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In recent concept development and research effort on Unmanned Arial System (UAS)
Traffic Management (UTM) and urban on demand mobility (ODM), electric Vertical Take-
off and Landing (eVTOL) operations for cargo delivery and passenger transportation need
to constantly check if their mission can be successfully completed given the current battery
power supply. This onboard or ground-based mission evaluation algorithm is necessary
because (1) eVTOL aircraft run on limited battery power; and (2) eVTOL aircraft are
usually light weighted so they are subject to wind uncertainties in low-altitude airspace. In
this work, the plan is to create an equivalent circuit model (ECM) that best represents the
battery pack of a UAS, and then use flight testing to validate the accuracy of that model.
Additionally, the ECM will be used to predict the UASs ability to complete a specific
flight plan successfully. The expected significance of this research is to provide an online
framework to constantly monitor and predict battery behavior for mission assessment,
which is critical for low-altitude eVTOL operations.

Nomenclature

Q Capacity, Ah
Vm Measured voltage, V
Vs Simulated voltage, V
R0 Resistance of resistor in series, ohm
R1 Resistance of resistor in RC, ohm
τ RC circuit time constant, sec
P Power, W
T Thrust, N
α Angle of Attack, deg
γ Flight path angle, deg
vi Induced velocity, m/s
m mass of UAS, Kg
v∞ Stream velocity, m/s
vh Hover velocity, m/s
ηP Propeller efficiency
ηe Power conversion efficiency
CD Drag coefficient
FA Frontal area, m2
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I. Introduction

A. Background

Electric Unmanned Arial Systems (UAS) have received significant attention in recent years. They are being
deployed in a variety of areas like agriculture, cargo delivery, surveillance, and on-demand mobility (ODM).
The FAA projects a rise in sales of UAS used for commercial purposes from 600,000 in 2016 to 2.7 million by
2020.1 This significant increase supports the necessity of developing a low-altitude UAS traffic management
(UTM) system to help enable safe and efficient small UAS (sUAS) operations in this specific airspace. A
UTM system should be designed to have certain major inputs, which include flight plans of the UAS aircraft,
trajectories of the UASs, weather forecast, and airspace/terrain constraints, such as no-fly zones and airport
restrictions.2

NASA has initiated collaborative efforts with multiple government entities, industry, and academic in-
stitutions in order to pave the way for the development of UTM.2 The main focus of the collaboration has
been on sUAS operations, which include, but is not limited to, cargo delivery proposed by Amazon and
Google.3,4 Since 2016, the possibility of urban ODM has been explored by NASA, Uber, Airbus and univer-
sity researchers.3–7 Most of UTM and ODM operations are based on Electric Vertical Take-Off and Landing
(eVTOL) aircraft, where the battery runs on limited power and wind can have a huge effect in low altitude
airspace due to the fact that they’re mostly lightweight. In a huge number of eVTOL, the propuslion system
is purely electrical. A few groups such as NASA Ames8,9 have worked on real-time estimation of battery
state-of-charge and prediction of future power demand for fixed-wing aircraft.

B. Motivation

It is important to be able to assess a UAS’s ability to successfully complete a mission given a specific
flight plan. Figure 1 shows a use case where a package is being delivered from a warehouse to a specified
destination using the flight plan drawn. It is essential to ensure that the UAS has sufficient power in its
battery to complete the mission. The inability to successfully complete the mission could have damages on
the UAS as well as the surroundings, and that can be quite costly. The ability to predict whether or not a
UAS has enough power left in the battery to complete a specific flight plan is critical in low altitude airspace.

Figure 1: Use case
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C. Contributions

The main contribution of this work is the creation of an equivalent circuit model that best represents a cell
of the UAS, and then extend that model to represent it on battery pack level.

As a proof of concept, the equivalent circuit model is then validated with the aid of flight testing data
of the UAS. Lastly, an extra step is taken to use the equivalent circuit model to predict the UAS’s ability
to complete a specific flight mission. The vehicle used for the purpose of this work is the DJI Phantom 3
Standard, which has the largest market share.10 With the aid of the DJI developer kit, current and voltage
profiles of missions can be archived and save for analysis purposes.11

II. Battery Modeling

An equivalent circuit model (ECM) is a circuit that has similar behaviorial properties as the observed
cell. ECMs give insight on how cells function under different loads and dynamic changes. When choosing an
ECM to represent the observed cell, it is very important to balance between the circuit complexity, that will
lead to unnecessary computational complications, and the modeling accuracy. ECMs have been extensively
studied and applied to develop a battery management system. Additionally, Lithium polymer batteries have
been widely modelled using ECMs.12 Once the ECM of one DJI Phantom 3 standard cell is designed, the
complete battery can be modeled by placing 4 cells in series. It is important to note that it has been assumed
that all 4 cells are identical to simplify the process.

