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Recent advancements in aircraft technology, aviation concepts, and airspace management 

made by the collective effort of industry, government, and academia have set the stage for a 

new transportation mode called Urban Air Mobility (UAM). Attracted by the potentially large 

commuter and personal air travel market, companies such as Uber and Airbus are working 

towards launching their UAM services in near future. As the type of fleet deployed and the 

nature of operations in UAM are inherently different than ground-based transportation, new 

concepts and procedures are currently being developed to ensure safety and efficiency of such 

operations which will take place alongside traditional aviation. Additionally, new models of 

operations management are needed to support strategic and tactical decision making of the 

service providers, such as scheduling, dispatching and fleet planning, for maximizing their 

preferred objectives. Although such models will be critical to the success of the enterprise, no 

research, to the best of our knowledge, has yet been conducted on developing these models. 

Taking into account the unique set of operational constraints associated with UAM services, 

this paper proposes mathematical models for commercial transport service providers to 

decide which type of scheduling to offer, how to dispatch the fleet and schedule operations, 

based on simulated market demand, such that profit is maximized. The optimal fleet size can 

also be determined using the models. Three different settings of services – on-demand service, 

scheduled service, and a mix of both services (hybrid operations) – are modeled for carrying 

out a comparative analysis of the different forms of operations based on metrics such as 

fraction of total demand served and profit.  

I. Nomenclature 

  V    =   set of vertiports 

N = set of nodes in the UAM network  

A  = set of arcs connecting nodes in the UAM network 

G = UAM network 

T = set of predefined “time slices”  

K = set of eVTOL vehicles 
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N’ = set of all space-time (ST) nodes 

A’ = set of all ST arcs 

 

      Subscripts 

𝒾, 𝒿 = nodes in G 

(𝒾, 𝒿) = arc in G 

r,s = points in time that discretize analysis 

h,i,j = ST nodes belonging to N’ 

k = vehicles in K 

 

Parameters  

𝑞𝑖𝑗     =   total potential demand from ST origin 𝑖 ∈ 𝑁′ to ST destination 𝑗 ∈ 𝑁′ 

𝑒𝑖𝑗 = energy required for an eVTOL movement on ST arc (𝑖, 𝑗) ∈ 𝐴′ 

𝐸 = battery capacity of eVTOLs 

𝑐𝑖𝑗  = cost of traversing ST arc (𝑖, 𝑗) ∈ 𝐴′ 

𝛽 = slope of demand curve 

𝐶 = eVTOL capacity 

𝑢𝒾 = capacity of vertiport 𝒾 ∈ 𝑁 

𝑡𝒾𝒿 = travel time from UAM node 𝒾 ∈ 𝑁 to 𝒿 ∈ 𝑁 

 

Variables 

𝐸𝑖
𝑘    =   energy of vehicle k at node 𝑖 ∈ 𝑁′ 

𝑝𝑖𝑗     =   fare charged to travelers going from ST origin 𝑖 ∈ 𝑁′ to ST destination 𝑗 ∈ 𝑁′ 

𝑥𝑖𝑗
𝑘  = binary variable indicating whether eVTOL k is dispatched on ST arc (𝑖, 𝑗) ∈ 𝐴′ 

𝑥𝑖
𝑘 = binary variable indicating whether eVTOL k is stationed at node 𝒾 ∈ 𝑁 at the initial state 𝑡 = 0 

𝑑𝑖𝑗  = price responsive demand in ST arc (𝑖, 𝑗) ∈ 𝐴′ 

𝐶𝑖𝑗 = number of seats available for transporting passengers from ST origin i ∈ N′ to ST destination j ∈ N′ 

𝑤𝑖𝑗  = number of passengers transported from ST origin i ∈ N′ to ST destination j ∈ N′ 

𝑦𝑖𝑗
𝑘  = number of passengers traversing ST arc (𝑖, 𝑗) ∈ 𝐴 in eVTOL vehicle 𝑘 ∈ 𝐾  

𝑧 = total profit such that 𝑧 ∈ ℝ 

 

II. Introduction 

It goes without saying that commuting in busy metropolitan areas, through dense traffic and frequent lights and 

stops, burns a wasteful amount of gas, time, and energy, often making it an unpleasant experience one wishes to avoid 

if possible. But, getting from point A to point B, along with the ride experience associated with it, is expected to 

dramatically improve soon, with respect to cost, time, and comfort, for commuters with the advent of Urban Air 

