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Many applications related to fields such as transportation, energy, communication, 

biology, and defense, require making several strategic and tactical decisions, which includes 

designing a real-world complex network system and setting its operational parameters. These 

systems typically have high uncertainties, a lack of a master design plan, and vulnerability to 

system failures that could potentially have catastrophic consequences. Therefore, we need 

rigorous theoretical foundations for designing complex networked systems to mitigate these 

risks and enhance the system performance. To our knowledge, based on literature survey, 

there has been little to no exploration of Big Data methods and tools in value-based systems 

engineering in how to better formulate the value function. Moreover, to our knowledge, there 

has been little to no work done in the network science community to develop a value function 

that would enable consistent assessment of robustness and resilience. At present, metrics have 

been developed to guide decisions in network design, but no overarching function, such as a 

value function, exists to enable understanding the true benefits of network robustness and 

resilience for system designer and stakeholders. This research paper aims to understand the 

factors and attributes contributing to the value of network performance with regards to 

robustness and resilience; explore the strategies to design complex networked systems with 

Big Data analytics; bridge the gap between the network science community and systems 

engineering community in the understanding of system robustness and resilience; and 

ultimately develop a mathematically rigorous design framework for complex networked 

systems, such as transportation networks, for generating designs that perform optimally in 

the presence of uncertainties based on the preference and risk attitude of the stakeholders. 

Network based companies, such as air carriers, can utilize this framework in their route 

planning, schedule planning and fleet planning, to design new route networks or reconfigure 

existing ones, for maximization of profit or other preferred objectives.  

I. Nomenclature 

𝐺 = air transportation network 

N = set of all nodes or airports in 𝐺 

A = set of all arcs or routes in 𝐺  

Ĉ = set of all carriers operating in G 

𝐼 = set of all possible itineraries in 𝐺 with at most two stops in each way  

𝐼𝑐 = set of itineraries operated by carrier 𝑐 ∈ Ĉ in G 

𝑖, 𝑖′ = itinerary belonging to 𝐼 or 𝐼𝑐  

𝑖𝑗  = j-th stop in itinerary 𝑖  

𝑛 = number of airports in the design space 
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𝑎 = number of aircrafts in the fleet 

𝐼𝑜𝑑  = number of possible one-way itineraries with at most two stops in route o-d 

𝑅𝑦 = revenue in year 𝑦 

𝐶𝑦 = cost in year 𝑦 

𝑃 = net present profit 

𝑋𝑜𝑑  = binary variable indicating whether arc (𝑜, 𝑑) is present in the network or not  

𝑌𝑜𝑑  = number of aircrafts allocated to arc (𝑜, 𝑑) 

𝑍𝑖 = number of seats allocated for itinerary 𝑖  
𝑓𝑖 = fare of itinerary i 

𝑇𝑖
𝑞𝑦

 = number of tickets sold of itinerary 𝑖 in quarter q of year 𝑦 

𝐹𝑜𝑑
𝑞𝑦

 = flight operating cost of arc (𝑜, 𝑑) in quarter q of year 𝑦 

𝐺𝑜𝑑
𝑞𝑦

 = ground operating cost of arc (𝑜, 𝑑) in quarter q of year 𝑦 

𝑆𝑜𝑑
𝑞𝑦

 = system operating cost of arc (𝑜, 𝑑) in quarter q of year 𝑦  

𝛼 = discount factor 

𝑂𝐿 = operational lifetime 

𝑄𝑜𝑑 = quarterly frequency of flights in arc (𝑜, 𝑑) 

𝑑𝑖
𝑞𝑦

 = demand of itinerary i in quarter q of year 𝑦 

𝐷𝑚←𝑖
𝑞

 = total demand in origin-destination market 𝑚 corresponding to itinerary i in quarter q of year 𝑦 

𝑉𝑖 = value of itinerary i  

𝐾 = number of itinerary service attributes considered in the itinerary share model 

𝐴𝑖𝑘 = value of attribute k in itinerary i  

𝛽𝑘  = k-th multinomial logit model attribute coefficient 

𝑀𝑖 = market share of itinerary i  

 

II. Introduction 

A complex networked system is a system comprising many interacting and dynamical units [1]. The interactions 

among these units define the connections between each pair of units and the overall network structure. In addition, the 

individual unit behaviors and the time-variant connections define the network dynamics, such as evolution and 
adaptation. Many complex networked systems, such as transportation networks, power grids, the Internet of Things 

(IoT), social networks, and neural networks, are an indispensable part of our daily lives. Some of the different types 

of networks are: scale-free networks, small world networks, random networks, network of networks, etc. Air 

transportation networks, which show characteristics of small-world networks and scale-free networks, are used as the 

research testbed for this paper.  

Modeling and analysis methodologies have been investigated to study the structure and dynamics of the complex 

networked systems [1], which have been used to characterize the topology of the network architecture, compare system 

properties, and develop models to mimic the evolutionary or adaptive dynamics of a network. The most recent 

methodologies study node-level agent decisions with utility theory and game theory to better model the complex 

networked system. They provide deeper insight into network dynamics and enable the development of better surrogate 

models for efficient design on complex networked systems [3]. Many metrics have been identified in these modeling 

and analysis methodologies [4-16] to quantitatively describe the system performance under uncertainties, risks, and 
attacks, such as network robustness for perturbations and attacks, and network recoverability after system failures. 

These metrics are critical for evaluating the system performance and predicting the system behaviors based upon the 

current structure and design. 

Unlike research on modeling and analysis of complex networked systems, approaches for designing them to achieve 

the optimal performance (i.e. with regards to robustness and resilience) has received little attention. Among the limited 

literature work on design of complex networked systems, the assessment of networked system performance, such as 

robustness and resilience, is inconsistent among different research communities. Some of the well-known robustness 

and resilience metrics are discussed in background sections A and B.  