A. Circuit Topology

It is essential to make sure that the circuit topology chosen closely matches with the characteristics and
the dynamics of the cell observed. The cells of the DJI Phantom 3 Standard are Lithium-Polymer with
limited knowledge of internal chemistry. Typically, the voltage of a fully charged Lithium-Polymer cell is
higher than that of a discharged cell. This can be captured by relating the open-circuit voltage (OCV) to
the state of charge (SOC).12 For the DJI Phantom 3 Standard cell, it is defined to be at 100% SOC when
it is at 4.25 V and 0% SOC at 3.0 V. This will help in determining the OCV-SOC relationship needed in
parameter estimation algorithm. Whenever a certain load is applied, the cell’s terminal voltage should drop
below the open circuit voltage. In order to capture that phenomena, a resistor is placed in series with the
voltage source. In general, the resistance would be dependent on the current and state of charge. For the
purpose of this work, it will be assumed constant. When representing Lithium-Polymer cells in an ECM,
Resistor-Capacitor circuits are an essential component. This is due to the fact that the number of R-C
pairs determines the ability of the ECM to match with the measured responses from the cell testing.12 To
determine the number of R-C pairs that will be sufficient to well represent the observed cell, a single pulse
discharge test followed by a relaxation period is performed and analyzed.13 The relaxation period is then
fitted into exponential equations of orders 1 and 2 that represent 1 R-C pair and 2 R-C pairs respectively.
The fitting was done using MATLAB’s Curve Fitting Toolbox.

Figure 2: Fitted data for 1 RC Figure 3: Fitted Data for 2 RC
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Table 1: Comparison between the two fits

R-C Pairs SSE R2 RMSE

1 0.0533 0.03273 0.001038

2 0.1666 0.7534 0.005243

Figures 2 and 3 show the results of the fitting algorithm for 1 R-C and 2 R-C pairs respectively. Table
1 show the comparisons between the two fitted curves. The 1 R-C pair has a lower sum of squared error
and root mean squared error. This finding proves that 1 R-C pair provides a better representation of the
observed cell than 2. 3 R-C and 4 R-C pairs were not investigated due to the fact that it adds a higher
degree of complexity when it comes to the parameter estimation of the ECM and does not produce significant
improvement in modeling accuracy.

So far, the ECM has a resistor, an open-circuit voltage, and a R-C pair all connected in series. With this
circuit, if the current drops to zero, the voltage across the resistor in series drops to zero, and the voltage
of the capacitor will exponentially drop to zero over time. This is not representative of the observed cell, as
its voltage may drop to a value considerably different than the open-circuit voltage, and this voltage drop is
dependent on the cell’s operation history. This phenomena is known as hysteresis.12 The final ECM of the
observed cell is shown in figure 4. As described in previous sections, the open circuit voltage is a function of
SOC, and a single R-C pair is connected in series with a resistor and a hysteresis voltage. The final equation
of the ECM is given by equation 1.

Vout = OCV (SOC)− i0R0(SOC, i)− i1R1(SOC, i)−MHyst (1)

Figure 4: Final equivalent circuit model

B. Cell Testing

Now that the topology of the ECM has been decided, it is important to conduct different types of tests on
the observed cell to be able to estimate its parameters. These parameters are estimated by using the data
from the tests, and fitting them into the model of equations that are representative of the ECM. The battery
testing is performed at Iowa State University, in the System Reliability and Safety Laboratory located at
the Mechanical Engineering department. The Battery Testing System is of model Neware BTS5V6A, with
a power of 448 W, a voltage measurement range of 10 mV - 5V, and 12 mA - 6 A for both charging and
discharging. This system can control a cell’s current according to a user-fitted profile of applied current versus
time, and in return records the cell’s current and voltage. The test must be conducted in a temperature-
controlled environment. The system can simultaneously perform tests on 8 different cells.