Mobility (UAM) - a promising new mode of transportation conceptualized to leverage unused airspace with helicopter-

like aircraft called eVTOLs that stand for electric Vertical Take Off and Landing vehicles. Like helipads for 

helicopters, vertiports, placed strategically in the cities, will provide designated spaces to eVTOLs for takeoff and 

landing. UAM is envisioned to support a broad range of operations, such as emergency evacuations, search-and-

rescue, news gathering, package delivery, weather monitoring, passenger transport, etc. With organizations including, 

but not limited to, NASA, Uber, Airbus, Volocopter, Aurora, Joby Aviation, and Kitty Hawk actively overcoming 

market feasibility barriers, aviation technology gaps, and operational challenges associated with the implementation 

and operation of UAM  [1-7,20-22], these eVTOLs, designed to ferry passengers and goods on aerial virtual highways, 

are projected to hit the road, or in this case the air, soon. Several cities featuring a feasible infrastructure and an 

economically viable market for UAM - namely Dubai in United Arab Emirates, Sao Paulo in Brazil, San Francisco, 

Los Angeles, Boston, and Dallas-Fort Worth metroplex in USA, and some cities in New Zealand - have drawn the 

interest of government, academia and industry [1, 17-19]. 

A. Motivation 

Previous research efforts on UAM focused on identifying and addressing the potential technical challenges 

associated with the implementation and operation of UAM network and vehicles in urban airspace: departure and 

arrival scheduling horizon and sequencing, trajectory management to ensure safe spatial and temporal separation, 
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conflict resolution, integration with traditional flight operations in the national airspace, concept of operations, air 

traffic control, optimal required time of arrival, etc. [18-21]. Significant progress is being made to enable safe and 

efficient UAM operations alongside traditional aviation.  

In light of these advances and findings, several companies are planning to provide on-demand aviation services in 

the near future. Although the concept of on-demand transportation service – a system that allows passengers to hail a 

ride whenever and wherever they desire – is still applicable in UAM, the nature of Operations Management (OM) and 

Fleet Management (FM) in three-dimensional airspace will be fundamentally different than that of ground-based 

transport services. Unlike most cars, eVTOLs will be powered by electric charge. Before any trip, it is necessary to 

ensure that the vehicle has the required amount of energy which will depend on a host of factors such as the flight 

profile, trip distance, journey time, etc. While fueling a car takes just a few minutes, a recharging time of around thirty 

minutes is expected for eVTOLs using high voltage charging stations at vertiports [1]. Another major difference arises 

from the fixed spatial coordinates of vertiports, which essentially fixes the number of routes or Origin-Destination (O-

D) pairs the eVTOLs will shuttle about. These operational differences warrant the need for new OM decision support 

models, concerning route planning, fleet planning, vehicle dispatching and scheduling, to optimize the preferred 

objective of the service provider based on demand. To the best of our knowledge, no research has yet been conducted 

on developing these models. Taking this new set of operational constraints into consideration, this paper makes an 

attempt in this direction, by proposing a mathematical model for commercial UAM service providers to solve the 

eVTOL routing, dispatch, and scheduling problem based on simulated demand such that profit is maximized. The 

model can also be used for fleet planning to determine the optimal fleet size. Three different settings of services – on-

demand service, scheduled service, and a mix of both services – are considered for carrying out a comparative analysis 

of the different forms of services based on metrics such as delay and profit.  

B. Related Literature  
An integral part of all logistics applications, the dispatch problem, which asks, in general, how best to assign 

employees, vehicles or other resources to customers, has been formulated and solved using different approaches in 

existing literature. Industries heavily reliant on dispatching range from transportation service providers, such as 

taxicabs, ridesharing companies, couriers, emergency services, etc., to home and commercial service providers for 

maid services, plumbing, pest control, electricians, etc.  

The ambulance, or emergency vehicle in general, relocation and dispatching problem has been well-studied by 

researchers. Different techniques such as mathematical programming, heuristic based search algorithms, dynamic 

programming, etc. has been used previously to optimize performance metrics such as demand coverage, fleet size, 

average response time, and fraction of arrivals later than a certain threshold, etc. [22-29].  

