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LECTURE # 10:   SHOCK WAVES AND DE LAVAL NOZZLE
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AerE344 Lab#10:   Set up Schlieren and Shadowgraph Systems to 

Visualize a Thermal Plume Flow of a Burning Candle 

After the candle is on

Before the candle is on

Schlieren image of a thermal plume of a burning candle 
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• Set Up of Schlieren and Shadowgraph  Systems to 
visualize a thermal plume flow .

• Sign-in sheet signature.

AerE344 Lab#10:   Set up Schlieren and Shadowgraph Systems to 

Visualize a Thermal Plume Flow of a Burning Candle 

Schlieren image of a thermal plume of a burning candle 
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Subsonic, Transonic,  Supersonic and hypersonic  Flows

Subsonic flows: M<1.0

Transonic flows: M1.0

Supersonic flows: M>1.0

Hypersonic flows: M>5.0 

Sonic boom
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Subsonic and Supersonic Flow

b. Subsonic < 1.0 b. Supersonic; M>1.0b. Sonic boom = 1.0

http://www.kettering.edu/~drussell/Demos/doppler/bullet-3.gif
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Shock Waves

Normal Shock Wave

(The airstream slows to subsonic)

Oblique Shock Wave

(The airstream slows down, 

but remains supersonic)

Expansion Wave

(The airsteam accelerates, and the air behind 

the shock wave has higher supersonic)
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Review of  Quasi-1D Nozzle Flow
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Review of  Quasi-1D Nozzle Flow
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Assuming:
• steady
• inviscid
• no body forces

Quasi-1D: 
• Area is allowed to vary but flow 

variables are a function of x only

X

Mass conservation

Momentum conservation

Energy conservation
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Review of  Quasi-1D Nozzle Flow
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Review of  Quasi-1D Nozzle Flow
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Assuming: steady; inviscid; no body forces

Quasi-1D: 

• Area is allowed to vary but flow variables 

are a function of x only
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Review of  Quasi-1D Nozzle Flow
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Review of  Quasi-1D Nozzle Flow
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Review of  Quasi-1D Nozzle Flow
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How does a Rocket Engine Work? 
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Tank with compressed air
Test section

AerE344 Lab: Pressure Measurements in a de Laval Nozzle

Tap No. Distance downstream of throat (inches) Area (Sq. inches)

1 -4.00 0.800
2 -1.50 0.529
3 -0.30 0.480
4 -0.18 0.478
5 0.00 0.476
6 0.15 0.497
7 0.30 0.518
8 0.45 0.539
9 0.60 0.560
10 0.75 0.581
11 0.90 0.599
12 1.05 0.616
13 1.20 0.627
14 1.35 0.632
15 1.45 0.634



Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

1st, 2nd and 3rd critic conditions

1st critic 

condition

2st critic 

condition

3st critic 
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1st, 2nd and 3rd critic conditions

Under-

expanded 

flow

Flow close to 

3rd critical

Over-

expanded 

flow

2nd critical – shock 

is at nozzle exit

Over-expanded flow 

with shock between 

nozzle exit and 

throat

1st critical – shock 

is almost at the 

nozzle throat.
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Method #1: Prediction of the Pressure Distribution within a De 

Laval Nozzle by using Numerical Approach
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point up to the shock can be determined:

• After finding Mach number at front of shock, 

calculate Mach number after shock using:
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atme PP =

M<1 M>1

PT1 
P1 PT2 

P2 

M<1

Shock 

AS 

Ae

Throat , A* 

or At

atme PP =

a.For 3rd Critical

Method #1: Prediction of the Pressure Distribution within a De 

Laval Nozzle by using Numerical Approach
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atme PP =

M<1 M>1

PT1 
P1 PT2 

P2 

M<1

Shock 
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or At

atme PP =

Method #2: Prediction of the Pressure Distribution within a De 

Laval Nozzle by using Shock Table Method

• If the shockwave is located at position of tab#12:

• Method #2: by using Isentropic 

Flow properties table

(Appendix-A of Anderson’s textbook)

• method #1,  by using equations:
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Method #2: Prediction of the Pressure Distribution within a De 

Laval Nozzle by using Shock Table Method

• If the shockwave is located at position of tab#12:

• By using the normal shock tables with M1 = 1.64 

we find that M2 = 0.686.  (Appendix-B of 

Anderson’s textbook)

• Next, we find the sonic reference area behind the 

shock using the area-Mach relation. i.e., M2=0.686 

(Appendix-A of Anderson’s textbook)

• Find sonic reference behind the shock using the 

area-Mach relationship:

i.e., A2*=0.557sq. Inches
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Method #2: Prediction of the Pressure Distribution within a De Laval 

Nozzle by using Shock Table Method

• With the exit pressure to be sea-

level standard pressure.  We now 

calculate the total pressure behind 

the shock using this value of exit 

pressure and the pressure ratio at 

the exit:

• Our last major task is to find the 

total pressure ahead of the shock, 
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AerE344 Lab#10:   Set up Schlieren and Shadowgraph Systems to 

Visualize a Thermal Plume Flow of a Burning Candle 

After the candle is on

Before the candle is on

Schlieren image of a thermal plume of a burning candle 
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• Set Up of Schlieren and Shadowgraph  Systems to 
visualize a thermal plume flow .

• Sign-in sheet signature.

AerE344 Lab#10:   Set up Schlieren and Shadowgraph Systems to 

Visualize a Thermal Plume Flow of a Burning Candle 

Schlieren image of a thermal plume of a burning candle 
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