1. Static testing

A static test is conducted to determine the open-circuit voltage (OCV) as a function of state-of-charge
(SOC). Before beginning the test, it is essential to ensure that the observed cell is fully charged, and if not,
that is fully accounted for in the test script. The script of a static test is as follows:
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1. Fully charge the cell to 100% state-of-charge and place it in a temperature-controlled chamber 2 hours
before the test to ensure the temperature is uniform.

2. Discharge the cell at a constant current rate of C
30 until the voltage across the cell reaches its lower

cut-off voltage of 3.0 V.

3. Charge the cell at constant current rate of C
30 until the voltage across the cell reaches its upper cut-off

voltage of 4.25 V.

4. Use the voltage data from slow-dicharge/charge test to determine the open-circuit voltage of the cell.

2. Dynamic testing

A dynamic test is conducted to determine the remaining equivalent circuit parameters. Before beginning
the test, it is essential to ensure that the observed cell is fully charged, and if not, that it is fully accounted
for in the test script. The script of a dynamic test is as follows:

1. Fully charge the cell to 100% SOC and place it in a temperature-controlled chamber 2 hours before
the test to ensure the temperature is uniform.

2. Discharge the cell at a constant current rate of C
50 (different c-rates are used) until the cell loses 10%

of its capacity.

3. Allow the cell to relax for a specified period of time.

4. Carry out dynamic profiles over SOC range of 90% to 10%.

5. Charge the cell at a constant current rate of C
50 until voltage across the cell reaches its maximum.

C. Circuit Parameter Estimation

1. Open circuit voltage/state-of-charge relationship

From conducting a full charging/discharging static test on the cell observed, the OCV/SOC relationship
is determined by initially observing how the voltage changes with respect to capacity for the charging and
discharging cycles respectively. Then, the average between both observations is computed as shown figure
5. The averaged relationship can then be used to compute the depth of charge at each time step t using:

DOC(t) =
Q(t)

QTotal
(2)

where QTotal is the total charge of the cell and Qt is the charge at each time step. The SOC can then be
computed using:

SOC(t) = 1−DOC(t) (3)

The final OCV/SOC relationship is shown in figure 6. This relationship will then be used to help estimate
the remaining parameters of the ECM.

Figure 5: Voltage vs. Capacity plots Figure 6: Final OCV vs SOC relationship
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2. Remaining ECM parameters

The objective of the parameter estimation algorithm is to obtain a set of parameters that can be used in
model to best predict a certain behavior. In this case, the parameters will be used in the ECM to predict
voltage response of a cell with a given stimuli; the controlled current input. The accuracy of the prediction
will be the criteria for determining the parameters. The root mean square error (RMSE) between predicted
and measured voltage will be used to determined the accuracy of the prediction. Since no analytical solution
of the best parameter values can be acquired, stochastic algorithm is applied to get the best estimates of
those parameter values. Particle Swarm Optimization (PSO) is used for the purpose of this estimation. The
algorithm will start with reasonable guesses of those parameters since boundaries can be set for the parameter
values given prior knowledge of the cell exists. The algorithm will then search in the parameter space and
try to minimize the defined cost function. When a minimum of the cost function is reached, the algorithm
will stop and give you a set of ’best-fit’ parameters. PSO requires a definition of the variables, objective
function, and constraints of the parameter estimation problem. The formulation of the optimization problem
is as follows:

min

√∑n
t=1(Vm − Vs(x1, x2, x3, x4, x5, x6))2

n

s.t. 0.00 ≤x1 ≤ 1.00

10.00 ≤x2 ≤ 2000

0.00 ≤x3 ≤ 2.00

−1.00 ≤x4 ≤ 1.00

−∞ ≤x5 ≤ +∞
−0.01 ≤x6 ≤ 0.01

(4)

where Vm is the measured voltage from the dynamic testing, n is the length of Vm vector, Vs is simulated
voltage given by equation 1, x1 is the resistance of the resistor in series R0, x2 is the time constant of the RC
circuit τ , x3 is the resistance of the RC circuit resistor R1, x4 is the hysteresis factor itea, x5 is the factor
multiplied by the hysteresis voltage M , and x6 is the constant multiplied by the sign of the current M0.