In the passenger transportation domain, vehicle dispatching strategies are designed based on trip-request models 

built using spatial-temporal passenger mobility data [30-36]. Utilization rate, number of rebalanced vehicles, idle 

mileage, mileage delay, demand served are some of the performance metrics that have been optimized using 

mathematical programming, receding horizon control, and heuristics [37-39]. In ridesharing applications, the objective 

is to find a pairwise assignment of vehicles and passengers such that customer waiting times and traveling mileage 

[40,41] are minimized.   

Another problem closely related to dispatch is the scheduling problem. In fact, these terms have been used 

interchangeably in practice and in literature [43]. UAM scheduling process is expected to share similarities with that 

of airlines. The airline schedule development involves determining the frequency and timetable of the flight departures 

in each O-D market, subject to operational and fleet constraints [44]. An overview of popular fleet planning, route 

planning, and schedule development models used in the airline industry can be found in Ref. [44]. 

Henceforth, the terms vehicles and eVTOLs have been used interchangeably. The remainder of this paper is 

organized as follows. The next section presents our modeling approach. A discussion of the problem formulation and 

solution methods are given in sections IV and V respectively. Finally, the paper concludes with a review of the 

contributions made toward solving the UAM OM problem.  

 

 

III. Problem Description  

A. Problem Statement 

From deciding which fleet type and size to deploy to choosing how many, when, and where to dispatch the vehicles 

during times of operation, commercial transportation-based companies planning to roll out UAM services would need 

to prudently make a number of strategic and tactical decisions to serve the commuter market with the goal of 

https://en.wikipedia.org/wiki/Pest_control
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maximizing their preferred objective - profit. The focus of this paper is on developing models for vehicle dispatching 

and schedule planning, and solving them to find the optimal profit-maximizing decisions. Three types of scheduling 

models are considered: traditional, on-demand, or hybrid.  

During UAM operations, the four possible decisions which can be made concerning any eVTOL at a vertiport at 

a certain time are: (1) dispatch it to another vertiport with passenger(s); (2) transfer it to another vertiport to serve 

demand there; (3) recharge it; and (4) delay it on the ground till the next decision-making instant of time. In other 

words, as there will be a certain number of vehicles at any given vertiport at each decision-making instant of time, the 

vehicle dispatching comes down to deciding how many vehicles to use for transportation to each of the other vertiports, 

how many to relocate to each of the other vertiports, how many to recharge, and how many to delay on the ground till 

the next time step. In the case of on demand UAM services, these decisions will be driven by both time-dependent 

stochastic route demand forecasts and real-time trip requests, whereas in traditional scheduling, the decisions are made 

based on only the route demand forecasts.  

In this paper, ‘dispatching’ is used in the context of on-demand services to refer to deciding short-term vehicle 

allocations based on real time trip requests and the current demand forecast for the routes for a short time period into 

the future referred to as the look-ahead interval. On the other hand, ‘scheduling’ is defined as the process of developing 

timetables in advance for scheduling flight departures from the vertiports in the network. While dispatching needs to 

be executed on a running basis at each decision-making instant of time to account for the fluctuations in real time trip 

requests, scheduling is carried out only once ahead of time, which could be a few months or all the way up to a year, 

based on only the demand forecast. The ‘scheduling horizon’ or ‘planning horizon’ refers to the demand look-ahead 

interval, the time period of demand forecast used to make dispatching or scheduling decisions, which will be short for 

dispatching and long for scheduling. A hybrid UAM services, combining the best features of both on-demand and 

scheduled services, has been conceptualized to take one of four forms, varying across either vehicles or time or routes 

or across all three simultaneously. In the first type, referred to as hybrid-1 operations, some vehicles from the fleet 

will be designated to provide on-demand services while others will be used for scheduled services. In the second 

scenario, referred to as hybrid-2 operations, on-demand services will be offered during intervals with high demand 

forecast uncertainty and scheduled services during the other times. Providing on-demand services in some of the routes 

of the UAM network and traditional scheduled services in others is the defining concept of the third variant of hybrid 

operations – the hybrid-3 operations. The combination of hybrid-1, hybrid-2 and hybrid-3 operations results in the 

hybrid-4 operation, where the number of vehicles and choice of routes assigned for each service are allowed to vary 

throughout the day. 