Using a combination of value-based design engineering, utility theory, and data analytics, this paper is building a 

design framework for complex networked systems which can perform optimally in a stochastic environment with the 

desired level of robustness and resilience. The following sections detail the approach used in this paper to understand 
the value of network performance from large-scale datasets; construct utility function for rigorous decision making; 

and establish a system design framework to improve value-based system performance. 
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III. Background 

A brief review of network robustness and resilience metrics, air transportation networks, sources of data and data 

analytics, value-based model, sources of uncertainties, and utility theory are presented in this section.  

A. Network Robustness and its Traditional Quantifications 

In network science, the “robustness” of a network measures its performance in terms of tolerance under random or 

intentional removal of network nodes or links. If enough nodes or links are removed, the network becomes 

disconnected. A network is called robust if it performs well under random failures and targeted attacks on nodes and 

links [26-33]. Many metrics have been developed to measure network robustness, such as node connectivity, link 

connectivity, betweenness, centrality, degree centrality, closeness centrality, eigenvector centrality, clustering 

coefficient, algebraic connectivity and Laplacian energy [4-16]. Jamakovic, Uhlig and Van Mieghem [35, 36] found 

that the algebraic connectivity was a generic metric in the analysis of various robustness problems in three typical 

network models. Jamakovic and Uhlig [35] studied algebraic connectivity and network robustness in terms of node 

and link connectivities on three different complex network models: the random graph of Erdos-Renyi, the small-world 

graph of Watts-Strogatz and the scale-free graph of Barabasi-Albert. They concluded that the algebraic connectivity 

can be considered a measurement of the robustness in all three complex network models. Jamakovic and and Van 
Mieghem [36] showed that the larger the value of the algebraic connectivity, the better the network's robustness to 

node and link failures. Byrne, Feddema and Abdallah [37] showed algebraic connectivity can improve the robustness 

of the network by reducing the characteristic path length. They stated that the algebraic connectivity is the efficient 

network robustness measure with much less computation time for both small and large size networks. Olfati-Saber 

[38] showed the relationship between increasing algebraic connectivity of complex networks and robustness to link 

and node failures. The simulations in [39] by Sydney, Scoglio and Gruenbacher also supported the findings in [38], 

showing that the larger the algebraic connectivity, the more links required to disconnect a network and hence, the 

more robust a network. Most of the research on robustness of complex networked systems focuses on modeling and 

analysis using these mathematical metrics. However, these metrics are abstract and are not intuitive to support decision 

making during the design of complex networked system. For example, knowing that a designed complex networked 

system can reach the algebraic connectivity value at 14.3, tells the decision maker little about how important that 
number is to the system robustness performance. 

 

B. Network Resilience and its Existing Quantifications 

Modeling and analyzing the resilience of complex and large-scale systems have recently raised significant interest 

among both practitioners and researchers due to its role in reducing the risks associated with the disruption of systems 

[40]. This recent interest has resulted in various definitions of the concept of resilience. In engineering systems, the 

term resilience refers to the ability to withstand, adapt, and recover from the impact of system disruptions and failures 

[1, 2]. However, the definition of resilience is still being discussed among different research communities. 

 

Fig. 1 Recovery of a system with time after a disruption 

 

Figure 1 shows a system that initially operates at performance level 𝑃𝑎. Due to disruption, its performance starts 

to decline at time 𝑡1. At time 𝑡2 the system’s performance reduces to 𝑃𝑏. Then the system begins to recover and 

eventually returns to the original performance level 𝑃𝑎 at time 𝑡3. In this illustration, robustness is defined to measure 

the system characteristic in the time range of [𝑡1, 𝑡2]. The more robust a system is, the less performance reduction 
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(𝑃𝑎 − 𝑃𝑏) it will have. Recoverability [33] is defined to describe the system behavior in the time range of [𝑡2, 𝑡3]. The 

shorter recovery period (𝑡3 −  𝑡2) it needs to return to its original performance level or another desired performance 

level, the more resilient the system is. According to [41, 42], the concept of system resilience includes both robustness 

and recoverability. This resilience definition has been adopted for this research. In addition to the network robustness 
that measures the static network structure strength and its tolerance for innate uncertainties, external perturbations and 

intentional attacks, the network resilience also includes system recoverability, which measures system dynamics and 

its capability to adapt and recover from internal system failures and external disruptions. 

In literature, the quantitative assessment of system resilience has been focused on investigating the recovery 

process from system failure and disruption [43], where metrics have been proposed to measure the system resilience. 

Bruneau et al. [42] defined four dimensions of resilience in civil infrastructure: robustness, rapidity, resourcefulness, 

and redundancy. They proposed a deterministic static metric for measuring the resilience loss. Zobel [44] proposed 

the metric specified by “calculating the percentage of the total possible loss over some suitably long time interval 𝑇∗”. 

Henry and Ramirez-Marquez [41] developed a time-dependent resilience metric that quantifies resilience as ratio of 

recovery to loss. Chen and Miller-Hooks [45] introduced an indicator for measuring resilience in transportation 

networks. The indicator quantifies the post-disruption expected fraction of demand that can be satisfied within pre-
determined recovery budgets. Janic [46] used the proposed indicator by Chen and Miller-Hooks [45] for assessing 

airport resilience, defined as a ratio between the on-time flights and the total number of planned flights. Enjalbert et 

al. [47] introduced local and global resilience assessment metrics. Francis and Bekera [48] proposed a dynamic 

resilience metric. These metrics are proposed to describe the system dynamics and responses after disruption. But they 

provide little insights to the decision maker in system design stage.  

Air Transportation Networks (ATNs) operated by commercial airline companies are used as the testbeds for this 

research. Without exception, the performance of ATNs are also strongly affected by disruptions. The choice of nodes 

and edges among other design variables determines the value derived from the network. The composition and 

structural properties of ATNs are described in the following section.  

