Lecture # 11: Particle image velocimetry

Dr. Hui Hu

Martin C. Jischke Professor in Aerospace Engineering Department of Aerospace Engineering, Iowa State University Howe Hall - Room 2251, 537 Bissell Road, Ames, Iowa 50011-1096 Tel: 515-294-0094 (O) / Email: <u>huhui@iastate.edu</u>

Sources/ Further reading: Raffel, Willert, Wereley, Kompenhans, "Particle image velocimetry: A practical guide" 2nd ed.

Particle-based Flow Diagnostic Techniques

- Seeded the flow with small particles (~ μm in size)
- <u>Assumption</u>: the particle tracers move with the same velocity as local flow velocity!

Particle Image Velocimetry (PIV) technique

 Time-of-flight method: to measure the displacements of the tracer particles seeded in the flow in a fixed time interval.

a. T=t0

b. T=t0+10µs

Corresponding Velocity field

PIV System Setup

Particle tracers:	track the fluid movement.
Illumination system:	illuminate the flow field in the interest region.
Camera:	capture the images of the particle tracers.
Synchronizer:	control the timing of the laser illumination and camera acquisition.
Host computer:	to store the particle images and conduct image processing.

Tracer Particles for PIV

- Tracer particles should be neutrally buoyant and small enough to follow the flow perfectly.
- Tracer particles should be **big enough** to **scatter** the illumination lights **efficiently**.
- The scattering efficiency of trace particles also strongly depends on the ratio of the refractive index of the particles to that of the fluid.

For example: the refractive index of water is considerably larger than that of air. The scattering of particles in air is at least one order of magnitude more efficient than the same particles size in water.

Tracer Particles for PIV

- A primary source of measurement error is the influence of gravitational forces when the density of the tracer particles is different to the density of work fluid.
- The velocity lag of a particle in a continuously acceleration fluid will be:

$$U_{g} = d_{p}^{2} \frac{(\rho_{p} - \rho)}{18\mu} g$$

Tracer Particles for PIV

• Tracers for PIV measurements in liquids (water):

 Polymer particles (d=10~100 μm, density = 1.03 ~ 1.05 kg/cm³)

Silver-covered hollow glass beams (d =1 ~10 μm, density = 1.03 ~ 1.05 kg/cm3)

• Fluorescent particle for micro flow (d=200~1000 nm, density = 1.03 ~ 1.05 kg/cm3).

•Quantum dots (d= 2 ~ 10 nm)

• Tracers for PIV measurements in gaseous flows:

- Smoke ...
- Droplets, mist, vapor...
- Condensations

 Hollow silica particles (0.5 ~ 2 μm in diameter and 0.2 g/cm3 in density for PIV measurements in combustion applications.
 Nanoparticles of combustion products

roduct

Polyamide particles, 55 μm, 1.2g/cm³ Polyamide particles, 100 μm, 1.1 g/cm³ Polyamide particles HQ, 20 μm, 1.03g/cm³ Polyamide particles HQ, 60 μm, 1.03g/cm³

Fluorescent particle

illumination system

• The illumination system of PIV is always composed of light source and optics.

• Lasers: such as Argon-ion laser and Nd:YAG Laser, are widely used as light source in PIV systems due to their ability to emit monochromatic light with high energy density which can easily be bundled into thin light sheet for illuminating and recording the tracer particles without chromatic aberrations.

• **Optics**: always consisted by a set of cylindrical lenses and mirrors to shape the light source beam into a planar sheet to illuminate the flow field.

Aerospace Engineering

Double-pulsed Nd:Yag Laser for PIV

Optics/Lenses to shape Laser Beam to Sheet

<u>https://www.youtube.com/watch?v=EL9J3Km6wxl</u>

Image Acquisition System: Cameras

• The widely used cameras for PIV:

 Photographic film-based cameras or digital cameras.

•Advantages of digital cameras:

• It is fully digitized

• Various digital techniques can be implemented for PIV image processing.

• Conventional auto- or crosscorrelation techniques combined with special framing techniques can be used to measure higher velocities.

