

# Wind Turbine Aeromechanics and Wind Farm Aerodynamics

#### Dr. Hui HU

**Professor and Director** 

Advanced Flow Diagnostics and Experimental Aerodynamics Laboratory Department of Aerospace Engineering, Iowa State University 2251 Howe Hall, Ames, IA 50011-2271

Email: <u>huhui@iastate.edu</u>

IOWA STATE UNIVERSITY



## Wind Energy Production and Wind Turbine Installations in USA





- US Department of Energy sets up the targets of 20% of US electricity from wind energy by 2030; and 35% by 2050 (~8.4% by 2020).
- U.S. Energy Information Administration, *Electric Power Monthly*



# **Technical Challenges Related to Wind Energy**



Note: LCOE is estimated in good to excellent wind resource sites (typically those with average wind speeds of 7.5 m/s or higher), excl the federal PTC. Hub heights reflect typical turbine model size for the time period.



- STATE
- Schreck S, Lundquist J, and Shaw W (2008) U.S. Department of energy workshop report: research needs for wind resource characterization. Technical Report, NREL/TP-500-43521
   IOWA STATE UNIVERSITY

#### Aerodynamics and Atmospheric Boundary Layer (AABL) Wind Tunnel @ Iowa State University



AABL (Aero/ABL) Gust Tunnel

- Aero Test Section: 8 ft by 6 ft [110 mph]
- ABL Test Section: 8 ft by 7.25 ft [85 mph]





| R | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Parameter | R<br>(mm) | H<br>(mm) | d <sub>pole</sub><br>(mm)                 | d <sub>nacelle</sub><br>(mm) | α<br>(deg.) | a<br>(mm) | a1<br>(mm) | A2<br>(mm) |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-------------------------------------------|------------------------------|-------------|-----------|------------|------------|
| a | $\int \int d_{narelle}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dimension | 140       | 225       | <u>18</u>                                 | 18                           | 50          | 78        | 15         | <b>50</b>  |
| H | $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | 127 mm    |           |           | 03500<br>03500<br>03500<br>03500<br>03500 |                              |             |           |            |            |

1:320 scaled model to simulate a 2MW wind turbine with 90m rotor blades

ERS-100 turbine blade design by TPI

#### IOWA STATE UNIVERSITY

# **Experimental Setup to Study Wind Turbine Aeromechanics**



# Near Wake Measurement Results at Tip-Speed Ratio, $\lambda$ =3.0





Turbulence intensity r.m.s (u)/U<sub>o</sub>







Turbulence intensity r.m.s.  $(v)/U_{o}$ 



Normalized Turbulence<sup>(u'u'+v'v')</sup> kinetic energy  $2U_{o}^{2}$ 

# **Phase-Locked PIV Measurement Results at Tip-Speed Ratio**, $\lambda$ =3.0



#### **Effects of Tip-speed Ratio on the Wake Vortex Structures**





#### Wake Profiles at X/D=0.5 Downstream of the Wind Turbine Model



(Hu et al., Experiments in Fluids, Vol. 52, No. 5, pp1277-1294, 2012)

#### **Wind Turbine Failures**



(202 WT in operation + 198 in construction)

#### *1405* Total number of accidents:

- Human fatalities & injuries: 136+145
- **Blade failure:** 265
- Fire: 202
- Structural failure: 138 34
- *Ice throw:*
- Transport: 113
- Environmental (bird death): 128 282
- **Others:**













#### **Dynamic Wind Loads Acting on Wind Turbines**



# Wind Loads Acting on Various Components of Wind Turbine



IOWA STATE UNIVERSITY

- Velocity at hub height  $U_{Hub} = 4.8 \text{ m/s}$
- Chord Reynolds number, Re≈7,200
- Tip-speed-ratio,  $\lambda = 4.6$

-

### Wind Loads Acting on Wind Turbine at Different Phase Angles



## Wind Farm Aerodynamics: Wake Interferences of Multiple Wind Turbines



- Offshore wind farms:
  - Wind turbine sitting on flat ocean surface.
  - High wind speed with relatively low ambient turbulence.
  - Near neutral atmospheric boundary layer winds.
- Onshore wind farms:
  - Atmospheric stability is rarely close to near-neutral, varying significantly between highly convective daytime conditions and highly stable nocturnal conditions.
  - Much higher turbulence level.
  - Wind turbine sitting over complex terrains.
- Most of the existing wind farm design criterion and standards are derived based on the researches of offshore wind farms. They may not be applicable for onshore wind farms.