 

C. Air Transportation Network 

ATNs are a type of spatial network which are modeled as graphs with nodes and edges. The nodes are the airports 

and the edges are the flight routes between airports. They show characteristics of small-world networks and scale-free 

networks. A hub-and-spoke ATN [111] featuring 42 nodes in total, two of which are hubs, and 41 edges, is illustrated 

in Fig. 2. Such a configuration allows providing service to a large number of markets with fewer flight legs and 
aircrafts, resulting in significant cost savings. Typically, this cost saving is greater than the revenue loss from 

passengers who reject connecting service and choose a non-stop flight instead, making hub-and-spoke network more 

profitable than a complete point-to-point network providing non-stop service to each market.   

 

 
 

Fig. 2 An example of an ATN routing flights and passengers through a connecting hub 

 

There are three major categories of decisions designers make during the airline planning process – route planning, 

fleet planning, and schedule development. In route planning, the Origin-Destination (OD) markets to be served are 
determined. The type and quantity of aircrafts to be acquired are decided in fleet planning. Lastly, decisions pertaining 
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to the frequency and timing of flights are made in the schedule development part of the planning. Despite making 

optimal decisions in all three categories of planning, the airline company will still likely make less profit than that 

predicted by the airline profit model if disruptions affecting the operation of the ATN are not considered. Some of the 

common sources of node and link disruption are: weather, technical and mechanical problems, crew logistics, natural 

disasters and local anomalies. Disruptions affect airline stakeholders, airport stakeholders and passengers. A 
disturbance to one flight leg can have widespread disruptive effects that are seemingly unconnected to the original 

disturbance.  

 

D. Big Data Analytics for Complex Networked Systems  

Analyzing Big Data has become the major source for innovation behind scientific discovery and engineering 

applications. Big data of high volume, variety and velocity has been generated, transferred, and processed in the large-

scale, dynamic complex networked systems. Research in the field of network science led to the advancement of 

network metrics, topology, and mathematical models that help us understand network structure, properties and 

relationships. Some examples of complex network systems, modeled as graphs, with significant topological features 

on which Big Data analytics have been applied so far are transportation, communication, energy, biology, defense and 

social networks. These research works were motivated by the goal of discovering patterns, analyzing trends, detecting 

anomalies, discovering knowledge and obtaining inferences in the complex networks. Link mining techniques such 

as common neighbors, Jaccard’s coefficient, Adamic Adar measure, and Katz measure for predicting missing or future 

links [17]; graph partitioning algorithm for obtaining dense subgraphs [18]; agent-based models for understanding the 

effect of individual nodes on the system as a whole [19]; exponential random graph models [20, 21] for understanding 
formation and evolution of networks have been investigated in previous studies. 

To discover strategic insights for the design and operation of ATNs, several datasets and potential machine learning 

techniques are currently being explored. These are enumerated in table 1.  

 

Table 1  Datasets and potential machine learning techniques for application 

Sources Datasets Techniques 

Department of 

Transportation's Volpe 

Transportation Center 

Flight trajectories and 

plans data 

Feature extraction: PCA, Kernel PCA, linear 

discriminant analysis, factor analysis, 

autoencoders 

Feature selection: variance thresholds, correlation 

thresholds, genetic algorithm 

Clustering: K-Means, Affinity propagation, 

hierarchical/agglomerative 

Regression: random forest, gradient boosted tree, 

linear regression, nearest neighbors, deep learning 
Classification: support vector machines, logistic 

regression, random forest, gradient boosted tree, 

deep learning 

Structure learning and bayesian networks 

Visualization approaches 

BTS On-time performance data, 

OD market data, Form 41 

cost data 

National Oceanic and 

Atmospheric 

Administration (NOAA) 

Vertical integrated liquid, 

echo tops, storm relative 

velocity data 

Automated Surface 

Observing System 

Airport wind data, 

visibility, temperature data 

High Resolution Rapid 

Refresh from NOAA 

En-route wind data 

 

 

 

Using these techniques, the following key issues are being addressed: quantifying and modeling uncertainties of 

internal failures and external disruptions such as weather; determining the impact of delays, cancellations and 

misconnects on demand and hence customer loyalty and revenue; discovering hidden performance attributes of the 

network; and mapping system performance such as robustness and resilience to the value function. Network designers 

will benefit from using these insights for rigorous decision making. 
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Big Data has not been utilized to develop value model and capture system uncertainties for decision making in 

complex networked system design. Following the steps shown in Fig. 3, the large-scale data sets are analyzed to 

identify the key system attributes which have a statistically significant impact on value-based performance. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The Big Data workflow to identify the key system attributes with four steps 

Following the identification of the key attributes of the complex networked system, the attributes are mapped to 

value, thereby formulating the value function. The following section discusses Value-Based Model (VBM) and Utility 

Theory for Complex Networked Systems.  

 

E. Value-Based Model and Utility Theory for Complex Networked Systems  

Value-Based Modeling is a systems engineering approach that focuses on capturing the true preferences of the 

stakeholders involved [49]. It differs from traditional design methods where requirements are used as proxies to reflect 

the preferences of the stakeholders [50]. These requirements-based methods only differentiate between feasible and 

infeasible designs, but do not offer a meaningful guidance to rank order the design alternatives that are feasible [50]. 

Rather, VBM enables rank ordering of design alternatives by capturing the true preferences of the stakeholders through 

a single value function (an objective function) and reducing the requirements placed on the design space, thereby 

providing further freedom to the designer in exploring the design space [49, 51-53]. Value functions are formed as a 

function of system characteristics known as attributes as shown in Fig. 4. The value function has a singular unit (such 

as dollars or probability of mission success) that directly correlates to the stakeholders’ preferences, with attributes 

being functions of lower level attributes and design variables. This formulation of a value function allows for a direct 
comparison of design alternatives from a wide range of systems that share the same set of attributes, as trade-offs are 

inherently captured in the value function through a single mathematical form [51]. The value function generally 

preferred by industry is net present profit [51, 54-56], while military or scientific applications might relate to 

probability of mission success [57-59]. For example, a value function might be constructed as a function of attributes 

such as speed, cost, range, etc., that could lead to the design of two radically different system alternatives, such as a 

boat or a plane. This enables the two alternatives to be compared with one another in the unit of dollars by using a 

value function of maximizing profit. The value of complex networked systems can be encoded using a value function, 

in monetary units, by assessing system performance such as robustness and resilience. This enables the designer to see 

a direct correlation between a change in the attributes and the value, thereby setting the stage for inherent trade-offs 

to be explored. In VBM, the value function is decomposed and distributed to lower level subsystems to enable more 

informed and consistent decision making as opposed to flowing down requirements in the traditional systems 

engineering processes [54, 55, 60-63]. The formulation of value functions provides a straightforward and meaningful 

way to compare and rank design alternatives.  

