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AerE344 1ah#10: Setup Schiieren and Shadowgraph Systems to
Visualize a Thermal Plume Flow of a Burning Candle
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Schlieren image of a thermal plume of a burning candle
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AerE344 1ah#10: Setup Schiieren and Shadowgraph Systems to
Visualize a Thermal Plume Flow of a Burning Candle

e Set Up of Schlieren and Shadowgraph Systems to
visualize a thermal plume flow .

e Sign-in sheet signature.

Schlieren image of a thermal plume of a burning candle
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Subsonic, Transonic, Supersonic and hypersonic Flows

Subsonic flows: M<1.0

Transonic flows: M=a1.0

Supersonic flows: M>1.0

Hypersonic flows:

Sonic boom
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b. Subsonic < 1.0 b. Sonic boom = 1.0 b. Supersonic; M>1.0
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http://www.kettering.edu/~drussell/Demos/doppler/bullet-3.gif

Aerospike/Bell Nozzle Exhaust Plume Comparisons
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Review of Quasi-1D Nozzie Flow

Liquid Rocket Engine  resu
Fuel Oxidizer Pumps Cg:]nat;:::;tei?n Nozzle

V = Velocity
m = mass flow rate
p = pressure

Throat

Thrust= F =m Vg + (Pe-Py) A,
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RESEARCH CENTER
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Review of Quasi-1D Nozzie Flow

Assuming:

e steady X

e jnviscid .

e no body forces

Quasi-1D:

e Area is allowed to vary but flow

variables are a function of x only
o _
Mass conservation m Epdv +ISI pJ NS =0
Momentum conservation —m pUdV + Hp (U-m)uds = —ﬂ pdS + mpde *+ Fiscous
U o

Energy conservation 1 &+ v+ [ {5 0 nas =0 nas o [[]p Fav [ (70w
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Review of Quasi-1D Nozzie Flow

Assuming:
o steady
e inviscid
e no body forces

Quasi-1D:

e Area is allowed to
vary but flow
variables are a

function of x only J’”%"dv +J‘J'pg,ﬁd5 —0
V S

Mass conservation —PUA + (U + dU)(p + dp)(A—I— dA) =0

— pu + puA + pudA+ pduA + d puA + higher order terms =0

PAU = Const.

+—+
A p u
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Review of Quasi-1D Nozzie Flow

Assuming: steady; inviscid; no body forces

Quasi-1D:
» Area is allowed to vary but flow variables
are a function of x only

Momentum conservation %f\ﬂ/ﬂdv +ISI,0(U -M)UdS = —ISI pdS +_Uj,0f_dv + Fiscous
A+ (p+dp)(u-+du)(u+du)(A+dA) = pA_(p+dp)(A+dA)+2(%)
—M+pu2ﬂ+pu2dA+u2Adp+puAdu+puAdu=PK—PK—,9d7K—AdP+,9d7K
u(W)+puAdu =—AdP

_ ap_dPdp__ ,_dP) wmmp dp_ U
dP =—-pudu ==) > dp udu |a _dpl - azdu
dA dp du dA du u
ince: +—+—=0 — =
Since A P U =) A+ J azdu 0
dA duf, ut)_dA dug ey dA du
=) A+u(1 az] A+u(1 M) 0 == _:(Mz_l)T
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Review of Quasi-1D Nozzie Flow
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Review of Quasi-1D Nozzie Flow
Isentropic relation : \—/
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Review of Quasi-1D Nozzle Flow
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Nozzle Pressure Tap Numbering Diagram

Test section

Tank with compressed air

Tap No. [Distance downstream of throat (inches) |[Area (Sq. inches)
1 -4.00 0.800
2 -1.50 0.529
3 -0.30 0.480
4 -0.18 0.478
5 0.00 0.476
6 0.15 0.497
7 0.30 0.518
8 0.45 0.539
9 0.60 0.560
10 0.75 0.581
11 0.90 0.599
12 1.05 0.616
13 1.20 0.627
14 1.35 0.632
15 1.45 0.634
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1st, 2" and 3™ critic conditions

2nd critical — shock
is at nozzle exit

Over-expanded flow
with shock between
nozzle exit and
throat

| Flow close to
3 critical

Over- 1st critical — shock
expanded is almost at the
flow nozzle throat.
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Method #1: Prediction of the Pressure Distribution within a De
Laval Nozzie by using Numerical Approach

Ae
Throat Shock « Using the area ratio, the Mach number at any

point up to the shock can be determined:

+1

x i pas!
: | AY 1] 2 y-1 2) 7L
Fl —_— : ! el 1+ M
ow 5 | (A j Mz{ﬂl( 2

+ After finding Mach number at front of shock,

calculate Mach number after shock using:
1+7 = 2‘1 M,?
-1

MZ_L
y IV 2

* Then, calculate the A,*

7+1

“\2 _ 2a2| 2 y=1,,> Kz
(A7) _MZASLH(H , MZH

d. To calculate Mach number given the Mach-Area relation, can use Newton which allows us calculate the remaining Mach
iteration to find M . .
number distribution

(2.8)
7+l

AV 1] 2 ~1 =
2.9) ( j VY (“7 MZ]
Ay) M2 y+1 2

(2.10)
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Method #1: Prediction of the Pressure Distribution within a De
Laval Nozzie by using Numerical Approach

2. Find pressure distribution

a.