Four different types of dynamic tests were conducted on the observed cell to be used in parameter
estimation algorithm; 1.3 C pulse discharge followed by a 1 hour relaxation period, 1 C pulse discharge
followed by 1 hour relaxation period, 0.5 C pulse discharge followed by a 1 hour relaxation period, and 0.3
C pulse discharge followed by a 1 hour relaxation period.

Table 2: Estimation results

Test R0 τ R1 Itea M M0

1 0.00756 111.114 0.0389 -0.0084 12.1153 0.0100

2 0.00965 150.457 0.0487 -0.0091 26.4412 0.0100

3 0.00458 110.983 0.0583 -0.0088 29.3275 0.0100

4 0.00634 108.631 0.0377 -0.0056 12.3261 -0.0100

The results of the parameter estimation of each of the four tests are shown in table 2. The optimiza-
tion algorithm for each of the four tests resulted in close estimations of the parameters, which concludes
the accuracy of the approach and the parameters. If the cell’s performance is stable, then the parameter
optimization results should be similar for different tests. In this case, the parameters from each of the tests
are close, so averages are taken in order to determine the final equivalent circuit model parameters.

The results from figures 7, 8, 9, and 10 clearly show how accurate the parameter estimation algorithm is
as the simulated voltage response matches closely with the measured voltage from the testing.
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Figure 7: 1.3 C, 1 hour relaxation Figure 8: 1 C, 2 hour relaxation

Figure 9: 0.5 C, 1 hour relaxation Figure 10: 0.3 C, 1 hour relaxation

III. Power Demand Modeling

A power demand profile can be predicted from the specific flight plan and prior knowledge of the dynamics
of the quadrotor. This predicted power profile will then be used to estimate the voltage profile of the UAS
with the aid of the ECM. For the purpose of this work, only forward flight will be considered. This means
that there will be no ascend/dcesend phases incorporated in the analysis of the power demand. Using the
dynamic model in:14

T sin θ −Dcosγ = 0 (5)

dVh
dt

=
T cos θ −D sin γ −mg

m
(6)

where α is the angle of attack, θ is the pitch angle of the vehicle, and γ is the flight path angle.

A. Momentum theory for forward flight

Since this work will only examine forward flight, it is critical to capture the dynamics of such flight accurately.
For a quadrotor, the induced velocity vi is:15

vi =
v2h√

(v∞cosα)2 + (v∞sinα+ vi)2
(7)

where vh is the induced velocity at hovering, α is the angle of attack, and v∞ is the steam velocity. Since vi
is on both ends of the equation, computational methods are needed to solve it.15

PTotal =
1

ηP

1

ηe
TTotal(v∞ sinα+ vi) (8)

ηP = 0.7652 (9)

ηe = 0.85 (10)
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where ηP and ηe are the propeller and power conversion efficiencies respectively, which have been referenced
from.8 The main reason these inefficiencies are added to the model is to reinstate that the predicted
power demand will always be lower than the actual power required by the UAS. Since the blades are of a
finite number, as opposed to the assumption of infinite number of blades in momentum theory, the tip will
always produce vortices, and that leads to a flow that is not a linear laminar flow, which is accounted by ηP .
Additionally, the power produced by the motor will not be fully transformed into the rotor due to mechanical
inefficiencies, and that is accounted by ηe. The underlying work to account for these inefficiencies have been
discussed in details in Chapter Two of.16

B. Drag model

Since only forward flight will be considered for this study, the drag model, shown in equation 11 is only one
dimensional and is along the horizontal path. Only parasite drag will be considered for the purpose of this
work.14

D =
ρv2∞CDFA

2
(11)

where ρ is the density of air at the specified altitude, CD is the drag coefficient of 1.0, and FA is the frontal
area of the UAS.

IV. Flight Mission Assessment

This section will explain the flight testing conducted on the DJI Phantom 3 Standard, which will be an
essential component in the state estimation algorithm. Additionally, this section will explain how the online
prediction algorithm works.

A. Flight Testing

Upon starting the DJI GO application, a connection is established with the Phantom and data is recorded
(current, voltage, GPS coordinates, and velocity in all three axis). This file is stored locally on the device,
and can be accessed from device settings or by connecting to a computer.

The user may then input, using the interface of the application, the parameters for the flight. From here,
a series of way points along the path is computed to match those parameters. These way points are then
combined into a mission and uploaded to the Phantom 3 Standard before the flight is started. This was
done using the DJI mobile SDK. The DJI mobile SDK appears to prevent multiple active connections across
applications (i.e. the inability to use DJI GO and SDK at the same time). Instead, switches can be made
between the two by exiting and terminating the other.

