
1

Air transportation network robustness optimization
under limited legs itinerary constraint

Harsha Nagarajan, Peng Wei, Sivakumar Rathinam and Dengfeng Sun

Abstract—In air transportation networks the robustness of a

network regarding node and link failures is a key factor for its

design. At the same time, travelling passengers usually prefer

the itinerary with fewer legs. In this paper the authors propose

three design methods, which can maximize the air transportation

network robustness and make sure every itinerary within this

network have fewer legs than a given number. In the first design

method, the problem is formulated as a mixed-integer, semi-

definite program, and an algorithm to obtain optimal solutions is

applied based on cutting plane and bisection methods. The second

and third method is to apply local search heuristics like tabu

search and 2-opt respectively to find a potentially global optimal

design solution. The simulation results present the performance

of our proposed algortihms.

I. INTRODUCTION

An air transportation network consists of distinct airports
(cities) and direct flight routes between airport pairs [1].
Usually a graph G(V,E) is used to describe an air trans-
portation network [2], [3], where the node set V repre-
sents all the n airports and the edge set E represents
all the m direct flight routes between airports. With the
fact that if a direct flight route from airport a to airport
b exists, normally the direct return route from airport b
to airport a also exists [4], G(V,E) is constructed as an
undirected simple graph, where the airports are indexed as
{vi|i = 1, 2, . . . , n} and the direct flight routes are named as
{eij |if there is a direct route between airports i and j}.

According to the definition of the simple graph, it is required
that no more than one edge exists between any two nodes.
However, in reality multiple flight routes operated by one or
more airlines exist between two airports. Thus we introduce
non-negative edge weights to record multiple fight routes
information to maintain G as a simple graph, i.e., the edge
weight wij could be the number of distinct direct flight routes
between airports i and j.

Connectivity is the metric which is used to measure how
well a network is connected. Usually the more connected is
a network, the more robust it is [5]. The air traffic demand is
expected to continue its rapid growth in the future. The Federal
Aviation Administration (FAA) estimated that the number of
passengers is projected to increase by an average of 3%
every year until 2025 [6], so the expanding load on current
air transportation network will cause more and more flight
delays and cancellations with the limited airspace and sector
capacities. As a result, a robust air transportation network

H. Nagarajan and S. Rathinam are with Department of Mechanical Engi-
neering, Texas A & M University. P. Wei and D. Sun are with School of
Aeronautics and Astronautics, Purdue University.

design scheme is necessary to handle the increasing traffic
demand. That is the major motivation of this work.

Traditionally, the node connectivity and the edge connec-
tivity are two metrics to evaluate how well a graph is con-
nected [7]. The node (edge) connectivity of a graph G is
the minimum number of node (edge) deletions sufficient to
disconnect G.

Fig. 1: N -node line topology.

Fig. 2: N -node star topology.

In order to show the limitation of node (edge) connectivity
evaluation, two different topologies are shown, where Fig. 1 is
a N -node line topology and Fig. 2 is a N -node star topology.
Obviously, the node connectivity for both topology formations
is 1 and so is the edge connectivity. However, the star topology
should be more robust than the line topology because in
Fig. 2 the network is disconnected only when the central node
fails, while in Fig. 1 any node failure can cause the network
disconneted except the two end nodes. The robustness features
of two topologies are intuitively different. Since neither node
connectivity nor edge connectivity can observe the difference
between these two topologies, we need to introduce a new
metric.

The second smallest Laplacian eigenvalue of a graph is
related to many graph invariants. Fiedler defines it as the
algebraic connectivity [8] of graph G. According to the
definition, when N = 4, the algebraic connectivities of Fig. 1
and Fig. 2 are 0.588 and 1 respectively, which show that the
star topology is more robust than the line topology.

Now we see the algebraic connectivity in unweighted graphs
provides better resolution on how well a graph or network
is connected and can be considered as a measurement of
the robustness in complex network models which is proved
in [5]. So the algebraic connectivity may also be considered
to evaluate the robustness of the air transportation network in
weighted graphs.

