles, wind turbines, unmanned aerial 

vehicles (UAVs) and Micro-Air-Vehicles (MAVs).

• Since laminar boundary layers are unable to

withstand any significant adverse pressure gradient, 

laminar flow separation is usually found on low-

Reynolds-number airfoils.  Post-separation behavior

of the laminar boundary layers would affect the 

aerodynamic performances of the low-Reynolds-

number airfoils significantly

• Separation bubbles are usually found on the upper 

surfaces of low-Reynolds-number airfoils . 

Separation bubble bursting can cause airfoil stall at 

high AOA when the adverse pressure gradients 

become too big. 
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PIV Measurement Results 
( AOA=10.0 degrees, Re=68,000, spatial resolution /C  0.01 )

A. instantaneous results
B. ensemble-averaged results
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Laminar Separation Bubble on a Low-Reynolds-number Airfoil

PIV measurement results at AOA = 10 deg, Re=68,000 
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Wingtip Vortex and Winglet
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Passive Flow Control:  Shark Skin
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Shark Skin Structures  for Drag Reduction
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Shark Skin Inspired Engineering
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Lab 6: Airfoil Wake Measurements and Hotwire Anemometer 

Calibration

CTA hotwire probe

Flow Field

Current flow 

through wire
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• Constant-temperature anemometry
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Hotwire Anemometer Calibration
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• Quantify the relationship between the flow velocity and voltage output from the CTA 
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Compare with the drag coefficients obtained based on airfoil surface pressure 

measurements at the same angles of attack!
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Pressure rake with 41 total pressure probes

(the distance between the probes d=2mm)

Lab 6: Airfoil Wake Measurements and Hotwire Anemometer 

Calibration 
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Required Measurement Results

NOTE: We will be using the GA(W)-1 airfoil from the previous lab for the wake pressure 

measurements

Required Plots:

• Cp distribution in the wake (for each angle of attack) for the airfoil wake measurements

• Cd vs angle of attack (do your values look reasonable?) based on the airfoil wake 

measurements

• Your hot wire anemometer calibration curve:  Velocity versus voltage output of hotwire 

anemometer (including a 4th order polynomial fit)

Please briefly describe the following details:

• How you calculated your drag—you should show your drag calculations

• How these drag calculations compared with the drag calculations you made in the 

previous experiment

• Reynolds number of tests and the incoming flow velocity
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