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Abstract

Air traffic control is a real-time safety-critical
decision making process in highly dynamic and
stochastic environments. In today’s aviation prac-
tice, a human air traffic controller monitors and
directs many aircraft flying through its designated
airspace sector. With the fast growing air traf-
fic complexity in traditional (commercial airlin-
ers) and low-altitude (drones and eVTOL aircraft)
airspace, an autonomous air traffic control system
is needed to accommodate high density air traf-
fic and ensure safe separation between aircraft.
We propose a deep multi-agent reinforcement
learning framework that is able to identify and re-
solve conflicts between aircraft in a high-density,
stochastic, and dynamic en-route sector with mul-
tiple intersections and merging points. The pro-
posed framework utilizes an actor-critic model,
A2C that incorporates the loss function from Prox-
imal Policy Optimization (PPO) to help stabilize
the learning process. In addition we use a cen-
tralized learning, decentralized execution scheme
where one neural network is learned and shared by
all agents in the environment. We show that our
framework is both scalable and efficient for large
number of incoming aircraft to achieve extremely
high traffic throughput with safety guarantee. We
evaluate our model via extensive simulations in
the BlueSky environment. Results show that our
framework is able to resolve 99.97% and 100%
of all conflicts both at intersections and merging
points, respectively, in extreme high-density air
traffic scenarios.
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1. Introduction
1.1. Motivation

With the rapid increase in global air traffic and expected high
density air traffic in specific airspace regions, to guarantee
air transportation safety and efficiency becomes a critical
challenge. Tactical air traffic control (ATC) decisions to
ensure safe separation between aircraft are still being made
by human air traffic controllers in en-route airspace sectors,
which is the same as compared to 50 years ago (Council
et al., 2014). Heinz Erzberger and his NASA colleagues
first proposed autonomous air traffic control by introducing
the Advanced Airspace Concept (AAC) to increase airspace
capacity and operation safety by designing automation tools
such as the Autoresolver and TSAFE to augment human
controllers (Erzberger, 2005; Erzberger & Heere, 2010; Far-
ley & Erzberger, 2007) in conflict resolution. Inspired by
Erzberger, we believe that a fully automated ATC system is
the ultimate solution to handle the high-density, complex,
and dynamic air traffic in the future en-route and terminal
airspace for commercial air traffic.

In recent proposals for low-altitude airspace operations such
as UAS Traffic Management (UTM) (Kopardekar et al.,
2016), U-space (Undertaking, 2017), and urban air mobility
(Mueller, Kopardekar, and Goodrich, 2017), there is also a
strong demand for an autonomous air traffic control system
to provide advisories to these intelligent aircraft, facilitate
on-board autonomy or human operator decisions, and cope
with high-density air traffic while maintaining safety and
efficiency (Air, 2015; Airbus, 2018; Google, 2015; Holden
& Goel, 2016; Kopardekar, 2015; Mueller et al., 2017; Uber,
2018). According to the most recent study by Hunter and
Wei (Hunter & Wei, 2019), the key to these low-altitude
airspace operations is to design the autonomous ATC on
structured airspace to achieve envisioned high throughput.
Therefore, the critical challenge here is to design an au-
tonomous air traffic control system to provide real-time
advisories to aircraft to ensure safe separation both along air
routes and at intersections of these air routes. Furthermore,
we need this autonomous ATC system to be able to manage
multiple intersections and handle uncertainty in real time.

To implement such a system, we need a model to perceive
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the current air traffic situation and provide advisories to
aircraft in an efficient and scalable manner. Reinforcement
learning, a branch of machine learning, is a promising way
to solve this problem. The goal in reinforcement learning is
to allow an agent to learn an optimal policy by interacting
with an environment. The agent is trained by first perceiving
the state in the environment, selecting an action based on
the perceived state, and receiving a reward based on this per-
ceived state and action. By formulating the tasks of human
air traffic controllers as a reinforcement learning problem,
the trained agent can provide dynamic real-time air traffic
advisories to aircraft with extremely high safety guarantee
under uncertainty and little computation overhead.