The flight test conducted on the DJI Phantom 3 Standard consisted of two way points, where the UAS
continuously performs back and forth laps until the battery drains.

Figure 11: Estimation algorithm

B. State Estimation

After conducting the flight testing and archiving the voltage and current profiles, they will be used to validate
the accuracy of the equivalent-circuit model as shown in figure 11. The current profile from the flight testing
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is fed into the ECM, which will output an estimated voltage profile that will then be compared to the real
voltage profile from the flight testing. Additionally, the state of charge profile will be estimated.

Figure 12 shows the current profile for the flight test conducted. From figure 13, the difference between
the simulation and flight testing is about 0.05 V, which is quite accurate considering the assumptions that
were reinstated in the ECM. Figure 14 shows how the SOC changes with time using the estimation algorithm.
It is important to note here that the estimation of the SOC doesn’t reach zero, and that is representative in
the fact that DJI Phantom 3 Standard has to terminate the mission and return to home when the battery
charge is at 10%.

Figure 12: Current profile Figure 13: Simulated voltage vs. measured voltage

Figure 14: Estimated SOC vs. flight time

C. Online Prediction

Now that the equivalent circuit model has been validated with the flight testing, and the accuracy was within
0.05 V, it can be then used to predict the ability of a UAS to complete a specific flight plan. Figure 15
explains how the online prediction algorithm works. From a specific flight plan, and having prior knowledge
of the dynamics of the UAS, the future power demand can be estimated as described in chapter 3, which
can be then fed into the ECM to get voltage and SOC profiles. It is critically important to define a cut-off
voltage, after which the battery no longer has any energy left. For the DJI Phantom 3 Standard, the cut-off
voltage was assumed to be 12 V.
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Figure 15: Prediction algorithm

A case study is created to help validate the online prediction algorithm. The DJI starts from a hovering
position, then accelerates to 10 m/s, moves forward at constant speed for a specified period of time, then
decelerates back to zero as shown in figure 16. Using the equations and dynamics model defined in chapter
3, the power profile for the case study is shown in figure 17. Using the equivalent circuit model, the voltage
and SOC profiles are then predicted. Figures 18 and 19 show the results of that prediction.

Figure 16: Case study

As can be deduced from figure 18, the cut-off voltage of 12 V was reached at around 18.1825 minutes,
which means that the DJI does not have enough power to complete this specific flight plan. Even though
this case study has not been validated, it has a logical basis to it as the average time of the DJI Phantom 3
Standard is around 18 – 25 minutes. Additionally, the SOC profile confirms that the mission ends at 18.1825,
because at that time instant the predicted SOC is 0%. Figure 19 shows the prediction of the SOC for the
case study. It is important to note that 0% SOC was reached at the same instant the cut-off voltage was
reached in figure 18.

Figure 17: Estimated power demand Figure 18: Voltage profile of case study
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Figure 19: SOC profile of case study

V. Conclusion

In conclusion, this work presents a framework to be able to assess a UAS’s ability to complete a flight
plan. This work outlines how to choose the topology of the ECM with the aid of curve fitting of some cell
testing data. Additionally, this work shows how dynamic and static cell testing data is used to help estimate
the parameters of the ECM with the aid of Particle Swarm Optimization. Once the ECM has been created
and the parameters have been estimated, validation was necessary to ensure the accuracy of the model;
flight testing was used for that purpose, as voltage and current profiles were archived. The voltage profile
from the flight testing is then compared to that from the estimation algorithm proposed in this work. The
accuracy between both was within a maximum difference of about 0.05 V. Furthermore, the online prediction
algorithm discussed was accurate to a certain extent, where the cut-off voltage was reached at around 18.1
minutes, which is within the time range of the DJI Phantom 3 Standard.

VI. Future Work

There were a lot of assumptions made in this work that could result in the inaccuracies present thus far.
Firstly, the analysis was only done on one cell, and all the other cells were assumed to be identical. This may
not be an accurate representation as cells might behave differently in the UAS. Furthermore, there was no
previous knowledge of the cell’s chemistry, which could’ve been helpful in understanding how it acts under
different dynamic loadings. The work here can be extended by predicting the Remaining Useful Time (RUT)
as a function of the flight operation time for a specific UAS. This relationship better represents the ability of
a UAS to successfully finish a mission. This work can be significant in low altitude airspace operations, as it
can assess a UAS’s ability to successfully complete a mission by constantly predicting the battery behavior.

