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Designing robust air traffic network is an ongoing research effort that seeks to improve the network 
robustness when one or more air routes are added to the existing network. We demonstrate that 
Laplacian energy is a fair and promising measure of network robustness based on a case study of a 
real air traffic network and extensive numerical experiments. Therefore, this paper aims at maximizing 
the Laplacian energy to enhance network robustness. The corresponding weighted Laplacian energy 
maximization problem is formulated as flight route addition problem to facilitate practical operations. 
Three methods are proposed to solve the flight route addition problem, including tabu search, greedy 
algorithm and integer program. Their trade-off between optimality performance and computational 
efficiency is demonstrated through the numerical results on a scale-free network. A case study on a 
real air traffic network is also included for further investigation.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

The rapid growth of the air transportation industry is expected 
to continue in the future decades. The Federal Aviation Adminis-
tration (FAA) estimated the global air traffic activities will increase 
by average of 3% every year until 2025 [1]. Moreover, the high 
economic growth in the Asia-Pacific market drives the passenger 
growth averaging 5.2% a year during 2008–2025 [2]. The expand-
ing traffic demands will lead to further departure delays, flight 
congestions and cancellations with the limited airport resources 
and airspace capacities. Inspired to tackle the expanding air traffic 
challenges, several projects are underway including Next Genera-
tion Air Transportation System (NextGen) and the Single European 
Sky Air Traffic Management Research (SESAR) [3]. Recently, Sin-
gapore also established Air Traffic Management Research Institute 
(ATMRI) to carry out research seeking solutions for air traffic is-
sues in Asia-Pacific Region [4]. One critical issue of these projects 
is how to design and maintain a robust air traffic network, which 
is capable of sustaining the airport and route failure happenings
due to severe weather, airspace flow program, equipment short-
age, ground delay program and other emergence events [5,6].

1.1. Literature review

In the past decades, an increasing number of studies focused 
on the air traffic network and its robustness. According to the 
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research objectivity, these works could be grouped into two cat-
egories, namely analysis of structural features and topological op-
timization. The structural analysis of air transportation network 
applied complex network theory [7], a young and active area of 
scientific research, to seek and define the most efficient topological 
structure of air traffic networks. Lin concluded there was a spatial 
hierarchical structure within China’s aviation network by examin-
ing weekly flight pattern [8]. Wang et al. explored the network 
structure and nodal centrality of China’s air transport network by 
degree distribution, clustering coefficient, closeness and between-
ness [9]. The structures of seven largest carrier networks in the 
USA were analyzed [10], where Wuellner et al. found that the 
networks with dense interconnectivity were extremely resilient to 
airports and routes attacks. Sun et al. made a deep investigation on 
the assessment of structural similarity of air navigation route sys-
tems in 58 countries [11] and applied seven centrality measures 
to study the temporal evolution of the European air transportation 
system, including two network layers: air airport network and the 
air navigation route network [12]. Recently, an aggregate level of 
analysis was carried out to analyze the scale-free and small-world 
characteristic of the world airline networks. Bagler analyzed the 
India’s domestic civil aviation network which could be character-
ized by a small-world network [13]. Xu and Harriss studied the 
U.S. domestic intercity passenger air transportation network and 
found that the network was a small-world network accompanied 
with assortative mixing patterns and rich-club phenomenon [14]. 
Li and Cai demonstrated the airport network in China embodied 
mixture features of small worlds and scare-free networks, and ex-
hibited topological uniqueness features [15]. Zanin and Lillo made 
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a short review on the recent use of complex network theory to 
describe the structure and dynamics of air transport [16].

There were very few research results on the topology optimiza-
tion. Reggiani et al. analyzed the connectivity and concentration of 
Lufthansa’s network and then proposed a multi-criteria analysis to 
strategically configure the airline network patterns [17]. Redondi 
et al. used the module identification techniques to evaluate the 
influences of new routes on the air traffic network connectivity 
[18]. Wuellner et al. introduced network rewiring schemes that 
boosted resilience to node and edge failures [10]. Cai et al. in-
vestigated the application computational intelligence to crossing 
waypoints location problem in the context of real world air route 
network design in China [19]. Several researches concentrated on 
the optimization of algebraic connectivity, which was considered 
as an efficient measure for the robustness of air traffic network. 
Vargo et al. explored the effectiveness of a tabu search algorithm 
and semidefinite programming relaxation to increase the algebraic 
connectivity of U.S. air traffic network [20]. In [21], Wei et al. pro-
posed three approaches to maximize the algebraic connectivity of 
air transportation. Then they formulated a new air transportation 
network model and solved the algebraic connectivity optimization 
problem for small scale network and large scale network through 
finding both the edges of the graph and weight assignments [22].