 

B. Modeling Approach 

 

 

 
Fig. 1  The components of the on-demand OM model 

The vertiport network, type of fleet, and temporal route demand distribution considered in this research problem are 

described below. As depicted in Fig. 1, these parameters are given as inputs to the on-demand OM mathematical 

model for determining the optimal fleet size, vehicle dispatch, and profit. In the case of traditional scheduled UAM 

services, the block diagram differs slightly with respect to the inputs and outputs. Firstly, demand is modeled using 

OM model 

Passenger 

Mobility Data 

Demand model 

Dispatch frequency, planning 

horizon 

Network 

configuration 

Fleet characteristics 

Optimization 

Real time trip requests 

Geography, wealth 

demographics, 

Current events 

Fleet size, 

Vehicle 
dispatch,  

Fares, 

Profit 



5 

 

passenger mobility data and well-known calendar events without any real time trip requests. Secondly, the model 

needs to be solved only once ahead of the actual time of operation. Lastly, the vehicle dispatch output will be replaced 

by a profit-maximizing schedule. For hybrid UAM operations, the OM model will have to play the dual role of 

scheduler and dispatcher. In addition to the outputs shown in Fig.1, the model may also be used to compute the number 

of vehicles to allocate for each type of service as a function of time.               

C. Network Model  

 An UAM network of 3 vertiports completely connected with each other through 6 distinct routes or O-D markets, 

as depicted in Fig. 2a), is considered as the testbed for this research. The nodes represent the vertiports and the 

bidirectional edges the two distinct O-D markets in each direction. In practice, this type of UAM network may be set 

up in any large metropolitan area like Dallas-Fort Worth (DFW) metroplex, Los Angeles, etc. and different facilities 

such as municipal airports, helipads, roofs of building, etc. may be used as vertiports. All vertiports are assumed to 

have adequate high voltage charging stations, maintenance facilities, parking spaces and takeoff and landing areas. 

Although, the routes are illustrated by straight lines, they may, in practice, take a different shape, such as piecewise 

linear or curve, comprising of a number of intermediate waypoints. Given the average route distances, travel times, 

and required charge amounts for each trip, the computation of optimal dispatch solutions can be carried out without 

knowing the exact route shapes, flight plans, altitude of vertiports, and departure and arrival procedures. All the routes 

are assumed to be 60-80 miles long, which is within the range of eVTOLs currently being developed. These O-D 

market distances are similar to the ones found in a study conducted in DFW metroplex [19].  Further description of 

the characteristics of eVTOLs enabling UAM service in the model network is given in the following section.   

Expanding each node across time and geography results in the space-time (ST) UAM network illustrated in Fig. 

2b), where the time axis has been sliced in intervals of 30 minutes. An extension of schedule maps previously used by 

airlines [44], the ST network provides a visual representation of the movement of vehicles across vertiports and time 

via two types of arcs: ground and flight arc. Vehicles remaining idle or parked or recharging at a vertiport for one or 

more time slices are represented by ground arcs, each of which have 𝑒𝑖𝑗 < 0. The remaining arcs, called flight arcs, 

represents the flow of vehicles from an origin ST node to a destination ST node. In a flight arc, 𝑒𝑖𝑗 > 0. Arrival times 

and departure times can be read off from the timescale by dropping vertical lines from the arc’s start and end points 

in the ST network. The eVTOL turnaround times are assumed to be negligible in this research. 

 

 

 

 
Fig. 2a)  An example 3 vertiport network with 

complete route connectivity 

 
Fig. 2b)  A ST network showing flight arcs and 

ground arcs for scheduling UAM services 

D. Fleet Type  
 UAM vehicles are currently being developed by several companies, which include: Pipistrel, Embraer, XTI 

Aviation, Elytron, Eviation, Toyota, Workhorse, Detroit Aircraft Production, Yuneec Electric Aircraft DeLorean 

Aerospace, Urban Aeronautics LTD, Joby Aviation, EHang, Lilium Aviation, Carter Aviation and Mooney 

International, Evolo, Zee.Aero, Aurora Flight Sciences, Airbus A^3, Airbus & Italdesign, NASA, Kitty Hawk, 

Terrafugia, Bell Helicopter, etc. Electric propulsion, energy storage, and automation technologies are maturing at a 

rate that suggests all-electric eVTOLs will be available and economically viable by 2020 [1]. One of the key factors 

influencing the range, speed, and nonstop operational time of such eVTOLs is the specific energy densities of the 

batteries. The combination of the state-of-the-art battery and aviation technologies are expected to enable UAM flights 
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carrying 4 people and spanning, at most, roughly 140 miles at an airspeed of around 170kts during cruise without 

needing to recharge [19,42]. This corresponds to an hour of continuous operation on full charge after accounting for 

charge consumption due to takeoff, climb, hovering and landing segments of the flight. Charging times of the batteries 

are expected to reduce to less than half an hour due to emerging charging capabilities [42]. The eVTOL operating cost 

per mile resulting from several factors – such as vehicle maintenance, infrastructure costs, piloting costs, recharging 

costs, capital expenses and other operating expenses – was estimated to be approach $0.64 in the near-term in [1]. 

