AerE 344: Undergraduate Aerodynamics and Propulsion Laboratory

Lab Instructions

Lab #08: Measurements of the Boundary Layer over a Flat Plate

Instructor: Dr. Hui Hu

Department of Aerospace Engineering

Iowa State University

Office: Room 2251, Howe Hall

Tel: 515-294-0094

Email: huhui@iastate.edu

AerE344 Lab 08: Measurements of the Boundary Layer over a Flat Plate

The objective of this lab will be to measure the boundary layer profile on a flat plate using a Pitot rake. You will measure the profiles at 10 difference streamwise locations assigned to your group.

What you will have available to you in the lab:

- A Pitot probe in the wind tunnel for acquiring dynamic pressure throughout your tests.
- A thermometer and barometer for observing ambient lab conditions (for calculating atmospheric density).
- A computer for data acquisition.
- Three DSA units (48 channels) for the pressure measurements.
- A Pitot rake for velocity profile measurements.
- A traverse systeme. This traverse allows motion in the x-direction (streamwise) and the y-direction (vertical).

What you will do during the lab time:

- Conduct your wind tunnel experiments with incoming flow at ~ 10 m/s acquire velocity profiles at positions through the flat plate boundary layer at 10 STREAMWISE POSITIONS assigned to your group by the TA.
- **IMPORTANT**: Estimate what the thickness of the boundary layer is at your assigned streamwise locations.
 - o Assume transition occurs for Reynolds numbers of $\mathrm{Re}_x = (\rho V_\infty x)/\mu = 10^5$ where μ , the dynamic viscosity, can be assumed to be $1.8 \times 10^{-5} \, \frac{Ns}{m^2}$
 - $\circ \quad \frac{\delta}{x} = \frac{5.0}{\sqrt{\text{Re}_x}} \text{ for laminar flow}$
 - $\circ \quad \frac{\delta}{x} = \frac{0.37}{\text{Re}_x^{\frac{1}{5}}} \text{ for turbulent flow}$

AerE344 Lab 08: Measurements in the Boundary Layer over a Flat Plate

Writeup Guidelines

The report for this project will be formal lab report.

You will be examining how the experimental data line up with theoretical and analytical predictions.

Required Plots:

- 1) Mean velocity profiles at 10 streamwise locations based on your measurements. Plot $\frac{y}{\delta}$ vs $\frac{U}{U_{\infty}}$.
- 2) Based on the velocity measurement results, find and plot the experimental values of $\delta(x)$ and $\theta(x)$. The plot of $\delta(x)$ should include comparison to the analytical expressions below:
 - a. Calculate δ from theory for both laminar and turbulent regions (assume transition occurs for $Re = 5 \times 10^5$)

i.
$$\frac{\delta}{x} = \frac{5.0}{\sqrt{\text{Re}_x}}$$
 for laminar flow

ii.
$$\frac{\delta}{x} = \frac{0.37}{\text{Re}_{x}^{\frac{1}{5}}}$$
 for turbulent flow

- 3) Based on the measured momentum thickness and the integral momentum equations:
 - i. Estimate local shear stress coefficient, $c_{\scriptscriptstyle f}$, as a function of x
 - ii. Find the drag coefficient $C_{\scriptscriptstyle D}$

NOTE:

The local shear stress coefficient is defined as: $c_f = \frac{\tau_w}{\frac{1}{2}\rho U_e^2}$

It is related to the momentum thickness as follows: $c_f = 2\frac{d\theta}{dx}$

An empirical relation you may use for comparison is: $c_f = \frac{0.0583}{(\text{Re}_x)^{0.2}}$

The *drag coefficient* is then the friction drag that results from all the surface upstream of the measurement point and not just the local shear stress.

This drag coefficient is defined as: $C_d = \frac{D}{\frac{1}{2}\rho U_e^2 A}$ where D is the drag force and A is the surface

area.

This drag coefficient is related to the momentum thickness as follows: $C_d = 2\frac{\theta}{L}$

This drag coefficient can be estimated as: $C_d = \frac{0.074}{(\text{Re}_L)^{0.2}}$ where L is the length of the plate upstream of the measurement point. Sometimes C_f and C_d are used interchangeably.

Your report must provide details on:

- Discussions of each of the above plots and the concepts required to develop them.
- Reynolds number—based on freestream velocity, V_{∞} , and the streamwise position, x, of your tests.

REFERENCES:

The following references will help you if you have questions about the boundary layer theory being used in this lab:

- **1. Chapter 4** of Bertin, J.J., *Aerodynamics for Engineers*, 4th Ed., Prentice Hall, New Jersey, 2002.
- 2. Chapters 17, 18 of Anderson, J.D., Fundamentals of Aerodynamics, 3rd. Ed., McGraw-Hill, New York, 2001.