- Disadvantages of digital cameras:
 - Low temporal resolution (defined by the video framing rate):
 - Low spatial resolution:

The Telegraph

HOW A DIGITAL CAMERA WORKS

- Function of Synchronizer:
 - To control the timing of the laser illumination and camera acquisition

Time Chart of the PIV Measurements ($\Delta t > 300 \ \mu s$)

- To send timing control parameter to synchronizer.
- To store the particle images and conduct image processing.

Aerospace Engineering

PIV image Processing

• Time-of-flight method: to measure the displacements of the tracer particles seeded in the flow in a fixed time interval.

a. T=t0

b. T=t0+4ms

Corresponding Velocity field

Single-frame technique

Multi-frame technique

Image Processing for PIV

• To extract velocity information from particle images.

Particle Tracking Velocimetry (PTV)

- 1. Find position of the particles at each images
- 2. Find corresponding particle image pair in the different image frame
- 3. Find the displacements between the particle pairs.
- 4. Velocity of particle equates the displacement divided by the time interval between the frames.

Low particle-image density case

Figure 2. The particle-tracking algorithm applied to the sequence of images (i-1) to (i+2). (a) Detected particles in frames (i) (light blue) and (i+1) (dark red) with overlapped centroids and velocity vectors. (b) Detected centroids of particles in all four frames with overlaid velocity vectors. Consecutive frames are colored from light to dark.

Particle Tracking Velocimetry (PTV)-2

- 1. Find position of the particles at each images
- 2. Find corresponding particle image pair in the different image frame

Search region for time step $t=t_3$

- 3. Find the displacements between the particle pairs.
- 4. Velocity of particle equates the displacement divided by the time interval between the frames.

Lagrangian Particle Tracking

• Four-frame-particle tracking algorithm

IOWA STATE UNIVERSITY Copyright © by Dr. Hui Hu @ Iowa State University. All Ri.

Image Processing for PIV

• To extract velocity information from particle images.

Correlation-based PIV methods

 $t=t_{0} \qquad t=t_{0}+\Delta t$ Correlation coefficient
function $R(p,q) = \frac{\int (f(x,y) - \overline{f})(g(x,y) - \overline{g})dv}{\sqrt{\int (f(x,y) - \overline{f})^{2}dv \int (g(x,y) - \overline{g})^{2}dv}}$

Cross Correlation Operation

Cross Correlation Operation

 $c(u,v) = \sum_{x,y} f(x,y)t(x-u,y-v)$

RELATION COEFFICIENT DISTRIB Cor ON

$$R(p,q) = \frac{\int (f(x,y) - f)(g(x,y) - \overline{g})dv}{\sqrt{\int (f(x,y) - \overline{f})^2 dv \int (g(x,y) - \overline{g})^2 dv}}$$

Post processing of PIV measurements

a. T=t0

b. T=t0+10µs

Corresponding Velocity field

Post processing: Detection of spurious vectors

Ideal case

a. $t=t_0$ b. $t=t_0+\Delta t$

Corresponding flow velocity field

Real experiment

Detection of spurious vectors

$$Um = \frac{U_{i+1,j-1} + U_{i+1,j} + U_{i+1,j+1} + U_{i,j-1} + U_{i,j+1} + U_{i-1,j-1} + U_{i-1,j} + U_{i-1,j+1} - U \max - U \min}{6}$$

$$Vm = \frac{V_{i+1,j-1} + V_{i+1,j} + V_{i+1,j+1} + V_{i,j-1} + V_{i,j+1} + V_{i-1,j-1} + V_{i-1,j} + V_{i-1,j+1} - V \max - V \min}{6}$$

$$R_value = \frac{\sqrt{(U_{i,j} - Um)^2 + (V_{i,j} - Vm)^2}}{\sqrt{Um^2 + Vm^2}} \approx \frac{\sqrt{(U_{i,j} - Um)^2 + (V_{i,j} - Vm)^2}}{\sqrt{Um^2 + Vm^2} + \varepsilon}$$

 ε : is a very small number, such as 0.00000001.