Based on these information, a list of parameters and their corresponding values chosen for the purposes of this research 

is tabulated below.   

 

 

Table 1 eVTOL characteristics 

 

Model parameter Value 

eVTOL capacity 4 

eVTOL range 100 mi 

eVTOL cruise speed 160 mi/h 

eVTOL nonstop operational time 1 h 

eVTOL recharging time 30 min 

Cost per vehicle mile $ 0.64/mi 

  

E. Demand Model 

One of the key inputs to the OM model is the O-D market demands. This demand, which represents the number 

of passengers willing to travel in a given O-D market, will drive all operational decisions as it is the prime source of 

the revenue for the UAM service provider. Potential passenger demand for UAM services in Los Angeles and San 

Francisco Bay Area has been estimated in past studies using data sources such as helicopter charter services, census 

data, and consumer wealth data [42,45].  

For the purposes of this research, market surveys and aggregate passenger behavior are currently being used to 

estimate temporal O-D market demands denoted by 𝑞𝑖𝑗 . Only point-to-point demand is considered in the OM model. 

The temporal O-D market demand distribution is estimated considering the hourly distribution given for each trip 

purpose (commute, family / personal, school / church, recreational and other) for the annual trips per start time from 

the Federal Highway Administration [46].  

 

 

 

        

         

       

Fig. 3 O-D market demands per trip purpose a) morning b) evening 
 

To distribute trips per purpose, the spatial distribution of activity location is set considering nodes 1 and 2 to be 

located on residential areas and node 3 on a central/downtown area. For instance, during the morning period, Fig. 3a) 

commuting trips are made from residential areas 1 and 2 to the central administrative area 3; Family/personal trips are 

made between the residential areas; school /church trips between residential areas and from residential node to the 

central/downtown node and lastly, for recreational and other purposes trips are made between all nodes. On the other 
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hand, during the evening Fig. 3b) commuting trips are made from central/downtown node 3 to the residential areas 1 

and 2; school/ church trips between residential areas and from central/ downtown to residential areas; at last trips made 

with recreational, family/personal and other purposes use a similar pattern as during morning period. 

 

 
 

Fig. 4a) Plot of hourly demand forecast with respect to time for 9 O-D markets 

 
 

 

 

Figures 3a) and 3b) depict the plot and column chart of non-zero values for the demand forecast for nine O-D markets 

at a given day of the week respectively. Demand is expected to vary differently throughout the day at each route 

depending on the flow directionality during the day.  

  

F. Mathematical Formulation 

A Mixed Integer Quadratic Programming (MIQP) approach has been employed to formulate the OM scheduling 

and dispatch problem at hand. The objective is to maximize profit over the scheduling horizon. As demand patterns 

typically repeat each week, the scheduling horizon is set to one week for the scheduling problem. For the dispatch 

problem, it is set to 3 hours. As the duration of trips and recharging periods are expected to take no longer than 30 
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minutes, the time of operation, 𝑇 = {0,1,2, … , |𝑇|} ∈ ℤ, is sliced into intervals of half an hour. A ST network, 

𝐺(𝑁′, 𝐴′), like the one shown in Fig. 2b), is used for setting up the problem, where 𝐴′ = {(𝑖, 𝑗) =

((𝒾, 𝓇), (𝒿, 𝓈)): 𝒾, 𝒿 ∈ 𝑁; 𝓇, 𝓈 ∈ 𝑇, 𝓈 − 𝓇 < 𝑡𝒾𝒿 } and 𝑁′ = {𝑖 = (𝒾, 𝓇): 𝒾 ∈ 𝑁, 𝓇 ∈ 𝑇}.   

