
Algebraic Connectivity Optimization of the Air Transportation Network

Gregoire Spiers1, Peng Wei2, Dengfeng Sun2

Abstract— In transportation networks the robustness of a
network regarding nodes and links failures is a key factor
for its design. The goal of this work is to design the most
robust network given only the location of each node. A common
way to measure the robustness of a network is to evaluate the
algebraic connectivity of the graph, which was introduced by
Fiedler. Several works solve the maximization of the algebraic
connectivity by choosing the weights for the edges in the graph.
Other works focus on the best way to add edges in a network
in order to optimize the connectivity. In this work we present a
practical way to find both the edges and their weights in order
to optimize the network robustness. We show that this wider
problem which is not currently mentioned in the literature is
interesting because the two sub-problems of adding edges and
choosing edge weights can not be treated separately. The new
combined problem inspired by the air transportation network
is formulated and exactly solved in small size network case. For
larger size networks, we propose our approximation algorithm
and the simulated numerical results are analysed.

I. INTRODUCTION

The goal of this work is to design a robust air transporta-
tion network. More precisely, we want to build a network
where if there is a failure of an edge or a node, the network
remains connected. The network is made of nodes that rep-
resent the airports and edges that represent the flight routes
which directly link two airports. In some circumstances, a
failure in the network can happen. Either a node or a link
of the graph may breakdown. For example the failures can
be caused by severe weather conditions. Therefore to build
a robust or well connected network is a practical problem
that has very important economic impact. Although there
exist other tools to measure the connectivity of a network,
we measure the connectivity by computing the algebraic
connectivity, which is usually considered as one of the most
reasonable and neat evaluation methods [1], [2].

We consider a graph G with n nodes and m edges. Let
A = (aij) be the adjacency matrix of G. The Laplacian
matrix L = (lij) of G is defined by:{

lij = −aij if i 6= j
lii =

∑n
j=1 aij

We name the eigenvalues of L: λ1 ≤ λ2 ≤ · · · ≤ λn. L is
a semi-definite positive matrix so for all i, λi ≥ 0. We also
know that λ1 = 0 since Le = 0 with e = (1, · · · , 1).

1 G. Spiers is with the Department of Applied Mathematics, Ecole
Polytechnique, 91120, Palaiseau, France gregoire.spiers at
polytechnique.org

2 P. Wei and D. Sun are with the School of Aeronautics and Astronautics,
Purdue University, West Lafayette, IN 47907, USA {weip,dsun} at
purdue.edu

Definition: λ2(L) is the algebraic connectivity of G.
We now recall the three well known properties of the

algebraic connectivity that will be used in this work.
Property 1: Let e = (1, · · · , 1) ∈ Rn and

Ω = {x ∈ Rn | ‖x‖ = 1, eTx = 0}

The Courant Fischer principle states that [3]:

λ2 = min
x∈Ω

xTLx (1)

Property 2: The algebraic connectivity is a lower bound
for both the node connectivity and the edge connectivity of
a graph (see [4]).

This property is the main reason why the algebraic con-
nectivity is used to measure the robustness of a graph.

Property 3: The function w → λ2(w) is concave. This
can be proven by seeing that λ2(w) is the pointwise infimum
of a family of linear functions of w (see [5]):

λ2(w) = inf
‖v‖=1, eT v=0

vTLv

λ2(w) = inf
‖v‖=1, eT v=0

∑
(i,j)∈E

wij(vi − vj)2

The related work in algebraic connectivity has been stud-
ied for a long time and there are some results about it.
Concerning the optimization of the algebraic connectivity on
a graph, the problems studied in the literature can be divided
into two groups:

a) The edge addition problem: The goal is to add (or
remove) a given number of edges on a graph in order to get
the best algebraic connectivity:

max
∆E

λ2(G(E0 + ∆E))

s.t.
{
|∆E| = k
∆E ⊂ P, P ∩ E0 = ∅

The algorithms that have been developed to solve the prob-
lem include tabu search [2], greedy algorithms [2], [6], and
rounded SDP [6].

b) The variable weights problem: The edges of the
graph are fixed and the goal is to choose the weights of
the edges in order to maximize the algebraic connectivity:

max
w∈Rm

λ2(G)

s.t.
{ ∑m

i=1 widi ≤ D
∀i, wi ≥ 0

where D and (d1, · · · , dm) are the given data of the problem.
This is a convex optimization problem and it is often solved
by using a SDP formulation [5], [7], [8] or a sub-gradient
algorithm [9].