Artificial intelligence (AI) algorithms are achieving per-
formance beyond humans in many real-world applications
today. An artificial intelligence agent called AlphaGo built
by DeepMind defeated the world champion Ke Jie in three
matches of Go in May 2017 (Silver & Hassabis, 2016). This
notable advance in the AI field demonstrated the theoretical
foundation and computational capability to potentially aug-
ment and facilitate human tasks with intelligent agents and
AI technologies. To utilize such techniques, fast-time sim-
ulators are needed to allow the agent to efficiently learn in
the environment. Until recently, there were no open-source
high-quality air traffic control simulators that allowed for
fast-time simulations to enable an AI agent to interact with.
The air traffic control simulator, BlueSky, developed by TU
Delft allows for realistic real-time air traffic scenarios and
we decide to use this software as the environment and simu-
lator for performance evaluation of our proposed framework
(Hoekstra & Ellerbroek, 2016).

In this paper, a deep multi-agent reinforcement learning
framework is proposed to enable autonomous air traffic
separation in en-route airspace, where each aircraft is repre-
sented by an agent. Each agent will comprehend the current
air traffic situation and perform online sequential decision
making to select speed advisories in real-time to avoid con-
flicts at intersections, merging points, and along route. Our
proposed framework provides another promising potential
solution to enable an autonomous air traffic control system.

1.2. Related Work

Deep reinforcement learning has been widely explored in
ground transportation in the form of traffic light control
(Genders and Razavi, 2016; Liang, Du, Wang, and Han,
2018). In these approaches, the authors deal with a single
intersection and use one agent per intersection to control
the traffic lights. Our problem is similar to ground trans-
portation in the sense we want to provide speed advisories
to aircraft to avoid conflict, in the same way a traffic light
advises cars to stop and go. The main difference with our
problem is that we need to control the speed of each aircraft

to ensure there is no along route conflict. In our work, we
represent each aircraft as an agent instead of the intersection
to handle along route and intersection conflicts.

There have been many important contributions to the topic
of autonomous air traffic control. One of the most promis-
ing and well-known lines of work is the Autoresolver de-
signed and developed by Heinz Erzberger and his NASA
colleagues (Erzberger, 2005; Erzberger & Heere, 2010; Far-
ley & Erzberger, 2007). It employs an iterative approach, se-
quentially computing and evaluating candidate trajectories,
until a trajectory is found that satisfies all of the resolution
conditions. The candidate trajectory is then output by the
algorithm as the conflict resolution trajectory. The Autore-
solver is a physics-based approach that involves separate
components of conflict detection and conflict resolution. It
has been tested in various large-scale simulation scenarios
with promising performance.

Strategies for increasing throughput of aircraft while min-
imizing delay in high-density sectors are currently being
designed and implemented by NASA. These works include
the Traffic Management Advisor (TMA) (Erzberger and
Itoh, 2014) or Traffic Based Flow Management (TBFM), a
central component of ATD-1 (Baxley, Johnson, Scardina,
and Shay, 2016). In this approach, a centralized planner
determines conflict free time-slots for aircraft to ensure sep-
aration requirements are maintained at the metering fix. Our
algorithm also is able to achieve a conflict free metering fix
by allowing the agents to learn a cooperative strategy that
is queried quickly online during execution, unlike TBFM.
Another main difference with our work is that our proposed
framework is a decentralized framework that can handle
uncertainty. In TMA or TBFM, once the arrival sequence
is determined and aircraft are within the “freeze horizon”
no deviation from the sequence is allowed, which could be
problematic if one aircraft becomes uncooperative.

Multi-agent approaches have also been applied to conflict
resolution (Wollkind, Valasek, and Ioerger, 2004). In this
line of work, negotiation techniques are used to resolve
identified conflicts in the sector. In our research, we do
not impose any negotiation techniques, but leave it to the
agents to derive negotiation techniques through learning and
training.

Reinforcement learning and deep Q-networks have been
demonstrated to play games such as Go, Atari and Warcraft,
and most recently Starcraft II (Amato and Shani, 2010;
Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra,
and Riedmiller, 2013; Silver, Huang, Maddison, Guez, Sifre,
Van Den Driessche, Schrittwieser, Antonoglou, Panneer-
shelvam, Lanctot, et al., 2016; Vinyals, Ewalds, Bartunov,
Georgiev, Vezhnevets, Yeo, Makhzani, Küttler, Agapiou,
Schrittwieser, et al., 2017). The results from these papers
show that a well-designed, sophisticated AI agent is capable
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of learning complex strategies. It was also shown in pre-
vious work that a hierarchical deep reinforcement learning
agent was able to avoid conflict and choose optimal route
combinations for a pair of aircraft (Brittain and Wei, 2018).

