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Lecture # 11: Particle image velocimetry
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Sources/ Further reading:
Raffel, Willert, Wereley, Kompenhans, “Particle image velocimetry: A practical guide” 2nd ed.
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Particle-based Flow Diagnostic Techniques

• Seeded the flow with small particles (~ µm in size)

• Assumption: the particle tracers move with the same velocity as local 
flow velocity!

Flow velocity
Vf

Particle velocity
Vp

=

Measurement of 
particle velocity

• Smoke visualization
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Particle Image Velocimetry (PIV) technique

• Time-of-flight method: to measure the displacements of the tracer particles seeded 

in the flow in a fixed time interval. 
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a. T=t0 b. T=t0+10µs Corresponding Velocity field
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PIV System Setup

Illumination system

(Laser and optics)

camera

Synchronizer

seed flow with

tracer particles

Host computer

Particle tracers: track the fluid movement. 

Illumination system: illuminate the flow field in the interest region.

Camera: capture the images of the particle tracers.

Synchronizer: control the timing of the laser illumination and camera acquisition.

Host computer:  to store the particle images and conduct image processing. 
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Tracer Particles for PIV 

• Tracer particles should be neutrally buoyant and small enough to follow the flow perfectly.

• Tracer particles should be big enough to scatter the illumination lights efficiently .

• The scattering efficiency of trace particles also strongly depends on the ratio of the  refractive index of the 
particles to that of the fluid. 
For example:  the refractive index of water is considerably larger than that of air.  The scattering of particles in 
air is at least one order of magnitude more efficient than the same particles size in water.

h

Incident light
Scattering light

a). d=1μm b). d=10μm c). d=30μm
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• A primary source of measurement error is the influence of gravitational forces when the density 
of the tracer particles is different to the density of work fluid.

• The velocity lag of a particle in a continuously acceleration fluid will be:

Tracer Particles for PIV
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• Tracers for PIV measurements in liquids (water):

• Polymer particles (d=10~100 m, density = 
1.03 ~ 1.05 kg/cm3)

• Silver-covered hollow glass beams (d =1 ~10 
m, density = 1.03 ~ 1.05 kg/cm3)

• Fluorescent particle for micro flow  
(d=200~1000 nm, density = 1.03 ~ 1.05 
kg/cm3).

•Quantum dots (d= 2 ~ 10 nm)

• Tracers for PIV measurements in gaseous flows:

• Smoke …

• Droplets, mist, vapor…

• Condensations ….

• Hollow silica particles (0.5 ~ 2 μm in 
diameter and 0.2 g/cm3 in density for PIV 
measurements in combustion applications.

•Nanoparticles of combustion products

Tracer Particles for PIV

roduct
Polyamide particles, 55 µm, 1.2g/cm³
Polyamide particles, 100 µm, 1.1 g/cm³
Polyamide particles HQ, 20 µm, 1.03g/cm³
Polyamide particles HQ, 60 µm, 1.03g/cm³

• Fluorescent particle 

• ~ 1 µm droplets in airflow
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illumination system

• The illumination system of PIV is always composed of light source and optics.

• Lasers: such as Argon-ion laser and Nd:YAG Laser, are widely used as light source in PIV 
systems due to their ability to emit monochromatic light with high energy density which can 
easily be bundled into thin light sheet for illuminating and recording the tracer particles 
without chromatic aberrations.

• Optics:  always consisted by a set of cylindrical lenses and mirrors to shape the light 
source beam into a planar sheet to illuminate the flow field.

laser optics

Laser beam Laser sheet
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Double-pulsed Nd:Yag Laser for PIV
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Optics/Lenses to shape Laser Beam to Sheet

• https://www.youtube.com/watch?v=EL9J3Km6wxI
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Image Acquisition System: Cameras

• The widely used cameras for PIV: 

• Photographic film-based cameras 
or digital cameras.

•Advantages of digital cameras: 

• It is fully digitized

• Various digital techniques can be 
implemented for PIV image 
processing.

• Conventional auto- or cross-
correlation techniques combined 
with special framing techniques can 
be used to measure higher 
velocities.

• Disadvantages of digital cameras:

• Low temporal resolution (defined 
by the video framing rate): 

• Low spatial resolution:



Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

Synchronizer 

• Function of Synchronizer: 

• To control the timing of the laser illumination and camera acquisition
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t for PIV measurement (t > 300 µs)

External Lamp #1 

Trigger IN

Laser Pulse 1

Camera exposure

External Lamp #2 

Trigger IN

Laser Pulse 2

200 µs

200 µs

TTL Signals from DG535

1st exposure 2nd exposure

<1 µs delay
~200 ns dead time

<1 µs delay>200 µs

>200 µs

~ 2 ms delay

Time Chart of the PIV Measurements (t > 300 µs)
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Host computer

• To send timing control parameter to synchronizer.  