 $R_value > R_{thresh hold}$ for a spurious vector

Median test method

Estimation of differential quantities

$$\frac{dU}{d\mathbf{X}} = \begin{bmatrix} \frac{\partial U}{\partial X} & \frac{\partial V}{\partial X} & \frac{\partial W}{\partial X} \\ \frac{\partial V}{\partial Y} & \frac{\partial V}{\partial Y} & \frac{\partial W}{\partial Y} \\ \frac{\partial V}{\partial Y} & \frac{\partial V}{\partial Y} & \frac{\partial W}{\partial Y} \\ \frac{\partial V}{\partial Z} & \frac{\partial V}{\partial Z} & \frac{\partial W}{\partial Z} \\ \frac{\partial V}{\partial Z} & \frac{\partial V}{\partial Z} & \frac{\partial V}{\partial Z} & \frac{\partial W}{\partial Z} \\ \frac{\partial V}{\partial Z} & \frac{\partial V}{\partial Z} & \frac{\partial V}{\partial Z} & \frac{\partial V}{\partial Z} \\ \frac{\partial V}{\partial Z} & \frac{\partial V}{\partial Z} & \frac{\partial V}{\partial Z} & \frac{\partial V}{\partial Z} \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} + \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} + \frac{\partial V}{\partial Z} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Z} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Z} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Z} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Z} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Z} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Z} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Z} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Y} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Y} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Y} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{\partial V}{\partial Y} \right) \\ \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{1}{2} \frac{\partial V}{\partial X} \right) & \frac{1}{2} \left(\frac{\partial W}{\partial Y} - \frac{1}{2} \frac{\partial W}{\partial Y} \right) \\ \frac{\partial V}{\partial X} & \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{1}{2} \frac{\partial V}{\partial X} \right) \\ \frac{\partial V}{\partial X} & \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{1}{2} \frac{\partial V}{\partial Y} \right) \\ \frac{\partial V}{\partial X} & \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{1}{2} \frac{\partial V}{\partial Y} \right) \\ \frac{\partial V}{\partial Y} & \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{1}{2} \frac{\partial V}{\partial Y} \right) \\ \frac{\partial V}{\partial X} & \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{1}{2} \frac{\partial V}{\partial Y} \right) \\ \frac{\partial V}{\partial Y} & \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{1}{2} \frac{\partial V}{\partial Y} \right) \\ \frac{\partial V}{\partial Y} & \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{1}{2} \frac{\partial V}{\partial Y} \right) \\ \frac{\partial V}{\partial Y} & \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{1}{2} \frac{\partial V}{\partial Y} \right) \\ \frac{\partial V}{\partial Y} & \frac{1}{2} \left(\frac{\partial V}{\partial Y} - \frac{1}{2} \frac{\partial V}{\partial Y} \right) \\ \frac{\partial V}{$$

Operator	Implementation	Accuracy	Uncertainty
Forward difference	$\left(rac{\mathrm{d}f}{\mathrm{d}x} ight)_{i+1/2}pproxrac{f_{i+1}-f_i}{\Delta X}$	$O(\Delta X)$	$\approx 1.41 \frac{\epsilon_U}{\Delta X}$
Backward difference	$\left(rac{\mathrm{d}f}{\mathrm{d}x} ight)_{i-1/2}pproxrac{f_i-f_{i-1}}{\varDelta X}$	$O(\Delta X)$	$\approx 1.41 \frac{\epsilon_U}{\Delta X}$
Center difference	$\left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)_i pprox rac{f_{i+1}-f_{i-1}}{2\Delta X}$	$O(\Delta X^2)$	$pprox 0.7 rac{\epsilon_U}{\Delta X}$
Richardson extrapol.	$\left(rac{\mathrm{d}f}{\mathrm{d}x} ight)_i pprox rac{f_{i-2}-8f_{i-1}+8f_{i+1}-f_{i+2}}{12\Delta X}$	$O(\Delta X^3)$	$pprox 0.95 rac{\epsilon_U}{\Delta X}$
Least squares	$\left(rac{\mathrm{d}f}{\mathrm{d}x} ight)_i pprox rac{2f_{i+2}+f_{i+1}-f_{i-1}-2f_{i-2}}{10\Delta X}$	$O(\Delta X^2)$	$pprox 1.0 rac{\epsilon_U}{\Delta X}$