As we mentioned, in order to maintain the graphic descrip-
tion of the air transportation network as a simple graph and
obtain more network information, it is necessary to introduce
the weighted graphs to describe the air transportation network.

2

The authors in [9] first introduced the weighted air transporta-
tion network and they studied the correlations of betweenness-
degree, degree-degree and clustering-degree of the network. In
[10], Wei and Sun built a different network and studied the
weighted algebraic connectivity optimization in the robustness
evaluation of air transportation networks with the constraint
of k additional edges. In this paper, the authors first introduce
the limited leg number constraint and then two algorithms are
proposed to solve the new formulated problem.

From the passenger perspective, it is natural to introduce
the limited leg number constraint. When a passenger plans
his or her itinerary, no one wants to have too many stops for
connecting flights. When we construct an air transportation
network, besides the k additional edges constraint, we also
require that betweeen any two airports, all the itineraries must
have their leg numbers fewer than a given value D.

The weighted adjacent matrix A of graph G has the ith row
and jth column entry aij . The diagonal items are all zeros and
the off-diagonal item aij (i 6= j) is equal to weight wij :

aij =

8
<

:

wij , if node i and node j are connected
by an edge eij with weight wij ;

0, if node i and j are not connected.
(1)

where the weights are usually bounded by an upper limit
W because a weighting scheme without an upper bound is
normally not applicable in practice.

Then the weighted Laplacian matrix L can be obtained from
the adjacent matrix A. Each item lij of L can be written as:

lij =

⇢
�aij , if i 6= j;Pn

i=1 aij , if i = j. (2)

The second smallest eigenvalue �2 of L is the weighted
algebraic connectivity, which is the focus of this paper.

In fact [11] shows that �2 of the weighted algebraic con-
nectivity is the performance metric for a weighted graph. If
we want to improve the robustness of the air transportation
network, we only need to increase �2 of its corresponding
weighted graph. Therefore the aim of this paper is to maximize
�2 under the given constraints.

The methods developed or improved in this work are
expected to be implemented as the network performance
measurement and the guidance to enhance the robustness in
air transportation networks.

The rest of the paper is organized as follows. In Section II
we formulate the problem and show the problem is NP-hard.
In Section III an optimal algorithm is demonstrated, which is
based on cutting plane and bisection methods. Local search
heuristics like Tabu search and 2-opt exchange search are
presented in Sections IV and V respectively. In Section VI we
evaluate the performance of our algorithms via simulations.
Section VII concludes this paper.

II. PROBLEM FORMULATION AND ITS NP-HARDNESS

A. Problem formulation

Given the graphic description G(V,E0) of an existed
weighted air transportation network, where the node set V is
the collection of all the airports in this network and the edge

set E0 contains the existed routes between the airport pairs.
The size of set V is n and the size of E0 is m. The objective
is to maximize �2 with a fixed number k of edge additions or
deletions based on E0 while the edges to be added or deleted
are given in a pre-determined set P (for addition) or Q (for
deletion). In this work only the addition case is considered for
the ease of illustration. We denote the routes to be added as
a set of �E. �ij is the number of legs on the shortest path
between vi and vj . Thus the flight routes addition problem
with limited legs itinerary is:

max�2(G(E0 +�E))

s.t. |�E| = k,
�E ✓ P, P \ E0 = ;,
�ij  D.

(3)

B. Alternative problem formulation

We can also denote �2(G) as �2(L), in which L is the
weighted Laplacian matrix of graph G. According to [12], the
weighted Laplacian matrix L can be represented by the dot
product summation of edge vectors. For an edge e connecting
two nodes i and j, we define the edge vector he 2 Rn as
he(i) = 1, he(j) = �1, and all other entries 0. we is the non-
negative weight on e. Suppose there are m edges in graph G.
The weighted Laplacian matrix L of G is the n⇥ n matrix:

L =

mX

e=1

weheh
T
e . (4)

which is equivalent to the weighted Laplacian matrix definition
in Eq. (2).