When the fleet size is fixed, binary decision variables can be specified for each vehicle-arc combination to indicate 

if a vehicle is present or not in a given arc. These variables are denoted by 𝑥𝑖𝑗
𝑘 . Initial distribution of the vehicles at 

the vertiports are represented by 𝑥𝑖
𝑘. For fleet planning, however, design variables need to be specified for each action-

arc combination to represent the count of vehicles carrying out a certain action at a given arc. A description of the 

parameters and variables is given in the nomenclature section.  

The objective function to be maximized is given in Eq. (1), which computes the total operational profit by 

subtracting the operational cost from the generated revenue for all arcs. Demand 𝑑𝑖𝑗  in any given ST arc fluctuates 

with fares 𝑝𝑖𝑗  as shown in Eq. (2), where 𝑞𝑖𝑗  represents the total potential demand in the ST arc. The number of 

passenger carrying seats available in any given ST arc is determined by the product of the capacity of eVTOLs and 

the number of eVTOLs dispatched on the given arc as shown in Eq. (3). Clearly, the number of transported passengers 

in the arc cannot be higher than the corresponding 𝐶𝑖𝑗 and 𝑑𝑖𝑗 . This is enforced by the constraints given in Eqs. (4) 

and (5). Although taking the minimum of 𝐶𝑖𝑗 and 𝑑𝑖𝑗  gives the optimal 𝑤𝑖𝑗 , this computation is not carried out directly 

as it would introduce a nonlinear term in the objective function. At the start of the operational period, all vehicles must 

be assigned to exactly one vertiport, as enforced by Eq. (6). At any ST node, the number of incoming vehicles must 

be equal to the number of outgoing vehicles. Equations (7) and (8) enforces the vehicle flow conservation at all ST 

nodes at the starting time and all other times in the scheduling horizon respectively. In the case of scheduled UAM 

services, the number of eVTOLs at each vertiport at the end of the scheduling period must match that at the beginning. 

This balance constraint is ensured by Eq. (9). Energy constraints are enforced in Eqs. (10), (11), and (12). At the first 

time instant, vehicles are assumed to have full energy. The first energy equation specifies that at the starting time the 

energy of a vehicle 𝑘 at node 𝑛 is full with charge 𝐸 if the vehicle is present at the node. Otherwise, the energy of the 

vehicle at that node is zero. At all other times, the energy of a vehicle 𝑘 at a node 𝑛 is full if it arrived at that node by 

a horizontal recharging arc in the previous time slice, half full if it arrived at that node by a flight arc in the last time 

slice and a recharging arc in the second last time slice, and zero otherwise, as stated in Eq. (11). The subsequent 

equation specifies that a vehicle may be assigned to a flight arc only if its energy level exceeds or matches the required 

arc energy. Lastly, the vertiport capacity constraints, expressed in Eqs. (13) and (14), ensures that the number of 

vehicles at a vertiport at the starting time as well as at all other times does not exceed the vertiport’s capacity. 

     

Objective function 

 

max 𝑧 = ∑ 𝑝𝑖𝑗𝑤𝑖𝑗

(𝑖,𝑗)∈𝐴′

− ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴′𝑘∈𝐾

(1) 

 
𝑑𝑖𝑗 = 𝑞𝑖𝑗 − 𝛽𝑝𝑖𝑗 (2) 

 
∀(𝑖, 𝑗) ∈ 𝐴′ 

 

𝐶𝑖𝑗 = 𝐶 ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

(3) 

 

∀(𝑖, 𝑗) ∈ 𝐴′ 

 

Constraints 

 
𝑤𝑖𝑗 ≤ 𝑑𝑖𝑗 (4) 

 
∀(𝑖, 𝑗) ∈ 𝐴′ 

 
𝑤𝑖𝑗 ≤ 𝐶𝑖𝑗 (5) 

 
∀(𝑖, 𝑗) ∈ 𝐴′ 
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∑ 𝑥𝑖
𝑘

𝑖∈𝑁′:𝑖=(𝒾,𝓇),𝒾∈𝑁,𝓇=0∈𝑇

= 1 (6) 

 

∀𝑘 ∈ 𝐾 

 

 𝑥𝑖
𝑘 = ∑ 𝑥𝑖𝑗

𝑘

𝑗∈𝑁′:(𝑖,𝑗)∈𝐴′

(7) 

 
∀𝑖 ∈ 𝑁′: 𝑖 = (𝒾, 𝓇), 𝒾 ∈ 𝑁, 𝓇 = 0 ∈ 𝑇, ∀𝑘 ∈ 𝐾 

  