Recently the field of multi-agent collision avoidance
has seen much success in using a decentralized non-
communicating framework in ground robots (Chen, Liu,
Everett, and How, 2017; Everett, Chen, and How, 2018). In
this work, the authors develop an extension to the policy-
based learning algorithm (GA3C) that proves to be efficient
in learning complex interactions between many agents. We
find that the field of collision avoidance can be adapted to
conflict resolution by considering larger separation require-
ments, so our framework is inspired by the ideas set forth
by (Everett et al., 2018).

In this paper, the deep multi-agent reinforcement learning
framework is developed to solve the separation problem for
autonomous air traffic control in en-route dynamic airspace
where we avoid the computationally expensive forward in-
tegration method by learning a policy that can be quickly
queried. The results show that our framework has very
promising performance.

The structure of this paper is as follows: in Section II, the
background of reinforcement learning, policy based learn-
ing, and multi-agent reinforcement learning will be intro-
duced. In Section III, the description of the problem and
its mathematical formulation of deep multi-agent reinforce-
ment learning are presented. Section IV presents our de-
signed deep multi-agent reinforcement learning framework
to solve this problem. The numerical experiments and re-
sults are shown in Section V, and Section VI concludes this
paper.

2. Background
2.1. Reinforcement Learning

Reinforcement learning is one type of sequential decision
making where the goal is to learn how to act optimally in
a given environment with unknown dynamics. A reinforce-
ment learning problem involves an environment, an agent,
and different actions the agent can select in this environment.
The agent is unique to the environment and we assume the
agent is only interacting with one environment. If we let t
represent the current time, then the components that make
up a reinforcement learning problem are as follows:

• S - The state space S is a set of all possible states in the
environment

• A - The action space A is a set of all actions the agent
can select in the environment

• r(st, at) - The reward function determines how much

reward the agent is able to acquire for a given (st, at)
transition

• γ ∈ [0,1] - A discount factor determines how far in the
future to look for rewards. As γ → 0, immediate
rewards are emphasized, whereas, when γ → 1, future
rewards are prioritized.

S contains all information about the environment and each
element st can be considered a snapshot of the environment
at time t. The agent accepts st and with this, the agent then
selects an action, at. By selecting action at, the state is
now updated to st+1 and there is an associated reward from
making the transition from (st , at)→ st+1. How the state
evolves from st→ st+1 given action at is dependent upon
the dynamics of the system, which is often unknown. The
reward function is user defined, but needs to be carefully
designed to reflect the goal of the environment.

From this framework, the agent is able to extract the optimal
actions for each state in the environment by maximizing a
cumulative reward function. We call the actions the agent
selects for each state in the environment a policy. Let π
represent some policy and T represent the total time for a
given environment, then the optimal policy can be defined
as follows:

π∗ = arg max
π

E[

T∑
t=0

(r(st, at)|π)]. (1)

If we design the reward to reflect the goal in the environment,
then by maximizing the total reward, we have obtained the
optimal solution to the problem.

2.2. Policy-Based Learning

In this work, we consider a policy-based reinforcement
learning algorithm to generate policies for each agent to
execute. The advantage of policy-based learning is that these
algorithms are able to learn stochastic policies, whereas
value-based learning can not. This is especially beneficial in
non-communicating multi-agent environments, where there
is uncertainty in other agent’s action. A3C (Mnih, Badia,
Mirza, Graves, Lillicrap, Harley, Silver, and Kavukcuoglu,
2016), a recent policy-based algorithm, uses a single neural
network to approximate both the policy (actor) and value
(critic) functions with many threads of an agent running in
parallel to allow for increased exploration of the state-space.
The actor and critic are trained according to the two loss
functions:

Lπ = log π(at, |st)(Rt − V (st)) + β ·H(π(st)) (2)

Lv = (Rt − V (st))
2, (3)

where in (2), the first term log π(at, |st)(Rt − V (st)) re-
duces the probability of sampling an action that led to a
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lower return than was expected by the critic and the second
term, β ·H(π(st)) is used to encourage exploration by dis-
couraging premature convergence to suboptimal determinis-
tic polices. Here H is the entropy and the hyperparameter β
controls the strength of the entropy regularization term. In
(3), the critic is trained to approximate the future discounted
rewards, Rt =

∑k−1
i=0 γ

irt+i + γkV (st+k).