The reason that algebraic connectivity is a good metric
for how well a network keeps connected is that �2(L) is
monotone increasing with the edge set: if G1 = (V,E1) and
G2 = (V,E2) are such that E1 ✓ E2, then �2(G1)  �2(G2)

[8]. That is, the more connected graph (on the same vertex
set) has the greater algebraic connectivity.

On the other hand, the air transportation network robustness
exactly means how well-connected the network is. A network’s
link may be broken down by severe weather conditions,
aviation regulation changes or economics issues. Despite these
natural and human effects, the airports should maintain robust
connections with each other to make sure the air traffic flows
smoothly.

According to the edge vector description of L in Eq. (4),
the flight routes addition problem (3) can be written as the
following mixed integer semi-definite programing problem
based on the proof shown in [13]:

max�2

s.t. L(x) ⌫ �2(In � e0e
T
0)

1Tx = k,
x 2 {0, 1}|P |,
�ij  D.

(5)

where L(x) = L0 +
P|P |

e=1 xeweheh
T
e is the weighted Lapla-

cian matrix of the augmented network, L0 is the weighted
Laplacian matrix of the existed network G(V,E0) to which
a fixed number of k edges are to be added, In 2 Rn⇥n

3

is an identity matrix and e0 is the normalized eigenvector
corresponding to the first eigenvalue of L(x). “⌫” refers to the
positive-semidefiniteness of a matrix. P is the pre-determined
set with size |P | which contains the candidate edges to be
added. e is the index for candidate edges in P . xe is a boolean
variable, in which 1 means that edge e in P is in the set of
�E in (3) and 0 means that edge e in P is not in �E. x is a
vector consisting of all xe’s whose length is |P |, illustrating
which candidate edges are to be added and which are not.

When the value D is set to N , the problem in (5) is reduced
to the proved NP-hard formulation in [10]. Therefore (5) is
NP-hard.

III. AN ALGORITHM TO COMPUTE OPTIMAL SOLUTIONS

The proposed algorithm in this section is the modified
version of the algorithms presented in [13], [14]. Before we
discuss the idea behind this algorithm, two important issues
need to be addressed in the formulation (5). First issue is to
handle the diameter constraint or the limited legs itinerary
constraint. To simplify the problem, we restrict our search
for optimal networks from the set of all spanning trees.
Also spanning trees help to minimize the overall cost of
construction and maintenance of the air transportation network
but still keeping the network connected. It is a well known
result that any spanning tree has a diameter not more than an
even integer (D) if and only if there exists a central node p such
that any path from p to other nodes consists of at most D/2
edges. Since p is not known a priori, we augment the network
with a dummy root vertex, r connecting all other vertices of
the network with dummy edges as shown in Figure 3. Hence
the constraints representing the spanning tree with diameter
constraints is posed as a network flow model using the multi
commodity flow formulation.

1

2 3

4

56

r

(a) Original graph augmented with a
dummy node, r

1

2 3

4

56

r

(b) Feasible solution

Fig. 3: Illustration of an addition of dummy root node (r) to the
original (complete) graph represented by shaded nodes. If one were
given that the diameter of the original graph must be at most D = 4,
then restricting the length of each of the paths from the root node
to (D/2) + 1 = 3, and allowing only one incident edge on r will
suffice as shown in (b).

The second issue is to reduce the problem in (5) to a pure
binary semi-definite programming problem (BSDP) since the
tools associated with construction of valid inequalities are
more abundant when compared to mixed-integer programs.
Also, with further relaxation of the semi-definite constraint,
it can be solved using CPLEX, a high performance solver
for integer linear programs. Therefore, we adopt a different
approach for finding an optimal solution by casting the alge-
braic connectivity problem as the following decision problem:

Is there an augmented network such that the algebraic con-
nectivity of the network is at least equal to a pre-specified
value and the diameter of the graph is at most equal to D?
This problem can be posed as a BSDP by choosing to find a
spanning tree that minimizes the degree of the root vertex r.
This can be mathematically written as follows:

min

P
e2�(r) xe

s.t. L(x) ⌫ �2(In � e0e
T
0),

1Tx = k, x 2 {0, 1}|P |,
�ij  D.