The main contribution of this paper compared with what
have been studied is that we show that in order to find
the optimal solution, the two problems above can not be
separated. Therefore we propose our algorithm to solve both
problems at the same time: the edges of the graph are free,
as well as their weights.

The rest of this paper is organized as follows. We show
in Section II why this problem naturally arise in transport
networks and how it can be formulated. In Section III we
solve exactly the problem for small networks and highlight
the fact that these two problems are not independent. As
a result, we write an algorithm that gives better results.
To deal with the larger size networks, we present the SDP
formulation in Section IV. And we discuss the SDP solution
rounding techniques in Section V. Section VI gives the full
approximation algorithm for larger size networks. Section
VII presents the simulation results. Finally we conclude the
paper in Section VIII.

II. PROBLEM FORMULATION

We consider a set of airports ai with given locations
in the plane. The goal is to connect them so that we
maximize the algebraic connectivity of the network under
several constraints.

There are m = n(n−1)
2 edges in the complete symmetric

graph. Each of them has a distance dij and a weight wij
representing the amount of traffic on the link. We consider
the following constraints:
• For safety reasons and because the airports have a limit

in the traffic they can handle, the edges have a maximum
capacity β:

∀(i, j) ∈ E, wij ≤ β

• The total distance represents the cost of the fuel used
which is one of the main cost. So the total distance
travelled is limited by:∑

ij

wijdij ≤ D

• The edges also need a minimum amount of traffic α:

∀(i, j) ∈ E, wij ≥ α or wij = 0

Indeed, opening a new route when there is considerable
traffic demand. For example there are no flights from
Paris to Indianapolis because the demand is not large
enough.

• The airports need a minimum number of passengers
which corresponds to the amount of travellers that
actually want to go to this particular airport.

∀i ∈ {1, · · · , n},
n∑
j=1

wij ≥ pi

The constant pi can be set proportional to the population
of the city. pi may be ignored at first but will be
important to get realistic results at the end.

In summary, the complete problem we aim at solving is:

max
w

λ2(L(w)) s.t.


∑
ij wijdij ≤ D

wij ∈ {0, [α, β]}∑
j wij ≥ pi

(P)

A. The alternative formulation
In order to be able to solve the problem, we need to

reformulate it by adding decision variables. The first idea
is to add, for each edge (i, j), a binary variable xij stating
if there exists an edge between ai and aj :

xij = 1⇔ wij 6= 0

This is useful since we can now express the domain for w
as:

∀(i, j), αxij ≤ wij ≤ βxij
Then we add a variable k that determines the number of
edges in the graph. The final formulation of the problem is:

max
x,w,k

λ2(L(w)) s.t.:



∑
i,j xij = k

xij ∈ {0, 1}∑
i,j wijdij ≤ D

αxij ≤ wij ≤ βxij∑
j wij ≥ pi

(2)

B. Difficulty
The problem (P) is an extension of the flight routes

addition problem in [2], which is proven to be NP-hard,
therefore the extended version problem (P) is also NP-hard.

An important remark is that the problem can not really
be split into two steps of first deciding if w = 0 or not and
followed by choosing the appropriate weights. This is due to
the fact that there are minimum and maximum constraints on
w. However, assuming the two steps are independent, we can
try a decoupled approach. The first step is to choose edges
for the empty graph which corresponds to the edge addition
problem:

max
x

λ2(L(x))

s.t.:
∑
i

xi = k, xi ∈ {0, 1},
∑
i

xidi ≤
D

α

and then to choose the weights on them:

max
w

λ2(L(w))∑
i

widi ≤ D, αyi ≤ wi ≤ βyi, y = xopt

We will see in Section III that if we use this approach the
results will not be optimal.