∑ 𝑥𝑖ℎ
𝑘

𝑖∈𝑁′:(𝑖,ℎ)∈𝐴′

= ∑ 𝑥ℎ𝑗
𝑘

𝑗∈𝑁′:(ℎ,𝑗)∈𝐴′

(8) 

 
∀ℎ ∈ 𝑁′: ℎ = (h,𝑟), h ∈ 𝑁, 𝑟 > 0 ∈ 𝑇, ∀𝑘 ∈ 𝐾 

 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑖∈𝑁′:(𝑖,𝑗)∈𝐴′

= ∑ 𝑥ℎ
𝑘

𝑘∈𝐾

(9) 

 
∀𝑗 ∈ 𝑁′: 𝑗 = (𝒿, 𝓈), 𝒿 ∈ 𝑁, 𝓈 = |𝑇| ∈ 𝑇, ℎ ∈ 𝑁′: ℎ = (𝒿, 𝓇), 𝒿 ∈ 𝑁, 𝓇 = 0 ∈ 𝑇 

 

𝐸𝑖
𝑘 = 𝑥𝑖

𝑘𝐸 (10) 

 

∀𝑖 ∈ 𝑁′: 𝑖 = (𝒾, 𝓇), 𝒾 ∈ 𝑁, 𝓇 = 0 ∈ 𝑇, ∀𝑘 ∈ 𝐾 

 

𝐸𝑗
𝑘 = 𝐸𝑥ℎ𝑗

𝑘 + ∑
1

2
𝑥𝑖𝑗

𝑘

𝑖∈𝑁′:(𝑖,𝑗)∈𝐴′,𝑖=(𝒾,𝓈),𝒾≠j ∈𝑁,𝓈=𝑟−1∈𝑇

𝑥𝑔𝑖
𝑘 𝐸 (11) 

 

∀𝑗 ∈ 𝑁′: 𝑗 = (j , 𝑟), j ∈ 𝑁, 𝑟 > 0 ∈ 𝑇, ∀𝑘 ∈ 𝐾, ℎ ∈ 𝑁′: ℎ = (j , 𝑟 − 1), 𝑔 ∈ 𝑁′: 𝑔 = (𝒾, 𝑟 − 2) 

 

∑ 𝑥𝑖𝑗
𝑘 𝑒𝑖𝑗

𝑗∈𝑁′:(𝑖,𝑗)∈𝐴′

≤ 𝐸𝑖
𝑘 (12) 

 
∀𝑖 ∈ 𝑁′: 𝑖 = (𝒾, 𝓇), 𝒾 ∈ 𝑁, 𝓇 < |𝑇| ∈ 𝑇, ∀𝑘 ∈ 𝐾 

 

∑ 𝑥𝑖
𝑘

𝑘∈𝐾

≤ 𝑢𝒾 (13) 

 

∀𝑖 ∈ 𝑁′: 𝑖 = (𝒾, 𝓇), 𝒾 ∈ 𝑁, 𝓇 = 0 ∈ 𝑇 

 

∑ ∑ 𝑥ℎ𝑖
𝑘

𝑘∈𝐾ℎ∈𝑁′:(ℎ,𝑖)∈𝐴′

≤ 𝑢𝒾 (14) 

 
∀𝑖 ∈ 𝑁′: 𝑖 = (𝒾, 𝓇), 𝒾 ∈ 𝑁, 𝓇 ∈ 𝑇 

 

 

 

All three types of scheduling OM models are based on the mathematical problem formulation described above, 

but they vary in the set of constraints they impose, the scheduling horizon, and the number of times the problem needs 

to be solved or the computational cost.  
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G. Scheduler 

In the case of traditional scheduled UAM service, the OM model used as the scheduler is solved only once with a 

possibly week long scheduling horizon without explicitly using the vertiport capacity constraint given by Eq. (13). 

The balance constraint given by Eq. (9) ensures that the vertiport capacity constraint is satisfied at the starting time. 

Only the demand forecasts for the ST arcs in the scheduling horizon is considered in the model to find the optimal 

solution. Hence, the performance of the scheduler will strongly depend on the accuracy of the demand forecasts. When 

the actual demand is different than the predicted demand, the vehicle distribution along the ST arcs may cause demand 

spill in some arcs due to insufficient number of vehicles assigned to that arc and poor vehicle capacity utilization in 

some arcs as a result of an excessively high seat availability in that arc. As the optimization problem is only solved 

once, the computational cost is low, raising no concern if the scheduler is ran sufficiently in advance to actual 

operations. 