1.2. Contribution

Compared with the existing literature, this study for the first 
time measures and optimizes the robustness of air traffic network 
by Laplacian energy, which could be considered as one kind of 
graph entropy [23]. Besides the fact that Laplacian energy is a good 
global fairness measure of network like algebraic connectivity, it 
also takes into account local information of network. This is the 
major motivation why we adopt the measure of Laplacian energy 
to optimize the air traffic network. The Laplacian energy maxi-
mization problem is correspondingly formulated for this weighted 
air traffic network as a basic flight routes addition problem. In 
order to efficiently solve the problem, how to choose the most 
promising edges to add to the graph is demonstrated. Based on 
the weighted air traffic network, we further develop an integer 
programming model.

The structure of this paper is outlined as follows: Section 2
illustrates the relationships of Laplacian energy and air traffic net-
work by investigating a real air transportation network of Jetstar 
Asian Airway. The basic Laplacian energy maximization is then pre-
sented based on practical operations. In section 3, three methods 
including tabu search, greedy algorithm and integer programming 
are proposed to efficiently solve the basic problem. In section 4, 
we compare the performance and computational efficiency of three 
methods via simulations, and the real air traffic networks are also 
investigated. Section 5 concludes this paper.

2. Problem formulation

2.1. Principles of Laplacian energy

An air traffic network can be described as a graph G =
(V , E, W ), where the node set V (G) = {v1, v2, . . . , vn} represents 
all the n distinct airports, the edge set E(G) = {e1, e2, . . . , em} de-
notes all the m direct flight routes between pairs of airports. Each 
edge e = (vi, v j) is attached with a weight wi, j . If there is no 
edge between vi and v j , wi, j = 0. Since if a flight route exists 
from node vi to v j , a return flight route also exists from v j to vi , 
G can be constructed as an undirected graph.

We define
W (G) =

⎛
⎜⎜⎜⎝

0 w1,2 . . . w1,n

w2,1 0 . . . w2,n

. . . .

wn,1 wn,2 . . . 0

⎞
⎟⎟⎟⎠

and

X(G) =

⎛
⎜⎜⎜⎝

x1 0 . . . 0

0 x2 . . . 0

. . . .

0 0 . . . xn

⎞
⎟⎟⎟⎠

with xi = ∑n
j=1 wi, j =∑n

u∈N(vi)
w vi ,u , and xi is the sum-weight of 

all the edges connecting to node vi , where N(vi) is the neighbor-
hood of vi .

Definition 1. The matrix L(G) = X(G) − W (G) is called the Lapla-
cian matrix of the weighted network G .

Definition 2. The eigenvalues of L(G) are denoted by λ1 ≤ λ2 ≤
. . . λn . The Laplacian energy of G is defined as the invariant:

E L(G) =
n∑

i=1

λ2
i . (1)

2.2. Laplacian energy and air traffic network robustness

In order to illustrate the relationship between Laplacian energy 
and air traffic network robustness, a real air traffic network of Jet-
star Asia Airway among Indonesia, Australia, and New Zealand is 
investigated (shown in Fig. 1). Algebraic connectivity λ2, which is 
proved to be a fair robustness measure of air traffic network [22], 
is used to show that the Laplacian energy is capable of reflecting 
the global tightness of network. Meanwhile, a case study is used 
to illustrate the advantages of Laplacian energy over algebraic con-
nectivity.