One drawback of Lπ is that it can lead to large destruc-
tive policy updates and hinder the final performance of the
model. A recent algorithm called Proximal Policy Opti-
mization (PPO) solved this problem by introducing a new
type of loss function that limits the change from the previ-
ous policy to the new policy (Schulman, Wolski, Dhariwal,
Radford, and Klimov, 2017). If we let rt(θ) denote the
probability ratio and θ represent the neural network weights
at time t, rt(θ) = πθ(at|st)

πθold (at|st)
, the PPO loss function can be

formulated as follows:

LCLIP(θ) =

Et[min(rt(θ)(A), clip(rt(θ), 1− ε, 1 + ε)(A))], (4)

where A := Rt − V (st) and ε is a hyperparameter that
determines the bound for rt(θ). This loss function allows
the previous policy to move in the direction of the new
policy, but by limiting this change it is shown to lead to
better performance (Schulman et al., 2017).

2.3. Multi-Agent Reinforcement Learning

In multi-agent reinforcement learning, instead of consider-
ing one agent’s interaction with the environment, we are
concerned with a set of agents that share the same environ-
ment (Bu, Babu, De Schutter, et al., 2008). Fig. 1 shows the
progression of a multi-agent reinforcement learning prob-
lem. Each agent has its own goals that it is trying to achieve
in the environment that is typically unknown to the other
agents. In these types of problems, the difficulty of learning
useful policies greatly increases since the agents are both
interacting with the environment and each other. One strat-
egy for solving multi-agent environments is Independent
Q-learning (Tan, 1993), where other agents are considered
to be part of the environment and there is no communica-
tion between agents. This approach often fails since each
agent is operating in the environment and in return, creates
learning instability. This learning instability is caused by
the fact that each agent is changing its own policy and how
the agent changes this policy will influence the policy of the
other agents (Matignon, Laurent, and Le Fort-Piat, 2012).
Without some type of communication, it is very difficult for
the agents to converge to a good policy.

Figure 1. Progression of a multi-agent reinforcement learning prob-
lem.

3. Problem Formulation
In real world practice, air traffic controllers in en-route and
terminal sectors are responsible for separating aircraft. In
our research, we used the BlueSky air traffic control simu-
lator as our deep reinforcement learning environment. We
developed two challenging Case Studies: one with multiple
intersections (Case Study 1) and one with a merging point
(Case Study 2), both with high-density air traffic to evalu-
ate the performance of our deep multi-agent reinforcement
learning framework.

3.1. Objective

The objective in these Case Studies is to maintain safe sep-
aration between aircraft and resolve conflict for aircraft in
the sector by providing speed advisories. In Case Study 1,
three routes are constructed with two intersections so that
the agents must navigate through the intersection with no
conflicts. In Case Study 2, there are two routes that reach
a merging point and continue on one route, so ensuring
proper separation requirements at the merging point is a
difficult problem to solve. In order to obtain the optimal so-
lution in this environment, the agents have to maintain safe
separation and resolve conflict and every time step in the
environment. To increase the difficulty of the Case Studies
and to provide a more realistic environment, aircraft enter
the sector stochastically so that the agents need to develop a
strategy instead of simply memorizing actions.

3.2. Simulation Settings

There are many settings we imposed to make these Case
Studies feasible. For each simulation run, there is a fixed
max number of aircraft. This is to allow comparable per-
formance between simulation runs and to evaluate the final
performance of the model. In BlueSky, the performance
metrics of each aircraft type impose different constraints
on the range of cruise speeds. We set all aircraft to be
the same type, Boeing 747-400, in both Case Studies. We
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also imposed a setting that all aircraft can not deviate from
their route. The final setting in the Case Studies is the de-
sired speed of each aircraft. Each aircraft has the ability
to select three different desired speeds: minimum allowed
cruise speed, current cruise speed, and maximum allowed
cruise speed which is defined in the BlueSky simulation
environment.