Pressure at exit is same as atmospheric pressure for shock inside nozzle
(P, =P,,). Forshock after lip of nozzle, total pressure is constant throughout the

interior of the nozzle (B, = F,).

Find total pressure behind the shock:

v VI
F, :&Pg where i:(1+ 4 IM; l 2.4
R L2 )

Any pressure behind the shock is therefore:

-7

y—1_ 5\l
P:PI{H Iy 2.5)

Calculate P, ahead of shock:
p=bfibp 2.6
BB E

where you can use Total-Static relation for 1¥ and 3™ ratios, and for the middle
ratio:

B _1+yMy

B 1+yM

or (2.7
B, ¥ (7 -1)

A 7+l

Now that you have the total pressure upstream of the shock, as well as the Mach
number calculated earlier you can calculate the pressure upstream of the shock.

Throat , A*

Flow =3

P/po

Shock

Ae

.9)

- - T

a.For 3rd Critical
L.R=P

b. For 1* Critical

d ..
c. For 2™ Critical

2.M, =M, =M, (supersonic)

1.Same as 3™ critical, but M _is subsonic
a
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Method #2: Prediction of the Pressure Distribution within a De

Throat , A*
or A,

Flow =——3—

using Shock Tahle

« method #1, by using equations:

ﬂ

v—1 !
|1+—M*
’)

‘f’_a\z 1 [ 2
;’llfir- "»"+1'.\ “ 4

*

A4

» Method #2: by using Isentropic
Flow properties table
(Appendix-A of Anderson’s textbook)
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Tap No. Distance downstream of throat (inches) Area (Sq. mches)
Shock 1 .00 0.800
2 -1.50 0.529
3 -0.30 0.480
= Zn 4 018 0.478
) 0.00 0.476
i) 015 0.497
7 0.30 0.518
3 045 0.539
9 0.60 0.560
10 075 0.581
11 0.90 0.599
d 12 1.05 0.616
13 1.20 0.627
14 1.35 0.632
=P 15 145 0634
If the shockwave is located at position of tab#12:
Tap No. ATA* Mach # P/P; P,
1 1.651 0.37 0.9098
2 1.111 0.67 0.7401
3 1.008 0.97 0.5469
5 1.000 1.00 05283
7 1.088 1.35 03370
) 1.176 1.50 02724
11 1.258 1.61 02318
pre-shock 1.294 1.64 02217
post-shock
13
15
Qelospace Engineering




Method #2: Prediction of the Pressure Distribution withina De
Laval Nozzie by using Shock Tahle Method

Shack
Ag

Throat , A*

By using the normal shock tables with M1 = 1.64
we find that M2 = 0.686. (Appendix-B of :
Anderson’s textbook) : B = P

Next, we find the sonic reference area behind the
shock using the area-Mach relation. i.e., M2=0.686
(Appendix-A of Anderson’s textbook)

Find sonic reference behind the shock using the
area-Mach relationship:

¥+l

{A,; )2 _ ASZMFQZ |: 2 |,f1 N y—1 IvE ‘-:j|_J’T1

¥ +11 2 )
I.e., A2*=0.557sq. Inches « If the shockwave is located at position of tab#12:
Tap No. AJAR Mach # P/P; p Py

1 1681 0.37 0.9098
2 1.111 0.67 0.7401
3 1.003 0.97 0.5469
5 1.000 1.00 0.5283
7 1088 1.35 03370
9 1.176 1.50 02724
11 1258 1.61 02318
pre-shoclk 1294 1.64 02217
post-shock 1.105 0.69 07274

13

15




Method #2: Prediction of the Pressure Distribution within a De Laval
Nozzie by using Shock Tahle Method

« With the exit pressure to be sea-
level standard pressure. We now
calculate the total pressure behind
the shock using this value of exit
pressure and the pressure ratio at

the exit:
P 1 : ———154
P,=—P=|——[14.7=19.53
P 0.7528 - - - -
Tap No. ATAK Mach # P/P, P P,
1 1681 37 00098
2 1111 0.67 0.7401
 Our last major task is to find the 3 1.008 9.97 0.5469
5 1.000 1.00 05283
total pressure ahead of the shock, 7 1088 135 03370
P 9 1176 1.50 02724
tl 11 1258 161 02318
pre-shock 1.294 1.64 02217
post-shock 1105 0 69 07274 1421
13 1125 0.66 07465 1458
7 g 757 .
P :&ﬂip 15 1.137 0.65 07528 147
t1 12
P PP, Tap No. A/AF Mach # P/P, P P,
1 1681 037 0.9098 196 49
2 1111 0.67 0.7401 16 13
3 1008 097 0.5469 118 29
5 1.000 1.00 05283 114 -33
7 1088 135 03370 727 743
0 1176 1.50 02724 588 -8.82
11 1258 161 02318 5 97
pre-shock 1294 1.64 02217 4.78 992
post-shock 1105 069 07274 14 21 049
13 1125 0.66 07465 14 58 012
15 1.137 0.65 0.7528 14.7 0




AerE344 1ah#10: Setup Schiieren and Shadowgraph Systems to
Visualize a Thermal Plume Flow of a Burning Candle
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AerE344 1ah#10: Setup Schiieren and Shadowgraph Systems to
Visualize a Thermal Plume Flow of a Burning Candle

e Set Up of Schlieren and Shadowgraph Systems to
visualize a thermal plume flow .

e Sign-in sheet signature.

Schlieren image of a thermal plume of a burning candle
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