The route map of Jetstar includes 26 airports and 68 routes. 
These 26 airports include Adelaide (ADL), Auckland (AKL), Avalon 
(AVV), Ayer Rock (AYQ), Brisbane (BNE), Ballina (BNK), Christchurch 
(CHC), Cairns (CNS), Denpasar (DPS), Darwin (DRW), Dunedin 
(DUD), Hobart (HBA), Hamilton Island (HTI), Praya (LOP), Launces-
ton (LST), Maroochydore (MCY), Melbourne (MEL), Mackay (MKY), 
Newcastle (NTL), Coolangatta (OOL), Perth (PER), Proserpine (PPP), 
Sydney (SYD), Townsville (TSV), Wellington (WLG), and Queen-
stown (ZQN). The comparative experiment begins with creating 3 
different weighted air traffic networks with the same topology. 
These networks are randomly assigned with one of three types 
of weights, wi, j = {1, 2, 3}, which represent the link strengths. 
A larger weight assignment indicates the route is more resilient 
and a smaller weight means it’s easier to breakdown. Then the 
links are randomly removed till the network is not connected, that 
is, at least one pair of nodes cannot reach each other through any 
one or multiple routes.

The simulation results shown in Fig. 2 indicate both values 
of Laplacian energy and algebraic connectivity are monotonically 
nonincreasing with respect to the number of removed edges. The 
deletion process terminates with minimal values of Laplacian en-
ergy and algebraic connectivity. The similar nonincreasing trend of 
the two curves shows that Laplacian energy can be also used to 
represent the global robustness of network like algebraic connec-
tivity. Moreover, the value of Laplacian energy gradually changes 
when removing (or adding) edges for a network, which is more ef-
fective in differentiating and optimizing the network performance 
than the measure of algebraic connectivity.
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Fig. 1. Air traffic network route map for Jetstar Asia Airway (Indonesia, Australia, and New Zealand) in 2015.
Fig. 2. EL , λ2 in terms of random edge failure for Jetstar Asia Airway (Indonesia, 
Australia, and New Zealand).

Fig. 3. The minimum spanning tree topology with four nodes.

The measure of Laplacian energy is more “sensitive” than the 
measure of algebraic connectivity because Laplacian energy cannot
only reflect the global feature but also capture the local charac-
teristics. We can demonstrate this effect through the following 
simple and insightful case as shown in Fig. 3, in which an ex-
tra link will be added to test the two measures. Let �λ2 and 
�E L denote the change of algebraic connectivity and Laplacian 
energy after adding an edge to the network in Fig. 3. After a sin-
gle edge e2,3 with w2,3 = 3 is added between nodes 2 and 3, 
�λ2 = 0 and �E L = 48. Moreover, �λ2 is independent of the edge 
weight w2,3 and still remains zero even if w2,3 = ∞. However, 
the network has been actually improved as the flow can be di-
rectly transferred between nodes 2 and 3, which is ignored by 
the measure of algebraic connectivity. To capture this local im-
provement, the measure of Laplacian energy is more promising and 
effective.

We further demonstrate this effectiveness of Laplacian energy 
over algebraic connectivity through the two extensive numerical 
Table 1
Results of two experiments.

Experiment Description EL λ2

I total change times in 10 000 trails 10 000 2753

II total change times with n = 10 33 25
total change times with n = 50 1125 615
total change times with n = 100 4561 1539

experiments below. In experiment I, we randomly generate 10 000 
scale-free networks with random network size range from 10 to 
100, each edge is assigned with a random weight selecting from 
{1, 2, 3}. We count the number of network instances whose val-
ues of Laplacian energy (algebraic connectivity) will change after 
adding a random edge. In experiment II, we generate three scale-
free networks with n = {10, 50, 100} nodes. Then random deletion 
process is conducted till the network is separated. We count the 
times of value changes in terms of Laplacian energy and algebraic 
connectivity. The results are shown in Table 1. It can be easily ob-
served that algebraic connectivity fails to indicate the robustness 
degradation of network in much more instances than Laplacian 
energy. Thus, Laplacian energy is a more effective measure in dif-
ferentiating network robustness.

2.3. Basic Laplacian energy optimization formulation

In real world, many flights already serve in local and world re-
gions, it is needless to create a new optimal air traffic network 
from scratch. Directly adding a few routes into the existing air 
traffic network is the most easiest and efficient way to improve 
its robustness. In the paper, we would like to find the optimal 
strategy on the selection of potential edges. As noted in previous 
section, the existing weighted air traffic network is represented 
by G = (V , E0), where V denotes the set of airports and E0 ⊂ E
contains the existing routes between the airports. Without loss of 
generality, at most one edge (flight route) is allowed to be con-
nected between any pair of nodes (airports). The size of V is n
and the size of E0 is m. The objective is to maximize the Lapla-
cian energy of resulted network after adding k edges selected from 
the set E P = {x : x ∈ E, x /∈ E0} to the existing network. All the 
weights of edges in E are non-negative integer values between α
and β . Let �E denote the set of edges to be added in the existing 
air transportation network. We aim at solving the following prob-
lem:
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max E L(G(V , E0 + �E))

s.t.