C. Relaxation
The relaxation (R) of the problem is obtained by allowing

non-integer values for x:

∀ (i, j) ∈ E, xij ∈ [0, 1]

This is the same as choosing w ∈ [0, β] without the variables
x and k. However these variables will be necessary in order
to be able to get the integer solution from this relaxed one.
We notice that the solution of (R) is a concave function of
k

III. EXACT SOLUTION FOR SMALL NETWORKS

If all weights have to be chosen within an interval the
problem becomes a convex optimization problem and it can
be solved using a SDP solver. The idea here is to try all the
possible configurations for which all the weights are either
0 or in [α, β]. Then we can optimize independently each
configuration and find the one that leads to the best result.

We consider n nodes chosen randomly. There are m =
n(n−1)

2 edges and 2m configurations to test. For each con-
figuration, if Y is the set of the edges that are actually in
the graph, we solve the problem:

max
w

λ2(L(w)) s.t.


∑
ij wijdij ≤ D

α ≤ wij ≤ β, ∀(i, j) ∈ Y
wij = 0, ∀(i, j) /∈ Y∑
j wij ≥ pi

This can be done by solving the SDP corresponding to the
weight optimization problem (see [5] for details)

min
w

∑
i

widi s.t.


α ≤ wi ≤ β, ∀(i, j) ∈ Y
wij = 0, ∀(i, j) /∈ Y∑
j wij ≥ pi

L(w) � I − 1
nee

T

It becomes impossible to exactly solve the problem when
n is large. So we assume n to be small in this section.

A. Results

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Fig. 1: Results of (k, λ2) for
all the configurations for n = 5,
D = 6.5.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 2: Results of (k, λ2) for
all the configurations for n = 6,
D = 8.

We compute for each configuration the number of edges
k in the graph. We then plot (k, λ2) and we get the results
of Figure 1 and 2 for two different networks.

We notice that the best connectivity is not reached for the
maximum number of edges and therefore the choice of the
edges and the choice of the weights are not independent.

As it is impossible to exactly solve this NP-hard problem
for networks with a reasonable larger size, we are going to
design an algorithm that solves it approximately. The main
idea is to use the quasi-concave shape of the function f(k).

For the practical problem with a larger size, the first step
is to choose a value for k. We are able to solve the relaxed
version (R) of the problem where x and w are non-integer
variables. We can then round the result to get a feasible
solution of the original problem (P).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2.58
2.58

2.57

2.01

2.00

2.00

Fig. 3: An optimal network for n = 5 with the weights. p = 0, α = 2
and D = 6.5

B. Maximum number of edges
Because of the minimum value α for the weights, there

exists a limit in the number of edges in the graph. For
randomly chosen nodes in a square, we find klim, which is
the maximal number of edges k, is the root of the following
equation:

ak2
lim + bklim + c =

D

α
(3)

where a, b and c are constant parameters.
The quadratic fitting result obtained by Formula (3) is a

good approximation of our experiment.

IV. SDP FORMULATION FOR LARGER SIZE RELAXATION
PROBLEMS

To solve the larger size problem, we express the relaxation
of the problem as a SDP that will be solved efficiently. When
v is not normalized, recall Eqn. (1) in Property 1, which can
then be transformed as: λ2 = maxλ λ

λvT v ≤ vTLv
∀v ∈ Rn, vT e = 0

We add a variable µ that allows any v ∈ Rn:{
λ2 = maxλ,µ λ
∀v ∈ Rn, vT (µeeT)v + vTLv − λvT v ≥ 0

It can be written using Loewner’s order [10]:{
λ2 = maxλ,µ λ
µeeT + L− λI � 0

(4)

The relaxation of the problem we want to solve is:

max
x,w,k

λ2(L(w)) s.t.