Data on AWS cloud 

(attributes and value) 

𝑣, 𝑥1, … 𝑥𝑁 

Attributes that are statistically 

significant 

𝑣~(𝑥1, … 𝑥𝑛) 

Key meta attributes with reduced 

dimension that are significant 

𝑣~(𝑓1 , … 𝑓𝑘) 

 1) Human input from 

airline practitioners 

2) Data visualization 

 3) Boosted tree, regression and 

other statistical and machine 

learning techniques  

 4) PCA, Random Forest and 

other dimensionality reduction 

techniques  
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Fig. 4 The VBM process of design variables forming attributes which then feeds into the value model to give 

the output value 

For ATNs, it is assumed that the true preference of the stakeholders is Net Present Profit, which is monetary in 

nature. The large-scale historical data can be used to mathematically capture the relationships of the low-level 

attributes with the high-level attributes - revenue and cost – which finally ties back to value (Net Present Profit) as 

shown in Fig. 5. The discount factor, number of year, and the operational lifetime are denoted by 𝛼,𝑦 and 𝑂𝐿 

respectively.  

The value function can be formulated in such a way that it captures the inherent trades present in the complex 

network system through attribute relationships. For instance, the number of on call flight crew members and spare 

aircraft are attributes that directly affect the airline operational cost. However, an increase in these two items at major 

airline hubs will decrease the propagate flight delays, which will increase passenger experience and passenger loyalty, 
and ultimately the future revenue. Since the value function is Net Present Profit, the tradeoffs due to a change in on 

call flight crew number and spare aircraft count can be directly measured using dollar amount. This enables a direct 

comparison of design alternatives in a form that is meaningful to the stakeholder.  

 

 

 

 

 

 

 

Fig. 5 The sequence of steps leading to the construction of the Net Present Profit model 

 

Decision Theory studies the behavior of an individual making decisions under uncertainties. Normative or 

prescriptive decision theory is concerned with how individuals should make decisions, whereas descriptive decision 

theory studies how decisions are made [64-67]. Decision Analysis (DA) is a normative approach to decision theory 

that provides a framework for decision-making while uncertainties are present using expected utility theory [68]. Other 

variants exist like subjective expected utility theory, which uses subjective probabilities in the form of beliefs 

compared to objective probabilities in expected utility theory [69].  Some of the other normative models that are 

closely related to expected utility theory are causal decision theory and evidential decision theory [70-72]. On the side 

of descriptive decision theory, prospect theory deals with how choices are made rather than optimal choices using 

heuristics [73]. This research particularly uses normative decision theory as it deals with optimal choices rather than 

real life choices.  

Expected utility theory is a mathematical method that is used to integrate probability distributions associated with 
uncertain outcomes into a single expected utility that is consistent with the individual’s risk preferences [74]. In utility 

theory, the risk preference of an individual is captured using a utility function and the most preferred design has the 

highest expected utility [68]. Utility functions are constructed in such a way that they follow the von Neumann–

Morgenstern (vNM) utility theorem [68]. 

F. Design of Complex Networked System for Optimal Performance  

Network design is an NP-hard problem [75,76] that has been studied in past decades by many network researchers 

[77-86]. The design process consists of growing the network from scratch including placement of nodes [80, 81] and 

providing connectivity among nodes to enable services. The goal of the network design process is to improve network 

performance, such as robustness and resilience.  

Research has shown that network optimization for robustness can be accomplished by means of rewiring links 

while keeping the number of links constant [39] or by means of adding new links to improve the connectivity of graphs 

[87]. Regarding network robustness, research has been proposed to increase algebraic connectivity. In particular, Kim 

System 
Design 

Design 
variables Value Model 

Attributes 

Value 

Historical 

Data 

Big Data 

Analysis 

Identify Key 

Attributes and 

Dependencies 

Net Present Profit = 

σ
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑦−𝐶𝑜𝑠𝑡𝑦

(1+𝛼)𝑦
𝑂𝐿=5
𝑦=1  
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and Mesbahi [88] proposed an iterative algorithm for maximizing the algebraic connectivity with a semidefinite 

programming solver at each recursive step. Although their algorithm has a local convergence behavior, simulations 

suggest that it often leads to a global optimum. Kim also studied adding a link to or deleting it from a network [89]. 

He proposed a computationally efficient algorithm of finding the link such that the algebraic connectivity of the new 

network is maximized or minimized. Sydney et al. studied link rewiring on all three kinds of complex networks and 
compared link rewiring to link adding [39]. In ATN robustness optimization, Wuellner et al. investigated improving 

network robustness by rewiring schemes [90] - among the very few research results on how to grow or maintain ATNs. 

Reggiani et al. proposed a decision-aid method with multi-criteria to design the strategic plans to configure airline 

network patterns [9]. Redondi et al. provided a tool with the simulated annealing method to evaluate the impact of 

new routes on the network in terms of connectivity [6]. They applied the method in a network with 467 European 

airports after clustering airports into modules. Vargo et al. developed the edge swapping-based tabu search algorithm 

to enhance air transportation network robustness [91]. 