⎧⎪⎨
⎪⎩

|�E| = k

�E ⊆ P

wi, j ∈ {0, {α,β}}
(2)

Since E L(G) is actually computed from the weighted Laplacian 
matrix L corresponding to the graph G , we interchangeably use 
E L(G) and E L(L) for the value of Laplacian energy in the rest of 
paper. The augmented Laplacian matrix L can be expressed as the 
dot product summation of edge vectors [21]:

L = L0 +
|P |∑

e=1

ye wehehT
e

L0 is the Laplacian matrix of the existing network. ye is a Boolean 
variable to indicate whether edge e is selected. For any edge e be-
tween two nodes i and j, the corresponding edge vector he ∈ Rn is 
defined as he(i) = 1, he( j) = −1. |P | is the size of pre-determined 
candidate edge set E P . The air traffic network optimization prob-
lem can be rewritten as:

max E L(L0 +
|P |∑

e=1

ye wehehT
e )

s.t.

⎧⎪⎨
⎪⎩

∑|P |
e=1 ye = k

ye ∈ {0,1}
wi, j ∈ {0, {α,β}}

(3)

3. Solutions

Given the air traffic network G(V , E0), the optimization prob-
lem is finding k edges from set E P with maximal E L(G(V , E0 +
�E)). The brute-force search or exhaustive search computes Ck|P |
different E L , and select the biggest one as optimal solution. In gen-
eral, Ck|P | is so large that running time is extremely long.

3.1. Tabu search

In this paper, we develop a specialized tabu search algorithm 
to solve the problem. Tabu search [24,25] is a metaheuristic search 
method which employs a local search method to tackle the op-
timization problem. The local search procedures iteratively move 
from one potential solution to another improved solution till cer-
tain termination criteria satisfies. The motivation behind the use of 
a tabu search is to prevent the solutions stuck into local optimum 
region. In order to avoid the pitfall and access unexplored solutions 
region left by local search procedures, a tabu list T is constructed 
to exclude moves which would bring the solution back to the pre-
vious worse solutions. A successful tabu search requires a good 
balance between intensification and diversification. The intensifi-
cation makes a detailed exploration of some region of solution 
space, usually in the vicinity of a good solution. The diversifica-
tion forces the search towards the unexplored promising regions. 
In the following subsections, we elaborate the details of the tabu 
search algorithm developed in this work.

3.1.1. Neighbor
Tabu search starts with an initial solution s0 and then itera-

tively searches neighborhood of the current solution. N(s) denotes 
the most promising neighbor to move to. The definition of N(s)
is critical to the efficiency of the tabu search. In our problem, the 
solution s contains the k edges to be added. Each edge ei, j in so-
lution s connects two nodes vi and v j . The sub-neighbor N(s, t) of 
t edge is formed by the edges in E P that are directly linked to vi

and v j . To prevent the size of N(s, t) equals to 0, a random jump 
inside E P is employed to generate the candidates of N(s, t). The 
neighbor of current solution s is the union of the sub-neighbors of 

all edges in s, N(s) =
k⋃

t=1
N(s, t).

3.1.2. Tabu list and aspiration criteria
In [24,25], several general methods to generate tabu list were 

proposed. In our case, the tabu list T records the set of solutions 
that have been visited in the recent past iterations. For each edge 
t in current solutions, all the candidate solutions that move from 
edge t to its neighbor N(s, t) are visited. If the candidate solution 
has better performance and is not included in T , the solution is se-
lected and added into T ; otherwise this candidate is not selected. 
Tabus are sometimes so powerful that they might prohibit attrac-
tive moves or they might lead to an overall stagnation of searching 
process. In order to prevent this phenomenon, aspiration criteria 
are designed to allow one to ignore the tabus. The simplest and 
commonly used aspiration criterion allows a move, even the so-
lution is in T , when the solution is changed to with an objective 
function better than that of the current best know solution. The 
best observed value E∗

L should be recorded in each step. When a 
move finds the solution s with a better E L than the current best 
solution E∗

L , the aspiration criterion is applied.