(6)

In this formulation, the only decision variables would be the
binary variables denoted by xe and �(r) denotes a cutset
defined as �(r) = {e = (r, j) : j 2 V \ r}. The above BSDP
can be efficiently solved by cutting plane procedure and then
bisection algorithm can be used to maximize the algebraic
connectivity. In the cutting plane procedure, the semi-definite
constraint is replaced by a finite subset of the infinite number
of linear constraints and successively tighter polyhedral ap-
proximations are constructed by augmenting valid inequalities
till a feasible solution is obtained satisfying a desired level of
connectivity. Based on the notation defined in this article, a
detailed pseudo code of this procedure is outlined in Algorithm
(1). Steps 4 though 16 of Algorithm (1) does the cutting
plane procedure till the semi-definite constraint is satisfied and
step 17 is the bisection step where ˆ� is incremented until the
optimization problem becomes infeasible.

Algorithm 1 : Synthesizing robust networks with maximum
algebraic connectivity subject to diameter constraints
Let F be a set of cuts which must be satisfied by any feasible solution

1: Input: A graph G = (V,E), w
e

, r, D, and a finite number of
unit vectors, v

i

, i = 1 . . .M

2: Choose any spanning tree satisfying the diameter constraint as
an initial feasible solution, x⇤

3: �̂ �2(L(x
⇤))

4: loop

5: F ;
6: Replace the semi-definite constraint in (6) with (v

i

·
(L(x))v

i

) � �̂(v
i

· (I
n

� e0e
T

0)vi) 8i = 1, ..,M, and
with additional constraint, x satisfying F and solve the ILP.

7: if the above ILP is infeasible then

8: break loop {x⇤ is the optimal solution}
9: else

10: x

⇤ solution to the above ILP
11: �

⇤ �2(L(x
⇤))

12: if L(x⇤) ✏ �

⇤(I
n

� e0e
T

0) then

13: Augment F with a constraint (v⇤ ·L(x⇤)v⇤) � �

⇤(v⇤ ·
(I

n

� e0e
T

0)v
⇤) where v

⇤ is the eigenvector correspond-
ing to a negative eigenvalue of L(x⇤)� �

⇤(I
n

� e0e
T

0).
14: Go to step 6.
15: end if

16: end if

17: �̂ �̂+ ✏ {let ✏ be a small number}
18: end loop

IV. TABU SEARCH FOR LIMITED LEGS

Mixed Integer Semi-Definite Programming is usually slow,
therefore applying a heuristic search can provide computa-

4

tional efficiency. We are interested in finding k edges to add
to G, which gives the maximal �2(G(V,E)).

A. Tabu search details

Now we elaborate the details of the tabu search implemented
in this work. The search is an iterative process and the next
round solution s0 is generated from the neighbor of the current
solution s supervised by a dynamically updating tabu list T .

1) Dynamic neighbor: The tabu search looks for the next
round solution s0 inside the neighbor N(s) of the current
solution s. After s0 is chosen and checked to be feasible, the
following round solution will be selected from its neighbor
N(s0).

Fig. 4: The neighbor of the pth edge e

ij

in current solution s.

Instead of the swapping operation in [2], [3], we define
N(s) for our problem. Inside a given initial solution s, there
are k edges to be added. The pth (1  p  k) edge eij
in solution s connects two nodes vi and vj , which is shown
in Fig. 4. Thus all the edges incident to vi or vj and in set
P constitute the sub-neighbor N(s, p) of solution s at the
pth edge. The edges which already exist in G or are not in
candidate set P are not displayed in Fig. 4. To prevent N(s, p)
from being empty, a random jump inside P is also included in
N(s, p), which jumps to any edge in P but not current edges
1 to k in solution s. If the random jump gives out an existing
edge in N(s, p), then we execute another random jump. The
neighbor of current solution s is N(s), which is the union of
the sub-neighbors of every edge in s:

N(s) =

k[

p=1

N(s, p). (7)

Notice that each of the k new edges will be picked from its
own sub-neighbor N(s, p) and form s0 together. Each solution
s0 needs to be checked if it satisfies the limited legs itinerary
constraint (graph diameter constraint). According to [7], given
k edges by s0, whether the diameter of the graph D(s0) is
fewer than a given value D is checked using the product
summation of adjacency matrix A. If

PD
i=1 A

i is an all one
matrix, D(s0)  D.