Network optimization methods have been developed to maximize system resilience. Chen and Miller-Hooks [45] 

focus on intermodal freight transportation networks and formulate a problem of finding a strategy for maximizing the 

proportion of original demand that can be accommodated at a given time after a disruption, subject to an overall budget 

constraint for restoration activities. Faturechi and Miller-Hooks [92] introduced a multi-objective, three-stage 

stochastic mathematical model to quantify and optimize travel time resilience in road networks. Henry and Ramirez-
Marquez [41] apply their proposed metric to a series of disruption scenarios that disable links in a transportation 

network in order to find restoration sequences that maximize recovery at a given time. Bocchini and Frangopol [93] 

formulate a bi-level optimization structure, in which flows on the network are determined by a traffic assignment 

computation (solution to a lower-level optimization), and decisions on a recovery strategy are identified in an upper-

level optimization. Jin et al. [94] developed a two-stage stochastic programming model for analyzing the resilience of 

a metropolitan public transportation network. Baroud et al. [95] quantified vulnerability and recoverability of 

waterway network using the two stochastic resilience-based component importance measures (CIM) introduced by 

Barker et al. [96]. Khaled et al. [97] proposed a mathematical model and solution approach for evaluating critical 

railroad infrastructures to maximize rail network resilience. Vugrin et al. [98] proposed a multi-objective optimization 

model for transportation network recovery, where resilience is defined by the optimal recovery of disrupted links. Ash 

and Newth [99] attempted to optimize complex large-scale networks for resilience against cascading 
failures. Alderson et al. [100] proposed a mixed integer non-linear programming (MINLP) to quantify the operational 

resilience of critical infrastructures. Resilience is defined in terms of defense strategies with little attention given to 

the important recovery dimension of resilience found in most works. Sahebjamnia et al. [101] proposed a multi-

objective mixed integer linear programming (MOMILP) to find efficient resource allocation patterns among candidate 

business continuity and disaster recovery plans while considering features of organizational resilience.  

Although optimization techniques have been investigated in network science community to enhance system 

robustness and resilience with their identified metrics, to our knowledge, little research has been performed in 

engineering design to utilize Big Data analytics to develop value models for assessing system performance such as 

robustness and resilience, and to provide a system design framework to improve value-based system performance. 

G. Capturing Uncertainties 

Complex networked systems are inherently uncertain in nature, which demands for a more realistic representation 

of uncertainties associated with various aspects of the system including network model, inputs, link strength, node 

strength models, attributes, etc. The mathematical representation of uncertainties can be achieved using probability 

theory [108, 109], which provides a means to represent all possible scenarios associated with various aspects of the 

network system and not just nominal situations. 

Link strength in the context of networked systems is defined through the probability of failure associated with a 

particular link, whereas unit strength (node strength) is defined with the probability of unit failure. For example, in an 

ATN, link strength can be defined with probability of flight delay, probability of flight cancellation, etc., whereas 

node strength represents the probability of airport shutdown, runway closure, ground stop, etc. Traditionally link 

strengths are quantified using weights to be represented in the calculations of robustness metrics. One of the metrics 

to measure robustness is called the algebraic connectivity, which is the second smallest eigen value 𝜆2 of the Laplacian 

matrix 𝐿 as shown in the following equation. The higher the 𝜆2, the more robust the system is. In this equation, 𝐷 

represents the degree matrix (degree of node connectivity) and 𝐴 represents the adjacency matrix that quantifies the 

link strength (probability of failure) using weights 𝑤𝑖𝑗 between nodes.  

 

http://www.sciencedirect.com.proxy.lib.iastate.edu/science/article/pii/S0951832015002483#bib116
http://www.sciencedirect.com.proxy.lib.iastate.edu/science/article/pii/S0951832015002483#bib117
http://www.sciencedirect.com.proxy.lib.iastate.edu/science/article/pii/S0951832015002483#bib118
http://www.sciencedirect.com.proxy.lib.iastate.edu/science/article/pii/S0951832015002483#bib125
http://www.sciencedirect.com.proxy.lib.iastate.edu/science/article/pii/S0951832015002483#bib87
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𝐿 = (𝐷 − 𝐴) =  (

deg(𝐴) 0 … 0

0 deg(𝐵) … 0
⋮ … … ⋮
0 ⋯ … deg(𝐺)

) −  (

0 𝑤𝐴𝐵 … 𝑤𝐴𝐺

𝑤𝐵𝐴 0 … 𝑤𝐵𝐺

⋮ … … ⋮
𝑤𝐺𝐴 ⋯ … 0

)   (1) 

                              
Instead of representing the link strength (probability of failure) using weights, a more realistic way of representing 

uncertainties is using probability distributions. These probability distributions associated with failure for both links 

and nodes due to several factors including internal component strength, external disruptions etc., can be modeled using 

statistical data. In the case of an ATN, huge volumes of statistical data are available that categorize the failure of a 

particular link or a node in terms of other factors that influence failure like weather events, crew shortage, airspace 
restrictions, government needs, airport construction, etc. The existing historical data can be analyzed using Big Data 

techniques to construct link strength models using probability distributions based on the factors mentioned earlier. 

The uncertainties in attributes like weather, crew availability, etc. can also be quantified with mean, variance and 

confidence level obtained from using statistical techniques on historical data. 

Flight statistics data from BTS contains flight delay and flight cancellation information, which can be used to 

model link uncertainty in ATNs. The same dataset can also be analyzed to identify those airports that has most delay, 

most misconnecting passengers, or most flight cancellations, which may be a factor for node uncertainty model. Other 

structured data such as aircraft trajectory data from the FAA Aircraft Situation Display to Industry and meteorology 

data from the NOAA can be used to model link uncertainty and/or node uncertainty, which further impacts the 

designer’s decision making. Mining the unstructured data such as social media data to find which fights and airports 

have been most complained about, is also being investigated to model the link and/or node uncertainty.  
In this research, robustness of the network system is investigated in the context of normative decision theory [68, 