3.1.3. The complete tabu search algorithm
Algorithm 1 shows the complete tabu search. Line 1 initializes 

the input variables. Line 2 shows the optimization progress ter-
minates after � iterations. Lines 3–5 give the procedures that con-
struct the sub-neighbors of the current solution s. Line 7 constructs 
s′ from N(s, t). Lines 8–11 check the solution with aspiration cri-
teria. Lines 12–14 confirm whether s′ is in tabu list T .

Algorithm 1 Tabu Search Algorithm.
1: Set the iteration counter � and randomly generate an initial solution s0. Set

this solution as the current solution as well as the best solutions∗ . T is set to
an empty queue with the pre-fixed size |T |.

2: for iteration = 1 to � do
3: for t = 1 to k do
4: construct N(s, t) of the tth edge in s
5: end for
6: while 1 do
7: pick one edge t′ from N(s, t) to construct s′
8: if EL(s′) > EL

∗(s)
9: s = s′ , update T
10: EL

∗ = EL(s), s∗ = s
11: end if
12: if s′ is not in T then
13: s = s′ , update T
14: end if
15: end while
16: end for
17: output EL

∗ and s∗

3.2. Greedy algorithm

The greedy algorithm tries to find a global optimum with the 
strategy of making the locally optimal choice at each step. Al-
though the greedy algorithm strategy does not guarantee a global 
optimal solution, this heuristic yields a solution that approximates 
the optimal solution in a reasonable time. Here we describe a 
greedy local heuristic to solve problem (2). We add one edge at 
a time, each time choosing the edge ei, j which gives the largest 
predicted increase in E L(G). The iteration terminates till k edges 
are selected. The local optimal condition is proved as follows.
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Lemma 1. For any network G = (V , E, W ), the Laplacian energy can be 
express as [23]

E L(G) =
n∑

i=1

x2
i + 2

∑
i< j

w2
i, j (4)

with xi = ∑n
j=1 wi, j =∑n

u∈N(vi)
w vi ,u , where N(vi) is the neighbor-

hood of vi . xi is termed as the sum-weight of a vertex vi .

Theorem 1. G = (V , E, W ) is a weighted network with m edges 
{e1, e2, . . . , em}. Let H be the network obtained by adding edge ei, j from 
E P , the increase of Laplacian energy with respect to ei, j is:

(�E L)i, j = E L(H) − E L(G) = 2wi, j(x(vi) + x(v j)) + 4w2
i, j (5)

Proof. Without loss of generality, assume H = G + ep,q and p < q. 
Let N(ep,q) be the nodes connected by ep,q in G and x∗(vi) be the 
corresponding sum-weight of vertex vi in H . Thus we have:

x∗(vi) =
{

x(v p∪q) + w p,q, if vi∪ j ∈ N(ep,q);
x(vi), otherwise; (6)

so, by Lemma 1 and Eq. (4),

E L(H) =
∑

vi∈N(ep,q)

(x(vi) + w p,q)
2 +

∑
vi /∈N(ep,q)

x2(vi)

+ 2
∑

i< j,i /∈N(ep,q), j /∈N(ep,q)

w2
i, j + 2w2

p,q (7)

thus the increase of Laplacian energy with respect to ep,q is

(�E L)p,q = E L(H) − E L(G)

=
∑

vi∈N(ep,q)

[(x(vi) + w p,q)
2 − x2(vi)] + 2w2

p,q

=
∑

vi∈N(ep,q)

(2x(vi)w p,q + w2
p,q) + 2w2

p,q

= 2w p,q(x(v p) + x(vq)) + 4w2
p,q �

Using the local optimal condition, we design a greedy method 
which selects the edge ei, j from E P with maximal 2wi, j(x(vi) +
x(v j)) + 4w2

i, j at each step, where x(vi) and x(v j) are the sum-
weight of vertices vi and v j . wi, j is the weight associated with 
edge ei, j . Lines 1–2 initialize the set of candidate edges E P and 
initial solution. Line 4 selects the edge from E P which makes the 
maximal improvement of E L . Lines 6–7 make addition and dele-
tion operations on E and E P respectively.