H. Dispatcher 

In contrast, the OM model used as the dispatcher in the on-demand UAM setting is invoked at the start of each 

time slice with a much smaller scheduling horizon of 3-6 hours. Known real-time trip requests for the next two 

immediate time slices as well as the demand forecasts for future time slices in the scheduling horizon are leveraged to 

determine the optimal dispatch solution. All the constraints are imposed in the analysis except for the vehicle balance 

constraint at the last time instant given by Eq. (9) as the dispatcher is not obligated to follow a weekly schedule. 

Because the on-demand dispatcher takes into account real-time trip requests, it is expected to generate more profit 

than the scheduler albeit at the expense of higher computational cost which increases linearly with the time length of 

scheduling horizon and the number of eVTOLs and exponentially with the number of vetiports in the network. Hence, 

the successful implementation of the dispatcher in real world is subject to the availability of adequate computing 

power such that the optimal solution can be found in a matter of minutes. 

I. Hybrid Scheduler-Dispatcher 

Hybrid scheduling models utilize both a scheduler and a dispatcher to provide traditional scheduled and on-demand 

services respectively either in parallel or alternatively at different times of the operational period. In hybrid-2 

operations, the dispatcher will be subject to an additional constraint to ensure that the vehicle distribution across the 

vertiports at the end of the on-demand period matches that at the beginning of the scheduled services period. These 

models offer solutions that are competitive with the one from the dispatcher, but for a much lower computational cost 

since the dispatcher is ran with a lower number of eVTOLs and/or vertiports. Hybrid-2 operations, however, do not 

offer any computational cost savings unless the scheduling horizon is reduced in the on-demand operational period.  

          

IV. Solution Method 

    To solve the NP-hard optimization problems formulated in the preceding section, the quadratic programming solver 

Gurobi is currently being used. Numerical experiments are currently being conducted on a fully-connected 3 vertiport 

network with 20 eVTOLs. Performance metrics such as profit, fraction of total potential demand served, and passenger 

delays will be used for comparing the three types of UAM services. 

Weekly demand forecasts have been obtained from the demand model described in section III. For any given ST 

arc, the number of real-time trip requests is obtained by sampling from a normal distribution with a mean set equal to 

the demand forecast of the given ST arc and a standard deviation ranging from 5-50% of the mean. The sample from 

the continuous distribution is then rounded to the nearest integer. A low standard deviation indicates good forecast 

accuracy and vice-versa. The standard deviation is varied to simulate varying degrees of forecast accuracy. A 

sensitivity analysis will be carried out on the value of the price elasticity or demand slope. Other model parameters, 

such as scheduling horizon, time discretization scheme, eVTOL characteristics and route connectivity, will also be 

varied to analyze the effect on the computational cost and profit. Increasing the scheduling horizon would make the 

problem more computationally demanding, but the model is expected to generate a more profitable solution. 

Among the three types of services, the on-demand service is expected to score highest in the performance metrics 

followed by the hybrid service and traditional scheduled service. On the other hand, the scheduled service is expected 

to have the least computational cost, followed by the hybrid service and on-demand service. So, the hybrid services is 

expected to generate solutions that that balances well the performance metrics and the computational cost. It would 
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be appealing to both time-sensitive and cost-sensitive passengers who prefer on-demand and scheduled services 

respectively.  

V. Conclusion 

The nature of UAM services is fundamentally different than other ground- or air-based transportation services, 

which warrants the need for new OM models for scheduling, dispatching, and fleet planning based on unique 

operational constraints and demand data. Towards that end, a MIQP problem has been formulated to support tactical 

decision making with the objective of maximizing profit. To estimate temporal O-D market demands, market surveys 

and passenger behavior data are currently being used. By combining on-demand and traditional scheduled services, a 

new form of service, called hybrid service, has been conceptualized, which may take one of four different forms. 

Three variants of the basic OM model are formulated, corresponding to the different types of possible UAM services, 

for performing a comparative analysis between them based on metrics such as profit, fraction of total potential demand 

served, and passenger delays. The next steps involve implementing the models and analyzing the results to verify our 

hypotheses. Afterwards, future work involves extending the current basic OM model to include stochastic demand, 

uncertainties in travel times, and ground segments of the UAM service to vertiports.  
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