3.3. Multi-Agent Reinforcement Learning Formulation

Here we formulate our BlueSky Case Study as a deep multi-
agent reinforcement learning problem by representing each
aircraft as an agent and define the state space, action space,
termination criteria and reward function for the agents.

3.3.1. STATE SPACE

A state contains all the information the AI agent needs to
make decisions. Since this is a multi-agent environment, we
needed to incorporate communication between the agents.
To allow the agents to communicate, the state for a given
agent also contains state information from the N-closest
agents. We follow a similar state space definition as in
(Everett et al., 2018), but instead we use half of the loss
of separation distance as the radius of the aircraft. In this
way the sum of the radii between two aircraft is equal to the
loss of separation distance. The state information includes
distance to the goal, aircraft speed, aircraft acceleration, dis-
tance to the intersection, a route identifier, and half the loss
of separation distance for the N-closest agents, where the
position for a given aircraft can be represented as (distance
to the goal, route identifier). We also included the distance
to the N-closest agents in the state space of the agents and
the full loss of separation distance. From this, we can see
that the state space for the agents is constant in size, since
it only depends on the N-closest agents and does not scale
as the number of agents in the environment increase. Fig. 2
shows an example of a state in the BlueSky environment.

We found that defining which N-closest agents to consider
is very important to obtain a good result since we do not
want to add irrelevant information in the state space. For
example, consider Fig. 2. If the ownship is on R1 and
one of the closest aircraft on R3 has already passed the
intersection, there is no reason to include its information in
the state space of the ownship. We defined the following
rules for the aircraft that are allowed to be in the state of the
ownship:

• aircraft on conflicting route must have not reached the
intersection

• aircraft must either be on the same route or on a con-
flicting route.

By utilizing these rules, we eliminated useless information

Figure 2. BlueSky sector designed for our Case Study. Shown is
Case Study 1 for illustration: there are three routes, R1, R2, and
R3, along with two intersections, I1 and I2.

which we found to be critical in obtaining convergence to
this problem.

If we consider Fig. 2 as an example, we can acquire all of
the state information we need from the aircraft. If we let I(i)

represent the distance to the goal, aircraft speed, aircraft
acceleration, distance to the intersection, route identifier,
and half the loss of separation distance of aircraft i, the state
will be represented as follows:

sot = (I(o), d(1),LOS(o, 1), d(2),LOS(o, 2)..., d(n),

LOS(o, n), I(1), I(2), ..., I(n)),

where sot represents the ownship state, d(i) represents the
distance from ownship to aircraft i, LOS(o, i) represents the
loss of separation distance between aircraft o and aircraft i,
and n represents the number of closest aircraft to include in
the state of each agent. By defining the loss of separation
distance between two aircraft in the state space, the agents
should be able to develop a strategy for non-uniform loss of
separation requirements for different aircraft types. In this
work we consider the standard uniform loss of separation
requirements and look to explore this idea in future work.

3.3.2. ACTION SPACE

All agents decide to change or maintain their desired speed
every 12 seconds in simulation time. The action space for
the agents can be defined as follows:

At = [vmin, vt−1, vmax],

where vmin is the minimum allowed cruise speed (decel-
erate), vt−1 is the current speed of the aircraft (hold), and
vmax is the maximum allowed cruise speed (accelerate).

3.3.3. TERMINAL STATE

Termination in the episode was achieved when all aircraft
had exited the sector:

Naircraft = 0.
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3.3.4. REWARD FUNCTION

The reward function for the agents were all identical, but
locally applied to encourage cooperation between the agents.
If two agents were in conflict, they would both receive a
penalty, but the remaining agents that were not in conflict
would not receive a penalty. Here a conflict is defined as
the distance between any two aircraft is less than 3 nmi.
The reward needed to be designed to reflect the goal of this
paper: safe separation and conflict resolution. We were able
to capture our goals in the following reward function for the
agents:

rt =


−1 if dco < 3

−α+ β · dco if dco < 10 and dco ≥ 3

0 otherwise
,

where dco is the distance from the ownship to the closest
aircraft in nautical miles, and α and β are small, positive
constants to penalize agents as they approach the loss of
separation distance. By defining the reward to reflect the
distance to the closest aircraft, this allows the agent to learn
to select actions to maintain safe separation requirements.