References

1FAA, “FAA Releases 2016 to 2036 Aerospace Forecast,” https://www.faa.gov/news/updates, 2016, [Online; accessed
16-November-2017].

2Kopardekar, P. H., “Unmanned aerial system (UAS) traffic management (UTM): Enabling low-altitude airspace and UAS
operations,” 2014.

3“Revising the Airspace Model for the Safe Integration of Small Unmanned Aircraft Systems,” https://utm.arc.nasa.

gov/docs/Amazon_Revising.pdf, 2015, [Online; accessed 16-November-2017].
4“Google UAS Airspace System Overview,” https://utm.arc.nasa.gov/docs/GoogleUASAirspaceSystemOverview5pager[1]

.pdf, 2015, [Online; accessed 16-November-2017].
5Mueller, E., “Enabling Airspace Integration for High-Density On-Demand Mobility Operations,” .
6Holmes, B. J., Parker, R. A., Stanley, D., and McHugh, P., “NASA Strategic Framework for On-Demand Air Mobility,”

Tech. rep., NASA Headquarters, 01 2017.
7“Fast-Forwarding to a Future of On-Demand Urban Air Transportation,” Tech. rep., Uber, 10 2016.
8Bole, B., Daigle, M., and Gorospe, G., “Online prediction of battery discharge and estimation of parasitic loads for an

electric aircraft,” ESC , Vol. 2, 2014, pp. 5S2P.
9Bole, B., Teubert, C. A., Cuong Chi, Q., Hogge, E., Vazquez, S., Goebel, K., and George, V., “SILHIL Replication of

11 of 12

American Institute of Aeronautics and Astronautics

https://www.faa.gov/news/updates
https://utm.arc.nasa.gov/docs/Amazon_Revising.pdf
https://utm.arc.nasa.gov/docs/Amazon_Revising.pdf
https://utm.arc.nasa.gov/docs/GoogleUASAirspaceSystemOverview5pager[1].pdf
https://utm.arc.nasa.gov/docs/GoogleUASAirspaceSystemOverview5pager[1].pdf


Electric Aircraft Powertrain Dynamics and Inner-Loop Control for V&V of System Health Management Routines,” 2013.
10“Commercial Drone popularity by N number,” https://www.suasnews.com/2016/02/drone-popularity-by-n-number/,

2016, [Online; accessed 17-November-2017].
11“Smart Battery,” https://developer.dji.com/mobile-sdk/documentation/introduction/component-guide-battery.

html, 2017, [Online; accessed 17-November-2017].
12Plett, G. L., Battery Modeling, 2015.
13Jackey, R., Saginaw, M., Sanghvi, P., Gazzarri, J., Huria, T., and Ceraolo, M., “Battery model parameter estimation

using a layered technique: an example using a lithium iron phosphate cell,” Tech. rep., SAE Technical Paper, 2013.
14Priyank Pradeep, P. W., “Energy Efficient Arrival with RTA Constraint for Urban eVTOL Operations,” 2017.
15Hoffmann, G. M., Huang, H., Waslander, S. L., and Tomlin, C. J., “Quadrotor helicopter flight dynamics and control:

Theory and experiment,” 2007.
16Johnson, W., Helicopter theory, Courier Corporation, 2012.

12 of 12

American Institute of Aeronautics and Astronautics

https://www.suasnews.com/2016/02/drone-popularity-by-n-number/
https://developer.dji.com/mobile-sdk/documentation/introduction/component-guide-battery.html
https://developer.dji.com/mobile-sdk/documentation/introduction/component-guide-battery.html

	Introduction
	Background
	Motivation
	Contributions

	Battery Modeling
	Circuit Topology
	Cell Testing
	Static testing
	Dynamic testing

	Circuit Parameter Estimation
	Open circuit voltage/state-of-charge relationship
	Remaining ECM parameters


	Power Demand Modeling
	Momentum theory for forward flight
	Drag model

	Flight Mission Assessment
	Flight Testing
	State Estimation
	Online Prediction

	Conclusion
	Future Work