 $\mathrm{d} \boldsymbol{U}$

X (mm)

Estimation of Vorticity distribution

ts: <u>Reserved!</u> AerE AerE Aerospace Engineering

Estimation of Vorticity distribution

• Stokes Theorem:

$$\Gamma = -\oint_{C} \vec{V} \, d\vec{l} = - \oiint_{S} \vec{\varpi} \bullet d\vec{A}$$
$$\Rightarrow \sigma_{z} = \frac{\Gamma_{x-y}}{dA}$$

$$(\omega_{Z})_{i,j} \stackrel{\widehat{=}}{=} \frac{\Gamma_{i,j}}{4\Delta X \Delta Y}$$
with
$$\Gamma_{i,j} = \frac{1}{2} \Delta X (U_{i-1,j-1} + 2U_{i,j-1} + U_{i+1,j-1})$$

$$+ \frac{1}{2} \Delta Y (V_{i+1,j-1} + 2V_{i+1,j} + V_{i+1,j+1})$$

$$- \frac{1}{2} \Delta X (U_{i+1,j+1} + 2U_{i,j+1} + U_{i-1,j+1})$$

$$- \frac{1}{2} \Delta Y (V_{i-1,j+1} + 2V_{i-1,j} + V_{i-1,j-1})$$

Fig. 6.10. Vorticity field estimates obtained from PIV velocity fields by the circulation method: (left) the velocity field is twice oversampled, (right) four times oversampled. The contours of this laminar vortex pair are known to be smooth such that the nonuniformities are due to measurement noise

Vorticity distribution Examples

Ensemble-averaged quantities

- Mean velocity components in x, y directions: $U = \sum_{i=1}^{N} u_i / N$ $V = \sum_{i=1}^{N} v_i / N$
- Turbulent velocity fluctuations: $\overline{u'} = \sqrt{\sum_{i=1}^{N} (u_i U)^2 / N} \quad \overline{v'} = \sqrt{\sum_{i=1}^{N} (v_i V)^2}$

• Turbulent Kinetic energy distribution:

$$TKE = \frac{1}{2}\rho(\overline{u'}^2 + \overline{v'}^2)$$

• Reynolds stress distribution:

$$\tau = -\rho \overline{u'v'} = -\rho \sum_{i=1}^{N} \frac{(u_i - U)(v_i - U)}{N}$$

Ensemble-averaged quantities

Pressure field estimation

Figure 6. Instantaneous pressure field around a circular cylinder. (a) Stationary cylinder, (b) low-frequency oscillation ($S_f = 0.2, V_r = 2$) and (c) high-frequency oscillation ($S_f = 1, V_r = 2$).

Integral Force estimation

$$\frac{\partial}{\partial t} \int_{C.V.} \rho \vec{V} \, d\Psi + \int_{C.S.} (\rho \vec{V} \vec{V}) \bullet d\vec{A} = \int_{C.S.} \tilde{P} \bullet d\vec{A} + \int_{C.V.} \rho \vec{f} \, d\Psi + \vec{F}$$

AerE344 Lab # 10: Pressure Measurements in a de Laval Nozzle

Tank with compressed air

Test secti<u>on</u>

Tap No.	Distance downstream of throat (inches)	Area (Sq. inches)
1	-4.00	0.800
2	-1.50	0.529
3	-0.30	0.480
4	-0.18	0.478
5	0.00	0.476
6	0.15	0.497
7	0.30	0.518
8	0.45	0.539
9	0.60	0.560
10	0.75	0.581
11	0.90	0.599
12	1.05	0.616
13	1.20	0.627
14	1.35	0.632
15	1.45	0.634

1st, 2nd and 3rd critic conditions

IOWA STATE UNIVERSITY Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

 P_0 increasing

1st, 2nd, and 3rd critical conditions

AerE344 Lab#10: Pressure Measurements in a de Laval Nozzle

- 1. Under-expanded flow
- 2. 3rd critical
- 3. Over-expanded flow with oblique shocks
- 4. 2nd critical
- 5. Normal shock existing inside the nozzle
- 6. 1st critical