# Atmospheric Boundary Layer Winds: Offshore vs. Onshore Wind Farms

25



 $U(z) = U_{Z_G} \left(\frac{Z}{Z_G}\right)^{\alpha}$ 

| Terrain<br>Category | Terrain description                                            | Gradien<br>t height,<br>Z <sub>G</sub> (m) | Roughness<br>length, Z <sub>o</sub><br>(m) | Wind Speed exponent, $\alpha$ |
|---------------------|----------------------------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------|
| 1                   | Open sea, ice, tundra<br>desert                                | 250                                        | 0.001                                      | 0.11                          |
| 2                   | Open country with low scrub or scattered trees                 | 300                                        | 0.03                                       | 0.15                          |
| 3                   | Suburban area, small<br>towns, wooded areas                    | 400                                        | 0.3                                        | 0.25                          |
| 4                   | Tall buildings, city<br>centers, developed<br>industrial areas | 500                                        | 3.0                                        | 0.36                          |





High turbulence intensity case (18% at hub height)



#### The Effects of ABL Turbulence Level on the Wake Vortex Dissipation



#### The Effects of ABL Turbulence Level on the Wake Characteristics



#### The Effects of ABL Turbulence Level on the Wake Characteristics



# The Effects of Oncoming Turbulence Level on the Wake Characteristics



#### Wake Interferences among Multiple Wind Turbines



turbulence inflow case

Velocity profiles in the wake for high turbulence inflow case Power outputs of the wind turbines in a line DWA STATE UNIVERSIT

# **Effects of Terrain Topology on the Performances of Wind Turbines**

- Quantifying the flow characteristics of surface winds (both mean and turbulence characteristics) over a flat surface (baseline case) and complex terrains for the optimal site design of turbines.
- Characterizing the turbulent wake flows and dynamic wind loads (both forces and moments) as well as their relationships for single wind turbine sited over a flat surface (baseline case) and complex terrains for the optimal mechanical design of wind turbines.
- Investigating the effects of array spacing and layout on the wake interferences among multiple wind turbines sited over a flat surface (baseline case) and complex terrains for higher total power yield and better durability of wind turbines.



Wind turbines over complex terrains





#### **Effects of Complex Terrains on the Wind Turbine Performance**







#### IOWA STATE UNIVERSITY

#### **Performances of Single Wind Turbine Sited over Complex Terrains**



wind turbine sited on flat surface)

#### **Power Outputs of Wind Turbines over Flat Surface vs. Complex Terrains**



| Wind turbine position                                                                                           | pos1 | pos2 | pos3 | pos4 | pos5 | Total               |
|-----------------------------------------------------------------------------------------------------------------|------|------|------|------|------|---------------------|
| Power output flat surface<br>(normalized with power output of single<br>wind turbine sited on flat surface )    | 1.00 | 0.85 | 0.79 | 0.73 | 0.72 | 4.09                |
| Power output low slope hill<br>(normalized with power output of single<br>wind turbine sited on flat surface )  | 0.91 | 0.82 | 1.69 | 1.02 | 0.73 | 5.17<br>(~26% more) |
| Power output high slope hill<br>(normalized with power output of single<br>wind turbine sited on flat surface ) | 0.92 | 0.63 | 1.33 | 0.04 | 0.19 | 3.11<br>(~24% less) |



# **Performances of Wind Turbines over Complex Terrains**



| Wind turbine position                                                                                         | pos1 | pos2 | pos3 | pos4 | pos5 |
|---------------------------------------------------------------------------------------------------------------|------|------|------|------|------|
| Power output wind turbines<br>(normalized with power output of single<br>wind turbine sited on flat surface ) | 0.90 | 1.91 | 0.67 | 2.13 | 0.91 |

| Wind      | turbine position                              | pos1  | pos2  | pos3  | pos4  | pos5  |
|-----------|-----------------------------------------------|-------|-------|-------|-------|-------|
|           | Thrust Coefficient $C_T$                      | 0.117 | 0.282 | 0.093 | 0.298 | 0.131 |
| Two hills | Bending moment<br>Coefficient C <sub>MZ</sub> | 0.124 | 0.258 | 0.096 | 0.284 | 0.130 |

IOWA STATE UNIVERSITY



# **Root Loss and Wake Loss of Wind Turbines**

#### • Root Loss (~5%):

- Inner 25% of rotor blades are designed to provide structural integrity.
- The aerodynamically poor design at the root region would result in a "dead" wind zone where virtually no energy is extracted from the incoming wind.
- Wake Loss ( up to 40%):
  - Aerodynamic interaction between wind turbines will results in significant energy loss ( up to 40%).
  - Wake loss is due to the ingestion of low-momentum air in wakes from upstream turbines by the downstream turbines.