Algorithm 2 Greedy Algorithm.
1. given graph G = (V , E0, W ), candidate edge set E P

2. let E = E0

3. for 1 to k do
4. ei, j = arg maxei, j∈P 2wi, j(x(vi) + x(v j)) + 4w2

i, j
5. E = E + ei, j

6. E P = E P − ei, j

7. end for
8. output G = (V , E)

3.3. Binary integer programming

Basic Laplacian energy optimization formulation can be con-
verted into a binary integer program, which provides exact optimal 
solution to compare with two proposed heuristic algorithms. As-
sume EC is the edge set of a complete undirected graph, with 
vertex set V (G) = {v1, v2, . . . , vn}, in which every pair of distinct 
vertices is connected by a unique edge. Defined E0 as the exist-
ing edges, E P as the set of pre-defined edges for addition, and 
E Q = {x : x ∈ EC , x /∈ E0, x /∈ E P }. W0, W P , W Q are the correspond-
ing sets of edge weights. Let W denote the weight matrix of EC , 
wi, j be the weight of edge ei, j

wi, j =
{

0, if ei, j ∈ E Q or i = j;
w j,i, otherwise; (8)

and Y denote the decision variable matrix

yi, j =

⎧⎪⎨
⎪⎩

0, if ei, j ∈ E Q or i = j;
1, if ei, j ∈ E0;
y j,i, if ei, j ∈ E P ;

(9)

The weighted matrix can be derived as:

W (E0 + E P ) = W · Y

=

⎛
⎜⎜⎜⎝

w1,1 y1,1 w1,2 y1,2 . . . w1,n y1,n

w2,1 y2,1 w2,2 y2,2 . . . w2,n y2,n

. . . .

wn,1 yn,1 wn,2 yn,2 . . . wn,n yn,n

⎞
⎟⎟⎟⎠ (10)

From Lemma 1 and the definition of sum-weight, we have

E L (G) =
n∑

i=1

x2
i +

∑
i 
= j

w2
i, j

=
n∑

i=1

⎛
⎝ n∑

j=1

wi, j yi, j

⎞
⎠

2

+
n∑

i=1

n∑
j=1

(
wi, j yi, j

)2 (11)

Thus, the objective function of the optimization problem can be 
expressed as:

max E L(G) =
n∑

i=1

n∑
j=1

(wi, j yi, j)
2 +

n∑
i=1

(
n∑

j=1

wi, j yi, j

)2

=
n∑

i=1

n∑
j=1

(
w2

i, j y2
i, j

) +
(

n∑
i=1

n∑
j=1

(
w2

i, j y2
i, j

)

+ 2
n∑

i=1

(∑
j 
=k

wi, j wi,k yi, j yi,k

))

= 2
n∑

i=1

n∑
j=1

(
w2

i, j y2
i, j

) + 2
n∑

i=1

∑
j 
=k

wi, j wi,k yi, j yi,k

which is equivalent to:

min−2
n∑

i=1

n∑
j=1

(
w2

i, j y2
i, j

)
− 2

n∑
i=1

∑
j 
=k

wi, j wi,k yi, j yi,k (12)

Note that the following equation satisfies,

yi, j yi,k = yi, j, for j = k

yi, j yi,k = min
{

yi, j, yi,k
}
, for j 
= k

After introducing variable zi, j,k = yi, j yi,k = min
{

yi, j, yi,k
}

, the 
basic problem can then be reduced to the following integer linear 
programming problem.



C. Yang et al. / Aerospace Science and Technology 49 (2016) 26–33 31
Fig. 4. The impact of network size n.
min −2 
n∑

i=1

n∑
j=1

(
wi, j

2 yi, j
) − 2 

n∑
i=1

∑
j 
=k

wi, j wi,k zi, j,k

s.t.
zi, j,k ≤ yi, j, zi, j,k ≤ yi,k, for i = 1, . . .n, j = 1, . . .n, i < j, i < k, j 
= k;∑|P |

i=1

∑|P |
i< j yi, j = k, for i = 1, . . .n, j = 1, . . .n, ei, j ∈ E P ;

yi, j = 0, for i = 1, . . .n, j = 1, . . .n, ei, j ∈ E Q ;
yi, j = 1, for i = 1, . . .n, j = 1, . . .n, ei, j ∈ E0;
yi, j = y j,i , for i = 1, . . .n, j = 1, . . .n;
yi, j ∈ {0,1} , for i = 1, . . .n, j = 1, . . .n;
zi, j,k ∈ {0,1} , for i = 1, . . .n, j = 1, . . .n, i < j, i < k, j 
= k;