∑
i xi = k

xi ∈ [0, 1]∑
i widi ≤ D

αxi ≤ wi ≤ βxi∑
j wij ≥ pi

which now becomes with Eqn. (4):

max
x,w,k,λ,µ

λ s.t.



∑
i xi = k

xi ∈ [0, 1]∑
i widi ≤ D

αxi ≤ wi ≤ βxi∑
j wij ≥ pi

µeeT + L− λI � 0

(5)

This problem is a SDP since there is a semi-definite con-
straint and all the other constraints are linear. It can be solved
very efficiently by a SDP solver. We use SeDuMi [11] for
this paper.

A. Optimality conditions

For simplicity, we consider the case in which p = 0. The
primal SDP is:

max
x,w,k,λ,µ

λ s.t.



∑
i xi = k

xi ∈ [0, 1]∑
i widi ≤ D

αxi ≤ wi ≤ βxi
µeeT + L− λI � 0

The KKT optimality conditions are:
SX = XS = 0
S � 0, X � 0
〈Eij , X〉 = dij
L− I + 1

nJ = S

• If we have wi = w for all i, we get:

S = (nw − 1)(I − 1

n
J)

if we choose, w = 1
n , we get S = 0 and the conditions

are satisfied.
• Reciprocally, if the optimality conditions are satisfied,

we have (
L− (I − 1

n
J)

)
X = 0

X is the matrix of the distances and has rank n so

L = I − 1

n
J

and thus w is constant for all i and w = 1
n .

We finally get the optimality condition:{
∀(i, j), wi = wj∑
i widi = D

B. Upper bound

With the SDP formulation, we can easily solve the contin-
uous relaxation. When computing the value of the optimal
connectivity for different values of k, we get the upper bound
in Figure. 4.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

Fig. 4: Upper bound: λ2 = f(k).

The relaxed problem reached its maximum for several
values of k contained in an interval [kmin, kmax]. Indeed,
the optimality conditions give:{ ∑m

i=1 widi = D
∀(i, j), wi = wj

All the weights are equal and their value is: ∀i, wi =
D∑
j dj

= Ω. If we have w = βx all the elements of x are

equal and their value is: ∀i, xi = k
n2−n , which leads to

kmin =
Ω(n2 − n)

β

By doing the same computation we prove the optimal value
is also reached with

kmax =
Ω(n2 − n)

α

and ∀k ∈ [kmin, kmax], we get the optimal value.
In addition, when we round the solution, we may get no

feasible value. For example, if k = kmin, there is often no
solution since we can have:∑

i

xi =
nΩ

β
< n− 1

if Ω
β << 1 which is often the case. And as we need at least

n− 1 edges to connect a n node graph there is no positive
solution. The upper bound is not a very good bound for small
values of k.

V. THE ROUNDING TECHNIQUES FOR SDP SOLUTION

A. Description of the methods

In this section, we suppose we have found the value of
the relaxed optimal solution s0. We want to select k edges
from s0 which means xi = 1 for k values and xi = 0 for
the others. There are several ways to do so. We present here
the methods that have been studied and implemented.

1) Greedy: We choose the k biggest elements s0(xi) in
the relaxed solution. Then we find the optimal weights by
solving the corresponding SDP.

2) Random fast: We randomly choose the rounding. For
each i ∈ {1, · · · ,m}, xi = 1 with probability s0(xi) and
xi = 0 otherwise. Then we affect the weights with the
following value:

s0(wi)

s0(xi)

These two steps are repeated many times. The average value
xi of xi is s0(xi) and therefore∑

i

xi =
∑
i

s0(xi) = k

and, for the same reason:∑
i

widi =
∑
i

s0(wi)

s0(xi)
xidi =

∑
i

s0(wi)di ≤ D

Thus on average the solution satisfies the constraints. We
keep at the end the best solution that satisfies all the
constraints.

3) Random: We also choose randomly the rounding. If∑
i xi = k, which is the case on average, we evaluate

the weights by solving the SDP formulation. The steps are
repeated several times and we keep the best value.

4) Step by step: We select the biggest element s0(xi) < 1
and affect its minimum value to 1 in the SDP formulation.
Then we solve again the SDP and repeat k times the two
steps.