# **Dual-Rotor Wind Turbine Models and Counter-Rotating Rotor Concept**



#### SRWT vs. Co-Rotating DRWT vs. Counter-rotating DRWT



#### SRWT vs. Co-Rotating DRWT vs. Counter-rotating DRWT





ITY

# **Stereo-PIV measurement Results: SRWT and DRWTs**



# **Stereo-PIV measurement Results: SRWT and DRWTs**



#### **SRWT vs. Co-Rotating DRWT vs. Counter-rotating DRWT**



# SRWT vs. Co-rotating DRWT vs. Counter-rotating DRWT



# **Dynamic wind loads for SRWT and DRWTs**



# **Comparison of SRWT and DRWT: Thrust Force and Bending Moment**

 $(\mathbf{C}_{\mathbf{Mv}})$ 

0.42

0.44

0.43

σC<sub>Mv</sub>

0.133

0.178

0.151

IVERSI





• Surge motion

• Pitch motion

• Heave motion

**IOWA STATE UNIVERSITY** 

# An Experimental Study on the Effects of Wave-Induced Base Motions on the Aeromechanic Performance of Floating Wind Turbines

Morteza Khosravi, <u>Hui Hu</u> (🖂)

Department of Aerospace Engineering Iowa State University 2251 Howe Hall, Ames, IA 50011-2271 ⊠ Email: <u>huhui@iastate.edu</u>



#### **Onshore and Offshore Wind Energy in USA**



• The U.S. wind power installed capacity is over 65 GW as of the end of 2014, entirely based on onshore wind farms.

http://www.nrel.gov/gis/wind.html





#### **Offshore Wind Turbines**

- Offshore wind technology is divided into three main categories depending on the depth of the water where the turbines will be placed, as follow:
  - Shallow water: Any water depth up to 25 meters.
  - Transitional water: Water depths between 25 to 50 meters.
  - **Deep water:** Any water depth greater than 50 meters. (Tension-Leg Platform (TLP), Spar Buoy, Semi-Submersible



#### **Aeromechanics of Offshore Wind Turbines**



• Sebastian & Lackner (2013), "Characterization of the unsteady aerodynamics of offshore floating wind turbines," Wind Energy, 16(3), pp. 339–352.

Pitcl

700

400

400 Time [s] 500

Angular Rotation [degrees

100

800

#### **Simulated Base Motions of a Floating Wind Turbine**



Test model turbine mounted on a translational stage to simulate wave-induced base motions of floating offshore wing turbine







**Combined** motion

•



• Surge motion

• Pitch motion

• Heave motion

# **Bottom Fixed WT vs. the WT in Surge Motion**



# **Effects of Surge Motion on the Wake Characteristics**



#### Wake Characteristics of the Wind Turbine in Surge Motion



# Power Outputs of the Bottom Fixed WT vs. the WT in Pitch Motion



• Pitch motion

|                                    | Bottom fixed turbine | Pitch motion |
|------------------------------------|----------------------|--------------|
| Thrust coefficient: C <sub>T</sub> | 0.36                 | 0.37         |
| R.M.S. value : $\sigma_{c\tau}$    | 0.14                 | 0.77         |



#### **Effects of Pitch Motion on the Wake Characteristics**



#### Wake Characteristics of the Wind Turbine in Pitch Motion



#### **Bottom Fixed WT vs. the WT in Heave Motion**



|                                       | Bottom fixed turbine | Heave motion |
|---------------------------------------|----------------------|--------------|
| Thrust coefficient: C <sub>T</sub>    | 0.36                 | 0.48         |
| <b>R.M.S. value</b> : σ <sub>cτ</sub> | 0.14                 | 0.96         |



#### **Effects of Heave Motion on the Wake Characteristics**



## r Wake Characteristics of the Wind Turbine in Combined Motion



## **Bottom Fixed WT vs. the WT in Combined Motion**



|                 | <b>Base Fixed Wind Turbine</b> | Turbine in combined motions |
|-----------------|--------------------------------|-----------------------------|
| Mean loading    | 0.36                           | <mark>0.4</mark> 7          |
| Fatigue loading | 0.14                           | 0.96                        |



# **Acknowledgements**

- Collaborators, postdocs, visiting scholars and graduate students:
  - Collaborators:
    P. Sarkar; P. Durbin; A. Rothmayer; M. Koochesfahani; ZJ Wang; R. Wlezien, S. Zhang
  - Postdocs & scholars: Drs. R. Waldman; W. Tian; F. Chen; J. Guo
  - Current Graduate Students: A. Ozbay (PhD); K. Zhang (PhD); J. Ryon (PhD); Z. Wang (PhD); Y. Liu (PhD); W. Zhou(PhD); K. Morteza (PhD); A. Bolding(PhD); P. Premaratne (PhD).
    - Former Postdocs&Scholar: B. Johnson, W. Chen, W. Yuan, W.H. Ma; Drs. Z. Jin; H. Ma, Z. Yang
    - Former PhD Students: M. Zhang (PhD); M. Yu (PhD), Z. Yang (PhD); Z. Jin (PhD); N. Cooper (PhD)
      - Dvorak; T. Grager; A.Kumar; H. Igarashi; L. Clemens; J. Murphy; K. Varma; M. Tamai.
  - Our research work is funded by:

Former MS Students:





Hu Lab's Summer BBQ Party on 08/24/2015



# Thank You Very Much for Your Time!





IOWA STATE UNIVERSITY