2) Tabu list: The tabu list T records the most recent |T |
moves. For each edge p (1  p  k) in the current solution s,
all the candidate moves from edge p to its neighbor N(s, p),
which passed the feasible check, are checked with the tabu
list. If a candidate moving repeats one of the moves in T , this
candidate will not be selected.

3) Aspiration criteria: The tabu search offers an oppor-
tunity where it can violate tabu. When a searching move is
improving the solution value and leading to the best observed
value of �2, this move can be performed. So the best observed
value �⇤

2 needs to be updated throughout the searching process.

Algorithm 2 : Tabu search with limited legs constraint
1: given G and all the edge weights
2: construct initial solution s0

3: s = s0, �⇤
2 = 0, s⇤ = s0, T is set to a empty queue with the

pre-fixed size |T |
4: for iteration = 1 to � do

5: for p = 1 to k do

6: construct N(s, p) of the pth edge in s

7: end for

8: while 1 do

9: pick one edge p

0 from each N(s, p) to construct s0
10: if D(s0) > D then

11: continue
12: end if

13: if �2(s
0) > �

⇤
2 then

14: s = s

0, update T

15: �

⇤
2 = �2(s), s⇤ = s

16: break
17: end if

18: if s

0 is not in T then

19: s = s

0, update T

20: break
21: end if

22: end while

23: end for

24: output �⇤
2 and s

⇤

4) Complete tabu search algorithm: The complete tabu
search with limited legs constraint is shown in Algorithm 2.
Line 2 sets an initial solution s0. Line 3 initializes the
parameters, where s is the solution in the current round, �⇤

2 and
s⇤ record the best �2 and its corresponding s respectively. Line
4 shows that the algorithm terminates after � rounds. Line 5

to 7 constructs the sub-neighbors of the current solution. Line
9 forms s0 from N(s). Line 10 to 12 checks the feasibility for
limited legs. Line 13 to 17 checks the aspiration criteria. Line
18 to 21 checks whether the move from s to s0 is in the tabu
list T .

V. 2-OPT SEARCH FOR LIMITED LEGS

In this section, we discuss another local search heuristic
called 2-opt exchange for obtaining sub-optimal solutions.
This heuristic in a more general form called k-opt search was
initially proposed to solve traveling salesman type problems
as discussed in [15]. In [16], authors apply the 2-opt search
to obtain good suboptimal solutions for the basic problem of
maximizing algebraic connectivity subject to spanning tree
constraints. In this paper, we extend this idea to with an
additional constraint on the diameter of the graph.

Let T1 and T2 be any two feasible solutions for problem (6),
then the feasible solution, T2 is said to be in the k�exchange
neighborhood of a feasible solution T1 if T2 is obtained by
replacing k edges in T1. In case of 2-opt, we start with
a feasible solution, which is a spanning tree satisfying the
diameter constraint in our problem, and iteratively perform 2-
opt exchanges for every pair of edges in the initial spanning
tree until no such exchanges can be made while improving
the solution. An illustration of such a procedure on one such
pair of edges of a random spanning tree with 4 nodes is
shown in Figure 5. An important issue to be addressed is to

5

make sure that the solutions resulting after 2-opt exchanges are
also feasible. Ensuring feasibility for problem (6) is relatively
easier since we are looking for spanning trees which satisfy
the given diameter constraint. In the case of spanning trees,
after removing 2 edges, we are guaranteed to have 3 connected
components (C1, C2, C3); therefore, by suitably adding any
2 edges connecting all the 3 components, one is guaranteed
to obtain a spanning tree, T2. Since evaluating diameter of
the graph is also computationally efficient, one may compute
the feasibility of the new solution. The new feasible T2
is considered for replacing T1 if it has a better algebraic
connectivity than T1. A pseudo-code of 2-opt heuristic is
outlined in Algorithm 3. Note that this heuristic performs a
2-opt exchange on a given initial spanning tree to obtain a
new tree with better algebraic connectivity. This procedure is
repeated on the current feasible solution iteratively until no
improvement is possible.