4. Solution Approach
To solve the BlueSky Case Studies, we designed and de-
veloped a novel deep multi-agent reinforcement learning
framework called the Deep Distributed Multi-Agent Rein-
forcement Learning framework (DD-MARL). In this sec-
tion, we introduce and describe the framework, then we
explain why this framework is needed to solve this Case
Study.

To formulate this environment as a deep multi-agent rein-
forcement learning problem, we utilized a centralized learn-
ing with decentralized execution framework with one neural
network where the actor and critic share layers of same the
neural network, further reducing the number of trainable
parameters. By using one neural network, we can train a
model that improves the joint expected return of all agents
in the sector, which encourages cooperation between the
agents. We utilized the synchronous version of A3C, A2C
(advantage actor critic) which is shown to achieve the same
or better performance as compared to the asynchronous ver-
sion (Schulman et al., 2017). We also adapted the A2C
algorithm to incorporate the PPO loss function defined in
(6), which we found led to a more stable policy and resulted
in better final performance. We follow a similar approach
to (Everett et al., 2018) to split the state into the two parts:
ownship state information and all other information, which
we call the local state information, slocal. We then encode
the local state information using a fully connected layer
before combining the encoded state with the ownship state
information. From there, the combined state is sent through

Figure 3. Illustration of the neural network architecture for A2C
with shared layers between the actor and critic. Each hidden layer
is a fully connected (FC) layer with 32 nodes for the encoded state
and 256 nodes for the last two layers.

two fully connected layers and produces two outputs: the
policy and value for a given state. Fig. 3 shows an illus-
tration of the the neural network architecture. With this
framework, we can implement the neural network to all
aircraft, instead of having a specified neural network for
all individual aircraft. In this way, the neural network is
acting as a centralized learner and distributing knowledge
to each aircraft. The neural network’s policy is distributed
at the beginning of each episode and updated at the end
of each episode which reduces the amount of information
that is sent to each aircraft, since sending an updated model
during the route could be computationally expensive. In this
formulation, each agent has identical neural networks, but
since they are evolving different states their actions can be
different.

It is also important to note that this framework is invariant to
the number of aircraft. When observing an en-route sector,
aircraft are entering and exiting which creates a dynamic
environment with varying number of aircraft. Since our
approach does not depend on the number of aircraft, our
framework can handle any number of aircraft arriving based
on stochastic inter-arrival times.

5. Numerical Experiments
5.1. Interface

To test the performance of our proposed framework, we
utilized the BlueSky air traffic control simulator. This sim-
ulator is built around python so we were able to quickly
obtain the state space information of all aircraft1. By design,
when restarting the simulation, all objectives were the same:
maintain safe separation and sequencing, resolve conflicts,
and minimize delay. Aircraft initial positions and available
speed changes did not change between simulation runs.

1Code will be made available at https://github.com/marcbrittain
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5.2. Environment Setting

For each simulation run in BlueSky, we discretized the envi-
ronment into episodes, where each run through the simula-
tion counted as one episode. We also introduced a time-step,
∆t , so that after the agents selected an action, the envi-
ronment would evolve for ∆t seconds until a new action
was selected. We set ∆t to 12 seconds to allow for a no-
ticeable change in state from st → st+1 and to check the
safe-separation requirements at regular intervals.

There were many different parameters that needed to be
tuned and selected for the Case Studies. We implemented
the adapted A2C concept mentioned earlier, with two hidden
layers consisting of 256 nodes. The encoding layer for the
N -closest aircraft state information consisted of 32 nodes
and we used the ReLU activation function for all hidden
layers. The output of the actor used a Softmax activation
function and the output of the critic used a Linear activation
function. Other key parameter values included: learning rate
lr = 0.0001, γ = 0.99, ε = 0.2, α = 0.1, β = 0.005, and we
used the Adam optimizer for both the actor and critic loss
(Kingma and Ba, 2014).

5.3. Case Study 1: Three routes with two intersections

In this Case Study, we considered three routes with two
intersections as shown in Fig. 2. In our DD-MARL frame-
work, the single neural network is implemented on each
aircraft as they enter the sector. Each agent is then able
to select its own desired speed which greatly increases the
complexity of this problem since the agents need to learn
how to cooperate in order to maintain safe-separation re-
quirements. What also makes this problem interesting is
that each agent does not have a complete representation of
the state space since only the ownship (any given agent)
state information and the N-closest agent state information
are included.