• To store the particle images and conduct image processing.
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PIV image Processing

• Time-of-flight method: to measure the displacements of the tracer particles 

seeded in the flow in a fixed time interval. 

t=t0

t

L
U




=

t= t0+t
L

a. T=t0 b. T=t0+4ms Corresponding Velocity field
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Single-frame technique

particle
Streak line

V
L=V*t

single-pulse Multiple-pulse

Particle streak velocimetry

http://www.pbase.com/andrej_z/weekly_assignment
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Multi-frame technique
a. T=t0

b. T=t1

c. T=t2

a. T=t3
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Image Processing for PIV

• To extract velocity information from particle images.

t=t0 t=t0+4ms

A typical PIV raw image pair
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Particle Tracking Velocimetry (PTV)

t=t0 t=t0+t

Low particle-image
density case

1. Find position of the particles at each 
images

2. Find corresponding particle image  pair in 
the different image frame 

3. Find the displacements between the 
particle pairs.

4. Velocity of particle equates the 
displacement divided by the time interval 
between the frames.
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Particle Tracking Velocimetry (PTV)-2

Particle position of time step t=t1

Search region for 

time step t=t4

Search region for time step t=t3

Search region for time step t=t2

• Four-frame-particle tracking algorithm 

1. Find position of the particles at each 
images

2. Find corresponding particle image  pair 
in the different image frame 

3. Find the displacements between the 
particle pairs.

4. Velocity of particle equates the 
displacement divided by the time 
interval between the frames.

PTV results

a. T=t0

b. T=t1

c. T=t2

a. T=t3
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Image Processing for PIV

• To extract velocity information from particle images.

t=t0 t=t0+4ms

A typical PIV raw image pair
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Correlation-based PIV methods

t=t0 t=t0+t
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Cross Correlation Operation

https://www.youtube.com/watch?v=cbZUnuyxcVs

( )
dvgyxgdvfyxf

dvgyxgfyxf
qpR

22

)),(()),((

)),(()),((
,





−−

−−
=



Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

Cross Correlation Operation

Signal A: 

Signal B: 
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CORRELATION COEFFICIENT DISTRIBUTION
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Post processing of PIV measurements

a. T=t0 b. T=t0+10µs Corresponding Velocity field
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Post processing: Detection of spurious vectors
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• Ideal case • Real experiment
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Detection of spurious vectors
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• Regular method

• Median test method
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Estimation of differential quantities
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Estimation of Vorticity distribution
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Estimation of Vorticity distribution

• Stokes Theorem: 
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Vorticity distribution Examples
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Ensemble-averaged quantities

• Mean velocity components in x, y directions: 

•Turbulent velocity fluctuations:

• Turbulent Kinetic energy distribution:

• Reynolds stress distribution:
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Ensemble-averaged quantities
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Pressure field estimation
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Integral Force estimation
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Tank with compressed air
Test section

AerE344 Lab # 10: Pressure Measurements in a de Laval Nozzle

Tap No. Distance downstream of throat (inches) Area (Sq. inches)

1 -4.00 0.800
2 -1.50 0.529
3 -0.30 0.480
4 -0.18 0.478
5 0.00 0.476
6 0.15 0.497
7 0.30 0.518
8 0.45 0.539
9 0.60 0.560
10 0.75 0.581
11 0.90 0.599
12 1.05 0.616
13 1.20 0.627
14 1.35 0.632
15 1.45 0.634
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1st, 2nd and 3rd critic conditions
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1st, 2nd, and 3rd critical conditions

Under-
expanded 

flow

Flow close to 
3rd critical

Over-
expanded 

flow

2nd critical –
shock is at nozzle 

exit

Over-expanded 
flow with shock 
between nozzle 
exit and throat

1st critical – shock 
is almost at the 
nozzle throat.
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AerE344 Lab#10: Pressure Measurements in a de Laval Nozzle

Required Plots:

• Plots of the measured pressure (static and total pressure) as a function of distance along the nozzle axis for the 
cases 2, 4, 5 and 6.

• Plots of the theoretically predicted pressure (static and total pressure) as a function of distance along the 
nozzle axis for the cases 2, 4, 5 and 6.

• Plots with the measured and predicted values of the wall pressure distribution on the same graphs for the 
cases 2, 4, 5 and 6 for comparison.  

• Plots of the theoretically predicted and measured Mach number as a function of distance along the nozzle axis 
for the cases 2, 4, 5 and 6.

1. Under-expanded flow

2. 3rd critical

3. Over-expanded flow 

with oblique shocks

4. 2nd critical

5. Normal shock existing 

inside the nozzle

6. 1st critical
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❑ Prediction of the Pressure Distribution within a De Laval Nozzle

by using Numerical Approach
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• Using the area ratio, the Mach number at any 

point up to the shock can be determined:

• After finding Mach number at front of shock, 

calculate Mach number after shock using:
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❑ Prediction of the Pressure Distribution within a De Laval Nozzle

by using Shock Table Method

• If the shockwave is located at position of tab#12:

• Method #2:  To use Isentropic Flow properties table (Appendix-A of Anderson’s textbook)

• Method #1: To solve the equation numerically
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Examples of the previous lab reports

Theoretical Data - Gauge Pressure vs. Position
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