109], i.e., robustness is captured implicitly using a utility function as opposed to considering robustness as an 

independent  attribute in the value function. Robustness of a system can be defined as its potential to avoid downside 

consequences associated with uncertainty [110]. However, the term robustness is a result from decision making. For 

instance, Fig. 6 represents the probability distributions of value associated with two different design alternatives. As 

can be seen in the figure, design alternative 2 has lower uncertainty (narrower probability distribution) compared to 

design alternative 1. A decision-maker who is more risk averse will select design alternative 2 as the risk of uncertainty 

is comparatively low. However, an aggressive decision-maker who has more risk tolerance might favor alternative 1, 

which is more uncertain but has a potential of yielding a higher value. In this scenario, the low risk averse decision-

maker is willing to accept the risk due to uncertainty with the anticipation of higher value. Robustness of a system can 

be directly linked to this example, where individuals with higher risk aversion prefer robust outcomes with lower 

uncertainty. Since the preference of individuals over robustness is subjective, the risk preferences of individuals need 
to be taken into account using utility functions to enable realistic and rational decision-making under uncertainty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Two design alternatives with different probability distributions of outcome value. 
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IV. Problem Formulation 

For this network design research, an entrant Low-Cost Carrier (LCC), looking to set up a route network in the East 

Coast region of US with the goal of exploiting its busy travel corridor [112], is chosen as the stakeholder due to the 

emergence and rapid growth of LCCs in the past few decades [111]. The nine primary airports that are considered in 

the design space are: John F. Kennedy International Airport in New York, Logan International Airport in Boston, 

Newark Liberty Airport in Newark, Philadelphia International Airport in Philadelphia, Baltimore–Washington 

International Airport near Baltimore, Washington-Dulles International Airport near Washington, D.C., Hartsfield 

International Airport in Atlanta, Miami International Airport in Miami, Charlotte Douglas International Airport in 

Charlotte, Tampa International Airport in Tampa, and Orlando International Airport in Orlando. This gives rise to a 

total of 72 route selection design variables, denoted by 𝑋𝑜𝑑 , one for each candidate city-pair market or O-D directional 

route. Other design variables determine the allocation of aircrafts for each O-D route and seats for each itinerary, and 

the fare of each itinerary, denoted by 𝑌𝑜𝑑 , 𝑍𝑖 and 𝑓𝑖 respectively. The schedule of flights is assumed to be fixed to 

exclude schedule planning from the analysis. The number of possible one-way itineraries with at most two stops in 

each O-D route when the route network is a complete digraph is determined by Eq. (1). For nine airports, this equation 

gives 50 possible one-way itineraries for each O-D route in the network.  

As described in section F, the net present profit for the next 5 years, given in Eq. (2), is used as the value function. 

As shown in Eq. (3), the only source of revenue considered for each year y and quarter q in any arc (o,d) is the sale of 

itinerary tickets, both one-way and round trip ones with at most two stops in each way. The number of tickets sold of 

an itinerary 𝑖, given by Eq. (4), is the minimum of demand and number of seats available for that itinerary. The 

operational cost of any arc (o,d) in year y and quarter q is the sum of the flight operating costs, ground operating costs 

and system operating costs corresponding to that arc, year and quarter, following the functional cost categorization 

scheme [111], as shown in Eq. (5). Average values of the cost components in per seat mile or per block hour can be 

calculated using the Form 41 data from the Bureau of Transportation Statistics (BTS).  

It is assumed the LCC uses a single type of aircraft in its fleet – Boeing 737-700 with a seat capacity of 143 –  in 

line with one of the major characteristics of the LCC business model. The fleet size will be varied from 10 to 100, 

holding it constant in each simulation, to investigate the effect on the resulting network design. The balance constraint, 

count constraint, and non-negativity constraint of the basic fleet assignment model [113] are applied to ensure a 

feasible schedule. AutoRegressive Integrated Moving Average (ARIMA) time series analysis is used to forecast the 

total demand for each quarter in the next 5 years for all the possible markets in 𝐺 using DB1B O-D market survey 
data from BTS. For calculating the quarterly market shares of possible itineraries offered by the entrant LCC, a 

standard multinomial logit model, similar to the one in [112], is used, which computes the choice probabilities based 

on the following itinerary attributes: type of itinerary, travel distance, number of connections, fare, and carrier. 

Equations (6), (7) and (8) show how the market share, value, and demand of an itinerary are calculated respectively. 

Data on current itineraries and their associated attributes of different markets and airlines can be found in DB1B O-D 

market survey data. The logit model parameters can be estimated using the maximum likelihood technique.  

The sum of the number of seats allocated to itineraries using any arc (o,d) must not exceed the total number of 

seats available in that arc in each quarter. This constraint is enforced by Eq. (9). The entrant carrier is assumed to 

operate all the arcs in their network in both directions with the same aircrafts flying to and fro between the nodes of 

the arcs, which are imposed by Eqs. (10) and (11). Equation (12) ensures that the sum of the number of aircrafts flying 

in the network does not exceed the fleet size.       
  

𝐼𝑜𝑑 = 1 + ∑ ∏(𝑛 − 𝑘)

𝑗

𝑘=2

3

𝑗=2

(1) 

 

∀(𝑜, 𝑑) ∈ 𝐴 

Objective function 

max 𝑃 =  ∑
𝑅𝑦 − 𝐶𝑦

(1 + 𝛼)𝑦

𝑂𝐿=5

𝑦=1

 (2) 
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𝑅𝑦 =  ∑ ∑ [𝑋𝑜𝑑{𝑓𝑖∈𝐼:𝑖=(𝑜,𝑑)𝑇𝑖∈𝐼:𝑖=(𝑜,𝑑)
𝑞𝑦