(1, 4)

(4, 3)

1

2

3

4

1

2

3

4

C1

C2 C3

(a) Left: Remove chosen edges
Right: Corresponding connected
components

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(b) All 2-opt feasible solutions without power
constraint

Fig. 5: This figure illustrates the 2-opt heuristic on an initial feasible
solution, T0. After removing a selected pair of edges {(1, 4)(4, 3)}
from T0, the three connected components are shown in (a). Part (b)
shows the 2-opt exchange on the connected components to obtain
new feasible solutions (spanning trees).

Algorithm 3 : 2-opt exchange heuristic
1: T0 Initial feasible solution satisfying diameter constraints
2: �0 �2(L(T0)))
3: Input: D (positive integer)
4: for each pair of edges {(u1, v1), (u2, v2)} 2 T0 do

5: Let T
opt

be the best spanning tree in the 2-exchange neighbor-
hood of T0 obtained by replacing edges {(u1, v1), (u2, v2)}
in T

opt

with a different pair of edges.
6: if �2(L(Topt

)) > �0 and diameter(T
opt

)  D then

7: T0 T
opt

8: �0 �2(L(Topt

))
9: end if

10: end for

11: T0 is the best spanning tree in the solution space with respect to
the initial feasible solution

VI. COMPUTATIONAL RESULTS

The computational results in this section are based on
the proposed algorithm (1) for finding optimal solution and
heuristics given in algorithms (3) and (2). Algorithm (1) was
implemented in C++ programming language and the resulting
ILP’s were solved using CPLEX 12.2 with all the solver
options set to default. Both, 2-opt and tabu search heuristics
were implemented in Matlab. All computational results in
this section were implemented on a Dell Precision T5500
workstation (Intel Xeon E5630 processor @ 2.53GHz, 12GB
RAM).

The semi-definite programming toolboxes (Yalmip and Se-
dumi) in Matlab could not solve the proposed formulation (6)
with the semi-definite and multi commodity flow constraints
even for instances with 5 airports primarily due to the ineffi-
cient memory management. However, due to the combinatorial
explosion resulting from the increased size of the problem, the
proposed algorithm with CPLEX solver could provide optimal
solutions in a reasonable amount of run time for instances upto
8 airports. Since we are interested in spanning trees as feasible
solutions, there are 8

6
= 262144 combinatorial possibilities

(for a graph with n nodes, there are nn�2 possible feasible
solutions).
Construction of an initial feasible solution for heuristics: For
the airport transportation network problem in this paper, we
consider spanning trees as feasible solutions with maximum
number of itinerary legs not greater than 4 (D  4). We
chose D  4 since it would be undesirable for any traveller
to have an itinerary with more than 4 stops. Constructing a
feasible solution for this problem is simple since any star
graph whose diameter is equal to 2 would trivially satisfy any
diameter constraint. Hence we chose to pick the star graph
with maximum algebraic connectivity (�initial

2) as an initial
feasible solution whose computational complexity would be
O(n). A sample initial feasible solution is shown in part (b)
of Figure 6.

We shall now compare the solution quality of heuristics with
respect to the optimal solution (�⇤

2) obtained from the proposed
algorithm 1. We define solution quality as �⇤

2��heuristic
2
�⇤
2

⇤ 100
where �heuristic

2 holds for either 2-opt or tabu search heuristic.
The results shown in Table I are for 10 random instances
generated for networks with 8 airports. Based on the results
in Table I, we observed that the average run time to obtain
optimal solution was around 370.89 seconds. Also it can
be seen that both 2-opt and tabu search heuristics’ solution
qualities were very good and gave optimal solutions for these
10 random instances. Instance 1 of Table I is pictorially shown
in Figure 6.
Scalability of 2-opt and tabu search heuristics: We also
compared the performance of proposed heuristics for larger
instances with respect to the initial feasible solution since
we could not compute optimal solutions for larger instances.
In Table II, all the values were averaged over 10 random
instances for each size of the problem. We define % gap as
�heuristic
2 ��initial

2

�initial
2

⇤100. Based on this definition, higher % gap
implies that the heuristic solution is better. Hence from Table
II, we observed that, though 2-opt heuristic performed better

6

for smaller instances, tabu search performed better than 2-opt
for larger instances except a few instances. 2-opt and tabu
search heuristic solutions for a 25 nodes problem is shown in
Figure 7 where tabu search solution quality is better than that
of 2-opt.