5) Log step by step: This is the same idea as the ”step
by step” except that, at each step, we choose the best half of
the remaining elements. So their are only log(k) SDP that
has to be solved.

B. Numerical results

We set up the simulation with 20 nodes generated ran-
domly in a square. The results are presented in Figure 5
with λ2 as a function of k. The upper bound obtained by the
relaxation is plotted as well as all the rounding techniques.

It turns out that some techniques might fail to find a
solution. In that case we remove the corresponding values
from the figure.

We see that we can do better than the upper bound at
the maximum number of edges klim. This shows that any
algorithm based on edge addition without considering the
variable weights is not adapted.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 5: λ2 as a function of k. The results are represented for a 20 nodes
graph and several rounding methods.

C. Pros and cons

Each of the methods presented has some advantages and
drawbacks. The one that gives the best result is the step by
step method. The fastest is random fast. And the method that
gives the best compromise between speed and value is the
log step by step.

VI. FULL ALGORITHM

A. Golden section search

We are now able to find, for a given k, a well connected
network with k edges. But instead of testing all the possible
values of k, we can speed up the search by considering that
the algebraic connectivity is a concave function of k.

This approximation leads to better results with rounding
methods that have a good regularity. For large networks we

can use rounding methods with lower regularity but instead
of computing the value for a given k, use a local average
value by computing three values :

∀k ∈ N, f(k) =
f(k − 1) + f(k) + f(k + 1)

3

As we can only compute the value of the connectivity for
integer values of k, we cannot use continuous optimization
principles. Thus we adopt the golden section search [12]. It
consists in creating a decreasing set of intervals containing
the optimal value :

∀i ∈ N, [ai+1, bi+1] ⊂ [ai, bi]

and kopt ∈ [ai, bi]. We need two test values ci < di in [ai, bi].
The rule used to update the interval is the following :
• f(ci) < f(di)⇒ [ai+1, bi+1] = [ci, bi]
• f(ci) > f(di)⇒ [ai+1, bi+1] = [ai, di]

At each step, we only need to compute one new value of
f . This new value is usually chosen so that the test values
are at the golden ratio φ = 1+

√
5

2 . Here we round the value
to get an integer. This method allows, on average, to divide
the length of the interval by φ at each step.

B. Algorithm

We are now able to sum up all the steps of the algorithm.
The SDP are solved using the SeDuMi solver [11]. This
algorithm that leads to the approximation of the optimum is
listed in Algorithm 1.

Algorithm 1 Full algorithm

1: Initialize a, b and d
2: while b− a > 2 do
3: Choose c in by golden section search
4: Solve the relaxed SDP with k = c
5: for p = 1 to k do
6: j ← arg maxi{xi|xi < 1}
7: Impose xj = 1
8: Solve the SDP
9: end for

10: if f(c) < f(d) then
11: a← c
12: else
13: b← d
14: d← c
15: end if
16: end while
17: return λ2

We can analyse the complexity of this algorithm which
depends on several parameters of the problem. The algorithm
requires to solve k+1 SDP for each value of k selected. Each
step has a different value for k and most of them are close
to kopt.

In addition, there are U such steps. U is defined by
klimφ

−U = 1 since at each step the length of the interval is

divided by φ. We have:

U =
log(1/klim)

log(1/φ)

We also need to consider the complexity T to solve the
SDP. T is polynomial in the size of the entry which is
equivalent to n2. So T is a polynomial function of n.

Therefore complexity C of the whole algorithm can be
approximated by C = O(koptUT).

VII. NUMERICAL RESULTS

A. The optimal network

In order to test the full algorithm, we generate a set of
random nodes in a square. The parameters pi’s are also
chosen randomly. An example of the optimal network is
represented in Figure 6 for 30 nodes.

The edges that have a weight greater than the minimum
weight value α are represented with a thicker line. In the
example of Figure 6 there are 10 edges with a larger weight
value than α.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6: The optimal result for a
30 nodes graph.