 + 𝑓𝑖∈𝐼:𝑖=(𝑜,𝑑,𝑜)𝑇𝑖∈𝐼:𝑖=(𝑜,𝑑,𝑜)
𝑞𝑦

} 

4

𝑞=1(𝑜,𝑑)∈𝐴

+ ∑ 𝑋𝑜𝑗𝑋𝑗𝑑

𝑗∈𝑁:𝑗≠𝑜,𝑑

{𝑓𝑖∈𝐼:𝑖=(𝑜,𝑗,𝑑)𝑇𝑖∈𝐼:𝑖=(𝑜,𝑗,𝑑)
𝑞𝑦

+ 𝑓𝑖∈𝐼:𝑖=(𝑜,𝑗,𝑑,𝑗𝑜)𝑇𝑖∈𝐼:𝑖=(𝑜,𝑗,𝑑,𝑗,𝑜)
𝑞𝑦

}

+ ∑ 𝑋𝑜𝑗𝑋𝑗𝑘𝑋𝑘𝑑

𝑗,𝑘∈𝑁:𝑗,𝑘≠𝑜,𝑑

{𝑓𝑖∈𝐼:𝑖=(𝑜,𝑗,𝑘,𝑑)𝑇𝑖∈𝐼:𝑖=(𝑜,𝑗,𝑘,𝑑)
𝑞𝑦

+ 𝑓𝑖∈𝐼:𝑖=(𝑜,𝑗,𝑘,𝑑,𝑘,𝑗,𝑜)𝑇𝑖∈𝐼:𝑖=(𝑜,𝑗,𝑘,𝑑,𝑘,𝑗,𝑜)
𝑞𝑦

}    ]                                                                                                

 

𝑇𝑖
𝑞𝑦

=  min(𝑑𝑖
𝑞𝑦

, 𝑍𝑖) (4) 

𝐶𝑦 =  ∑ ∑ 𝐹𝑜𝑑
𝑞𝑦

+ 𝐺𝑜𝑑
𝑞𝑦

+ 𝑆𝑜𝑑
𝑞𝑦

4

𝑞=1(𝑜,𝑑)∈𝐴

 (5) 

𝑀𝑖 =  
exp(𝑉𝑖)

σ σ exp(𝑉𝑖′)𝑖′∈𝐼𝑐:𝑖1
′ =𝑖1 ,𝑖𝑙𝑎𝑠𝑡

′ =𝑖𝑙𝑎𝑠𝑡𝑐∈Ĉ

 (6) 

∀𝑐 ∈ Ĉ, ∀𝑖 ∈ 𝐼𝑐 

𝑉𝑖 =  ∑ 𝛽𝑘𝐴𝑖𝑘

𝐾

𝑘=1

 (7) 

∀𝑐 ∈ Ĉ, ∀𝑖 ∈ 𝐼𝑐 

𝑑𝑖
𝑞𝑦

=   𝑀𝑖  × 𝐷𝑚←𝑖
𝑞𝑦 (8) 

∀𝑐 ∈ Ĉ, ∀𝑖 ∈ 𝐼𝑐 

 

Constraints 

𝑋𝑜𝑑𝑍𝑖∈𝐼:𝑖=(𝑜,𝑑) + ∑ 𝑋𝑜𝑑𝑋𝑑𝑗𝑍𝑖∈𝐼:𝑖=(𝑜,𝑑,𝑗)

𝑗∈𝑁:𝑗≠𝑜,𝑑

+ ∑ 𝑋𝑗𝑜𝑋𝑜𝑑𝑍𝑖∈𝐼:𝑖=(𝑗,𝑜,𝑑)

𝑗∈𝑁:𝑗≠𝑜,𝑑

+ ∑ 𝑋𝑜𝑑𝑋𝑑𝑗𝑋𝑗𝑘𝑍𝑖∈𝐼:𝑖=(𝑜,𝑑,𝑗,𝑘)

𝑗,𝑘∈𝑁:𝑗,𝑘≠𝑜,𝑑

+ ∑ 𝑋𝑗𝑜𝑋𝑜𝑑𝑋𝑑𝑘𝑍𝑖∈𝐼:𝑖=(𝑗,𝑜,𝑑,𝑘)

𝑗,𝑘∈𝑁:𝑗,𝑘≠𝑜,𝑑

+ ∑ 𝑋𝑗𝑘𝑋𝑘𝑜𝑋𝑜𝑑𝑍𝑖∈𝐼:𝑖=(𝑗,𝑘,𝑜,𝑑)

𝑗,𝑘∈𝑁:𝑗,𝑘≠𝑜,𝑑

≤ 143𝑌𝑜𝑑𝑄𝑜𝑑 (9)

 

∀(𝑜, 𝑑) ∈ 𝐴 

 
𝑋𝑜𝑑 =  𝑋𝑑𝑜 (10) 

 

∀(𝑜, 𝑑) ∈ 𝐴 

 

𝑌𝑜𝑑 =  𝑌𝑑𝑜 (11) 

 

∀(𝑜, 𝑑) ∈ 𝐴 

 

(3) 
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∑ 𝑋𝑜𝑑𝑌𝑜𝑑

∀(𝑜,𝑑)∈𝐴

≤ 2𝑎 (12) 

 

V. Data Analysis 

Given that most of the analysis and parameter values is driven by data, which comes from different sources and 

many separate files for each year and quarter, a web scraper has been developed for programmatic collection and 

indexing of all relevant data spanning the past 20 years, which amounts to 80 quarters in total. Tables 2,3, and 4 

contain snippets of OD market data, on-time performance data, and expense data. For each of the quarters, the total 

demand of each OD market in our design space was calculated and provided to ARIMA time series algorithm for 

forecasting the demand of the OD routes for the next 5 years. Figure 7a) shows a plot of the demand forecast of the 

Boston-Atlanta market and Fig. 7b) shows the fit of ARIMA output on historical time series demand data, where the 
black colored line represents the existing time series demand data and the blue line indicates the forecasted demand 

given by the ARIMA output.  

 

Table 2  OD market data showing itineraries offered by different airlines in the second quarter of 2017 

 

Itinerary 

ID 

Origin 

City 

ID 

Dest 

City 

ID 

Tk. 

Carrier 

Group 

Op. 

Carrier 

Group 

Reporting 

Carrier 

Tk. 

Carrier 

Op. 