5.4. Case Study 2: Two routes with one merging point

This Case Study consisted of two routes merging to one sin-
gle point and then following one route thereafter (see Fig. 4.
This poses another critical challenge for an autonomous air
traffic control system that is not present in Case Study 1:
merging. When merging to a single point, safe separation
requirements need to be maintain both before the merging
point and after. This is particularly challenging since there
is high density traffic on each route that is now combining
to one route. Agents need to carefully coordinate in order to
maintain safe separation requirements after the merge point.

In both Case Studies there were 30 total aircraft that entered
the airspace following a uniform distribution over 4, 5, and
6 minutes. This is an extremely difficult problem to solve
because the agents cannot simply memorize actions, the

Figure 4. Case Study 2: two routes, R1 and R2 merge to a single
route at M1.

Table 1. Performance of the policy tested for 200 episodes.

CASE STUDY MEAN MEDIAN

1 29.99 ± 0.141 30
2 30 30

agents need to develop a strategy in order to solve the prob-
lem. We also included the 3 closest agents state information
in the state of the ownship. All other agents are not included
in the state of the ownship. The episode terminated when
all 30 aircraft had exited the sector, so the optimal solution
in this problem is 30 goals achieved. Here we define goal
achieved as an aircraft exiting it the sector without conflict.

5.5. Algorithm Performance

In this section, we analyze the performance of DD-MARL
on the Case Studies. We allowed the AI agents to train
for 20,000 episodes and 5,000 episodes for Case Study 1
and Case Study 2, resepctively. We then evaluated the final
policy for 200 episodes to calculate the mean and standard
deviation along with the median to evaluate the performance
of the final policy as shown in Table 12. We can see from
Fig. 5 that for Case Study 1, the policy began converging
to a good policy by around episode 7,500, then began to
further refine to a near optimal policy for the remaining
episodes. For Case Study 2, we can see from Fig. 6 that a
near optimal policy was obtained in only 2,000 episodes and
continued to improve through the remainder of the 3,000
episodes. Training for only 20,000 episodes (as required in
Case Study 1) is computationally inexpensive as it equates
to less than 4 days of training. We suspect that this is due
to the approach of distributing one neural network to all
aircraft and by allowing shared layers between the actor and
critic.

2A video of the final converged policy can be found
at https://www.youtube.com/watch?v=sjRGjiRZWxg and
https://youtu.be/NvLxTJNd-q0
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Figure 5. Learning curve of the DD-MARL framework for Case
Study 1. Results are smoothed with a 30 episode rolling average
for clarity.

We can see from Table 1, that on average we obtained a
score of 29.99 throughout the 200 episode testing phase
for Case Study 1 and 30 for Case Study 2. This equates to
resolving conflict 99.97% at the intersections, and 100% at
the merging point. Given that this is a stochastic environ-
ment, we speculate that there could be cases where there is
an orientation of aircraft where the 3 nmi loss of separation
distance can not be achieved, and in such cases we would
alert human ATC to resolve this type of conflict. The me-
dian score removes any outliers from our testing phase and
we can see the median score is optimal for both Case Study
1 and Case Study 2.

6. Conclusion
We built an autonomous air traffic controller to ensure safe
separation between aircraft in high-density en-route airspace
sector. The problem is formulated as a deep multi-agent
reinforcement learning problem with the actions of selecting
desired aircraft speed. The problem is then solved by using
the DD-MARL framework, which is shown to be capable
of solving complex sequential decision making problems
under uncertainty. According to our knowledge, the major
contribution of this research is that we are the first research
group to investigate the feasibility and performance of au-
tonomous air traffic control with a deep multi-agent rein-
forcement learning framework to enable an automated, safe
and efficient en-route airspace. The promising results from
our numerical experiments encourage us to conduct future
work on more complex sectors. We will also investigate the
feasibility of the autonomous air traffic controller to replace
human air traffic controllers in ultra dense, dynamic and
complex airspace in the future.
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Figure 6. Learning curve of the DD-MARL framework for Case
Study 2. Results are smoothed with a 30 episode rolling average
for clarity.
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