Required Plots:

- Plots of the measured pressure (static and total pressure) as a function of distance along the nozzle axis for the cases 2, 4, 5 and 6.
- Plots of the theoretically predicted pressure (static and total pressure) as a function of distance along the nozzle axis for the cases 2, 4, 5 and 6.
- Plots with the measured and predicted values of the wall pressure distribution on the same graphs for the cases 2, 4, 5 and 6 for comparison.
- Plots of the theoretically predicted and measured Mach number as a function of distance along the nozzle axis for the cases 2, 4, 5 and 6.

Prediction of the Pressure Distribution within a De Laval Nozzle by using Numerical Approach

d. To calculate Mach number given the Mach-Area relation, can use Newton iteration to find M

$$F = \left(\frac{A}{A^*}\right)^2 = M^2 \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2}M^2\right)\right]^{\frac{\gamma+1}{\gamma-1}}$$
(2.8)

$$F' = \frac{dF}{dM} = \frac{2}{M^3} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right]^{\frac{\gamma + 1}{\gamma - 1}} - \frac{2}{M} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right]^{\frac{2}{\gamma - 1}}$$
(2.9)

$$M^{n+1} = M^n - \frac{F}{F'}$$
(2.10)

• Using the area ratio, the Mach number at any point up to the shock can be determined:

$$\left(\frac{A}{A^*}\right)^2 = \frac{1}{M^2} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2}M^2\right)\right]^{\frac{\gamma+1}{\gamma-1}}$$

• After finding Mach number at front of shock, calculate Mach number after shock using:

$$M_{2}^{2} = \frac{1 + \frac{\gamma - 1}{2} M_{1}^{2}}{\gamma M_{1}^{2} - \frac{\gamma - 1}{2}}$$

• Then, calculate the A_2^*

$$\left(A_{2}^{*}\right)^{2} = M_{2}^{2}A_{s}^{2}\left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2}M_{2}^{2}\right)\right]^{-\frac{\gamma+1}{\gamma-1}}$$

which allows us calculate the remaining Mach number distribution

$$\left(\frac{A}{A_{2}^{*}}\right)^{2} = \frac{1}{M^{2}} \left[\frac{2}{\gamma+1} \left(1+\frac{\gamma-1}{2}M^{2}\right)\right]^{\frac{\gamma+1}{\gamma-1}}$$

Prediction of the Pressure Distribution within a De Laval Nozzle by using Shock Table Method

Tap No.	Distance downstream of throat (inches)	Area (Sq. inches)	
1	-4.00	0.800	
2	-1.50	0.529	
3	-0.30	0.480	
4	-0.18	0.478	
5	0.00	0.476	
6	0.15	0.497	
7	0.30	0.518	
8	0.45	0.539	
9	0.60	0.560	
10	0.75	0.581	
11	0.90	0.599	
12	1.05	0.616	
13	1.20	0.627	
14	1.35	0.632	
15	1.45	0.634	

Method #1: To solve the equation numerically

$(A)^2$	1	2 (1	$\gamma - 1$	$\left[\frac{\gamma+1}{\gamma-1}\right]^{\frac{\gamma+1}{\gamma-1}}$
$\overline{A^*}$	$=\overline{M^2}$	$\left[\frac{\gamma+1}{\gamma+1}\right]^{1+1}$	2	

- Method #2: To use Isentropic Flow properties table (Appendix-A of Anderson's textbook)
 - If the shockwave is located at position of tab#12:

Tap No.	A/A*	Mach #	P/P_t	Р	Pg
1	1.681	0.37	0.9098		
2	1.111	0.67	0.7401		
3	1.008	0.97	0.5469		
5	1.000	1.00	0.5283		
7	1.088	1.35	0.3370		
9	1.176	1.50	0.2724		
11	1.258	1.61	0.2318		
pre-shock	1.294	1.64	0.2217		
post-shock					
13					
15					

Examples of the previous lab reports