Carrier 

Pax Fare Market 

Miles 

Flown 

2017225 30397 30135 DL DL 9E DL DL 1 312 692 

2017226 30135 30208 DL:DL 9E:9E 9E DL 9E 1 467 835 

2017227 30135 30423 DL:DL 9E:DL 9E DL 99 1 469 1505 

2017228 30135 30693 DL:DL 9E:DL 9E DL 99 1 542 906 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

 

 

 

Table 3  On-time performance data showing delay statistics for flight legs operated by different airlines in 

April 2017 

 

Flight 

Num 

Origin 

City ID 

Dest 

City ID 

Dep 

Delay 

Arrival 

Delay 

Dist Carrier 

Delay 

Weather 

Delay 

NAS 

Delay 

Security 

Delay 

Late 

AC 

Delay 

1680 33192 33570 30 35 480 23 0 5 0 7 

1680 30140 30194 21 33 580 5 0 12 0 16 

1680 30599 32211 227 211 1618 10 0 0 0 201 

1680 30194 30599 27 29 587 3 0 2 0 24 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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Table 4  Form 41 cost data of aircrafts and airlines in the second quarter of 2017  

 

Total 

Fly 

Ops 

Total Direct 

Maintenance 

Applied 

Maintenance 

Burden 

Total Flight 

Equipment 

Maintenance 

Expendable 

parts 

Amortization 

Expense 

Total AC 

operating 

expense 

Aircraft 

type Carrier 

5308.93 1949.2 502.36 2451.56 101.16 80.53 8551.01 622 UA 

5434.38 910.19 0 910.19 0 306.86 7011.16 698 NK 

5477.83 2538.48 1451.71 3990.19 - 0 9616.35 626 5Y 

5490.4 919.58 0 919.58 0 310.03 7083.44 699 NK 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

 

 

Fig. 7a)  The demand forecast of Boston-Atlanta market generated using ARIMA(2,0,2)(2,1,1)[4] with drift 

 

 

Fig. 7b)  The fit of ARIMA output on historical time series Boston-Atlanta market demand data 

 

 

BTS OD market survey data has been cleaned and preprocessed following standard Airlines Reporting Corporation 

(ARC) practices [114] to get a suitable training set for input to the logit model estimator. This involved removing 

multi-stop itineraries and itineraries with more than 6 legs or directional fares less than $50 or directional fares in the 

top 0.1% of observations.  
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The parameter estimates obtained for the logit-based itinerary share model using DB1B O-D market data for the 

second quarter of 2017 are reported in Table 5. The model was validated on DB1B O-D market data for the first 

quarter of 2017. The absolute error averaged across all itineraries was found to be 0.0115. The predicted itinerary 

shares of the entrant LCC for any given set of network design variables can be determined using Eqs. (6), (7) and (8), 

which can then be passed to the revenue model. The output of revenue and cost model will then be used to calculate 
our value function – the NPP.  

 

Table 5  Parameter estimates of the itinerary share model  

 

Explanatory variable Coefficient value 

Flight distance -0.0008 

Fare  -0.0009 

Number of connections -2.5512 

Online itinerary  1.4805 

Codeshare itinerary -0.3334 

Interline itinerary  -0.1471 

American Airlines 0.7488 

Southwest   0.2639 

Delta  0.8479 

United 0.2465 

JetBlue 0.5506 

Spirit -0.8671 

Frontier -0.7479 

SkyWest -0.0002 

Other airlines 0.9576 

 

 

Using machine learning techniques, the following key issues are being addressed: quantifying and modeling 

uncertainties of fuel price, demand, and delay, and sources of internal disruptions and external failures; determining 

the impact of delays, cancellations and misconnects on demand and hence customer loyalty and revenue; discovering 

hidden performance attributes of the network; and mapping system performance such as robustness and resilience to 

the value function. The uncertainties will reflect the stochastic environment in which the network will operate. 

Plugging in these uncertainties in the NPP model will lead to a value distribution of the candidate network designs. 
Afterwards, a suitable utility function will be given this value distribution to determine the utility derived by the airline 

stakeholders. Several optimization algorithms, both deterministic and stochastic, will be tested out to find the optimal 

network design in our design space, which, by definition, will give the highest utility. Finally, a comparative analysis 

of two transportation network design approaches will be carried out: networks designed with traditional robustness 

and resilience metrics and networks designed using our proposed framework. Networks designed using the tools and 

processes described in this paper are expected to have a superior performance, with respect to the true preference and 

risk attitude of the stakeholders, than the metric-based ones. 

  

VI. Conclusion 

This paper aims to demonstrate that real-world network systems of any domain, such as transportation networks, 

can be designed to achieve optimal performance in the presence of uncertainties by planning for resilience at the 

system design phase based on the preference and risk attitude of the stakeholders. The proposed design framework 

uses VBM, data analytics, and utility theory. Using VBM, the true preference of the stakeholders can be captured. 

Applying statistical techniques on historical datasets allows identifying key network performance attributes; 

determining their interrelationships and causal relationships, and their impact on value to formulate a meaningful, 
holistic value function; and quantifying uncertainties as probability distributions to get value distributions. Lastly, 

utility theory can be used to integrate value distributions associated with uncertain outcomes into a single expected 

utility that is consistent with the individual’s risk averseness. The value-based system resilience of the resulting 

complex network system can be assessed by performing a range of simulated disruption scenarios. To validate the 

resulting complex networked system, it can be compared with other systems designed with existing robustness and 
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resilience metrics. The research outcomes are expected to address the inconsistencies in the traditional metric-based 

robustness quantification of complex network system, the challenge of capturing the desired level of robustness in the 

system design from the decision makers’ risk attitude in the utility function, and the problem of finding the optimal 

recovery strategy by planning for resilience at the system design phase. This can potentially bridge the gap between 

the network science community and systems engineering community in the understanding of system robustness and 
resilience; and lead to the development of a standard methodological design framework for complex networked 

systems. By utilizing this framework, network designers and operators, such as air carriers, can design new route 

networks or reconfigure existing ones, along with planning for all other operational aspects, such as flight scheduling 

and fleet planning, for maximization of profit or other preferred objectives.  

Future work involves the analysis and application of this framework in other domains such as designing on-demand 

urban air transportation networks, where airports are replaced with vertiports in a given metropolitan area, aircrafts 

with electric vertical takeoff and landing vehicles, and LCC with a ridesharing company like Uber.  
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