4. Results and discussions

In this section, we use simulation to compare the performance 
and computation time of tabu search, greedy algorithm and inte-
ger programming for the Laplacian energy maximization problem. 
A scale-free network with nodes n = 20 is generated and then used 
as the current existing networks G(V , E0). Three types of weights 
wi, j = {1, 2, 3} are randomly assigned to the edges in E0 and E P . 
We should note that all models and algorithms in this paper are 
coded in Matlab platform and the binary integer programming 
problem is solved by CPLEX 12.2 with all solver options set to de-
fault. All computational results in this section are implemented on 
a HP PC with Interl Core i5 processor running at 3.2 GHz and 4 GB 
of RAM under a 64 bit Windows 7 operating system.

4.1. The impact of n

In this simulation, we investigate the performance and com-
putation time of the three proposed methods for different size
networks. In each run, we fix k = 10 and vary the network size n. 
The left subfigure of Fig. 4 shows the integer programming has the 
best performance and the tabu search has the bottom performance. 
The integer programming always severs as the exact solution with 
the variation of network size. The right subfigure of Fig. 4 illus-
trates that the computation times of all approaches increase with 
the network size. The integer programming is so slow when the 
network size becomes larger, it sacrifices its running time to obtain 
the best performance. Among the three methods, tabu search takes 
the shortest running time, which is slightly faster than greedy 
method.

The trade-off is that no matter what k is, the integer pro-
gramming provides the best solution than the other two methods, 
but its computation time is unacceptable when the network size 
is huge. The greedy algorithm could find a satisfactory solution 
within such a short time. According to the simulation results, it 
is quite convincing that integer programming should be selected 
for the exact optimal solution if the scale of air traffic network is 
small; the greedy method can be adopted to obtain a near optimal 
solution with high computational efficiency when the network size 
becomes large.

4.2. The impact of k

In this simulation, we study the impact of number of edges k, to 
be added into the existing network by three different approaches. 
The parameter settings are n = 20, |T | = 15 and the simulation re-
sults are illustrated in Fig. 5. From Fig. 5 we observe that when 
edges are added to the network G , the Laplacian energy increases 
monotonically. The integer programming always provides the best 
performance, but the computation speed is slowest. The greedy 
method has the second best performance with the best computa-
tion speed. Therefore, the greedy method should be chosen when 
we prefer computation efficiency rather than performance. The 
tabu search is the poorest in terms of performance, but it has the 
second best computation speed.

In summary, the trade-off is that the number k increases, in-
teger programming always find a better solution than others do. 
However, its computation speed is unacceptable when the network 
size is huge. When k is small, the greedy method gives the simi-
lar performance with integer programming. If we want to select a 
small number of edges from E Q , the integer programming method 
should be selected; if k is a big number, greedy methods should 
be adopted to provide the efficient computation speed with an ac-
ceptable performance.

4.3. Case study

A real air traffic network of Jetstar Asian Airway is studied. The 
current air transportation network is weighted based on the his-
torical data of flight cancellation rate from [26], a popular website 
providing air traffic data collected from a large number of sources, 
such as governments, airlines, airports, reservation systems, and so 
on. The corresponding data of cancellation rates is listed in Table 2. 
It can be observed that the flight cancellation rate ranges from 0%
to 9%. The existing edges with cancellation rate [0, 3%) is assigned 
with weight 3, the ones with cancellation rate [3%, 6%) is assigned 
with weight 2, and the ones with cancellation rate [6%, 9%] is as-
signed with weight 1 in this experiment. The design of mechanism 
that maps cancellation rate into different types of weights is mo-
tivated by the practical operation in aviation industry. One flight 
route with high weight indicates that there are more flights or the 
aircraft are less influenced by unexpected conditions, such as air-
craft mechanical issue, severe weather, etc. It is noted that if there 
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Fig. 5. The impact of number of edges added k.

Table 2
The total 68 routes and their cancellation rates (as of Aug 2015. Source: http :/ /www.flightstats .com/).