0 5 10 15 20 25 30
6

8

10

12

14

16

18

Fig. 7: The sorted degrees of the
nodes for the optimal network.

After obtaining the optimal network, we can compute the
degree di for each node by di =

∑
j wij . The law of the

network is the curve representing the sorted degree of the
nodes. For example, for the air transportation network, the
law of the network is known to be a power law [13], [14].
However, the network which is the solution of the problem
has a much more progressive law which is represented in
Figure 7 since n = 30 is not a number large enough to
make a precise comparison.

B. Efficiency

We now want to evaluate the efficiency of the result by
comparing the optimal algebraic connectivity to the upper
bound. For a given set of nodes, we solve the problem for
different values of the parameter D and we compute the
percentage of the solution to the bound:

r = 100
val(R)

val(P)

The result, illustrated in Figure 8, shows that for small
values of D the best result found is very far from the upper
bound. However, when increasing D, the objective value of
the problem (P) quickly increases to reach the value of its
relaxed version (R).

20 40 60 80 100 120 140 160 180
55

60

65

70

75

80

85

90

95

100

Fig. 8: Values of r for different values of D.

VIII. CONCLUSION

In this work we have presented and studied a new problem
concerning the optimization of the connectivity of a network.
This problem consists of finding both the edges of the
graph and their weights under several practical constraints.
We first exactly solve the problem on small size networks
and show that the problem can not be separated into two
already studied independent problems. Then we presented
an algorithm to solve approximately the problem for larger
size instances. Finally we perform analysis on the proposed
algorithm and the numerical results.

The problem studied in this work is able to model real
problems such as transportation networks robustness. It also
provides an option to improve current ways of designing
networks.

REFERENCES

[1] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathe-
matics Journal, vol. 23, pp. 298–305, 1973.

[2] P. Wei and D. Sun, “Weighted algebraic connectivity: An application
to airport transportation network,” in the 18th IFAC World Congress,
Milan, Italy, Aug 2011.

[3] B. Mohar, “The laplacian spectrum of graphs,” Graph Theory, Com-
binatorics, and Applications, vol. 2, pp. 871–898, 1991.

[4] N. M. M. de Abreu, “Old and new results on algebraic connectivity
of graphs,” Linear Algebra and its applications, vol. 423, pp. 53–73,
2007.

[5] J. Sun, S. Boyd, L. Xiao, and P. Diaconis, “The fastest mixing markov
process on a graph and a connection to a maximum variance unfolding
problem,” SIAM Review, vol. 48(4), pp. 681–699, November 2006.

[6] A. Ghosh and S. Boyd, “Growing well-connected graphs,” in the
45th IEEE Conference on Decision and Control, December 2006, p.
6605C6611.

[7] F. Goring, C. Helmberg, and M. Wappler, “Embedded in the shadow
of the separator,” SIAM Journal On Optimization, vol. 19(1), pp. 472–
501, 2008.

[8] S. Boyd, “Convex optimization of graph laplacian eigenvalues,” in
Proceedings International Congress of Mathematicians, vol. 3, 2006,
pp. 1311–1319.

[9] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on
a graph,” SIAM Review, vol. 46(4), pp. 667–689, December 2004.

[10] M. Siotani, “Some applications of loewner’s ordering on symmetric
matrices,” Annals of the Institute of Statistical Mathematics, vol. 19(1),
pp. 245–259, 1967.

[11] I. Polik, T. Terlaky, and Y. Zinchenko, SeDuMi: a package for
conic optimization. McMaster University, Advanced Optimization
Laboratory, 2007.

[12] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, The Art of
Scientific Computing, 3rd ed. Cambridge University Press, 2007.

[13] R. Guimera and L. Amaral, “Modeling the world-wide airport net-
work,” European Physical Journal B, vol. 38, pp. 381–385, 2004.

[14] E. Vargo, R. Kincaid, and N. Alexandrov, “Towards optimal transport
networks,” Systemics, Cybernetics and Informatics, vol. 8, no. 4, pp.
59–64, 2010.