Route name Cancellation rate (%) Route name Cancellation rate (%) Route name Cancellation rate (%)

ADL-AKL 0 ADL-BNE 0 ADL-CNS 0
ADL-DPS 9 ADL-DRW 0 ADL-MEL 1
ADL-OOL 1 ADL-PER 1 ADL-SYD 1
AKL-CHC 1 AKL-DUD 0 AKL-MEL 1
AKL-OOL 0 AKL-SYD 1 AKL-WLG 0
AKL-ZQN 3 AVV-SYD 0 AYQ-SYD 0
BNE-CNS 0 BNE-DPS 9 BNE-DRW 0
BNE-HBA 0 BNE-HTI 0 BNE-LST 0
BNE-MEL 2 BNE-MKY 1 BNE-NTL 0
BNE-PER 0 BNE-PPP 0 BNE-SYD 2
BNE-TSV 1 BNK-MEL 0 BNK-SYD 0
CHC-MEL 0 CHC-OOL 0 CHC-SYD 0
CHC-WLG 0 CNS-DRW 0 CNS-MEL 0
CNS-OOL 0 CNS-PER 3 CNS-SYD 0
DPS-DRW 6 DPS-MEL 9 DPS-PER 4
DPS-SYD 9 DRW-MEL 0 DRW-SYD 0
HBA-MEL 1 HBA-SYD 0 HTI-MEL 0
HTI-SYD 0 LOP-PER 0 LST-MEL 4
LST-SYD 0 MCY-MEL 0 MCY-SYD 0
MEL-NTL 0 MEL-OOL 1 MEL-PER 1
MEL-SYD 4 MEL-TSV 0 MEL-ZQN 2
NTL-OOL 0 OOL-SYD 1 PER-SYD 0
SYD-TSV 0 SYD-ZQN 2
are more than one flights assigned to an O–D pair, the cancella-
tion rate is calculated by the joint probability of all the flights in 
this route and then the edge weights are assigned referring to the 
mapping mechanism above.

The cancellation rate of candidate edges can be estimated from 
the historical recorded routes information published by FAA and 
the current air traffic status. Then we can obtain the weight of 
each edge through these estimated cancellation rates. In this case 
study, we assume all the candidate edges have the medium link 
strength with weight 2 and then the greedy algorithm and the 
integer programming are applied to select the top 5 and top 10 
routes. These results are illustrated in Table 3 and Table 4. When 
k = 5, these two methods select the same routes set; when k = 10, 
the integer programming intends to add more routes to SYD, the 
greedy selects more scattered routes.

5. Conclusion

In this paper, an experiment on a real air traffic network is 
conducted to show that the Laplacian energy is a fair and effec-
tive measure of demonstrating both global and local robustness 
of air traffic network. The flight route addition problem is for-
Table 3
Top 5 flight routes to be added to the Jetstar network.

Greedy algorithm Integer programming

BNE-AKL SYD-LOP
OOL-BNE BNE-AKL
SYD-LOP SYD-NTL
SYD-NTL OOL-BNE
WLG-SYD SYD-WLG

Table 4
Top 10 flight routes to be added to the Jetstar network.

Greedy algorithm Integer programming

BNE-AKL MEL-AVV
OOL-BNE MEL-AYQ
SYD-LOP MEL-DUD
SYD-NTL MEL-LOP
WLG-SYD MKY-MEL
SYD-DUD PPP-MEL
MEL-LOP WLG-MEL
WLG-MEL SYD-NTL
SYD-MKY SYD-PPP
SYD-PPP WLG-SYD

http://www.flightstats.com/
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mulated to maximize the Laplacian energy. Three methods are 
proposed to solve the basic optimization problem with different 
performance and computational efficiency. Two heuristic methods 
including greedy algorithm and tabu search are developed to find 
the maximal value of Laplacian energy. Furthermore, the basic op-
timization problem is formulated as integer programming which 
provides the exact global optimum. Finally, numerical simulations 
on scale-free network have been implemented to study the trade-
off among the tree methods and the real air traffic network of Jet-
star is also tested for further verification. We conclude that integer 
programming and greedy algorithm should be selected to tackle 
with small scale and large scale network optimization problem re-
spectively. These conclusions could be provided to decision maker 
on how to select an appropriate algorithm according to trade-off 
analysis.

For the future direction of this work, we plan to consider the 
robustness enhancement for large scale problems. We should also 
consider the constraints of operating cost, traffic congestion and 
aviation policy when selecting additional edges.
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