TABLE I: Comparison of solution quality of the heuristics with the
optimal solution obtained from the proposed algorithm for D  4 of
networks with 8 airports. �⇤

2 is the optimal algebraic connectivity.

Optimal solution 2-opt search Tabu search

No. �⇤
2 Time �2opt

2 Solution �tabu

2 Solution
(sec) quality quality

1 3.9712 180.57 3.9712 0.00 3.9712 0.00
2 4.3101 408.10 4.3101 0.00 4.3101 0.00
3 3.9297 621.85 3.9297 0.00 3.9297 0.00
4 3.5275 216.79 3.5275 0.00 3.5275 0.00
5 3.8753 470.63 3.8753 0.00 3.8753 0.00
6 3.7972 342.14 3.7972 0.00 3.7972 0.00
7 3.7125 377.47 3.7125 0.00 3.7125 0.00
8 3.9205 313.12 3.9205 0.00 3.9205 0.00
9 3.7940 341.84 3.7940 0.00 3.7940 0.00
10 3.8923 316.86 3.8923 0.00 3.8923 0.00

Average 0.00 0.00

TABLE II: Comparison of 2-opt and tabu search heuristic solutions
for various problem sizes.

2-opt search Tabu search

n Average Average Average Average Average
�initial

2 �2opt
2 % gap �tabu

2 % gap

5 1.15 1.38 19.38 1.15 0.00
7 2.87 4.07 48.44 4.07 48.44
8 2.39 3.87 65.43 3.87 65.43
9 2.46 3.91 63.77 3.89 62.93
10 2.47 3.89 63.01 3.89 63.01
15 1.79 4.92 211.26 5.11 225.67
20 1.98 6.32 232.70 6.73 253.40
25 2.27 9.62 331.20 9.95 346.79

VII. CONCLUSIONS

We study three air transportation network design methods
to maximize the network robustness and keep every itinerary
length fewer than D legs. Algebraic connectivity is used to
measure the robustness of the network. The authors formulate
the problem as a mixed-integer, semi-definite program and
provide an algorithm to find optimal solutions based on cutting
plane and bisection methods. The algebraic connectivity of
a network is posed using a semi-definite constraint and the
diameter of the graph is formulated using a multi-commodity
flow formulation. Our second method, tabu search constructs
the dynamic searching neighbor for each evolving solution,
establishes the tabu list and aspiration criteria, which seeks
a potentially global solution and the optimal robust design.
In third method, 2-opt exchange searches for a better feasible
solution by performing an exchange on every pair of edges on
an initial feasible solution. Computational results are provided
to evaluate the performance of the proposed algorithms and we
empirically observed that tabu search method performed better
than 2-opt search for larger instances.


 



































 



 

 










 



 

 



(a) Complete network





































(b) �initial

2 = 2.2045



























 

(c) �⇤
2 ,�tabu

2 ,�2opt
2 = 3.9712

Fig. 6: Complete network with all possible routes connecting 8
airports with distinct number of flight routes representing the edge
weights are shown in (a). (b) represents the initial feasible solution
which is the star graph used in both the heuristics. (c) represents the
optimal network which also happens to be the solutions of 2-opt and
Tabu search methods. Maximum number of itinerary legs were taken
to be 4 (D  4).

REFERENCES

[1] R. Guimera and L. Amaral, “Modeling the world-wide airport network,”
European Physical Journal B, vol. 38, pp. 381–385, 2004.

[2] R. Kincaid, N. Alexandrov, and M. Holroyd, “An investigation of
synchrony in transport networks,” Complexity, vol. 14, no. 4, pp. 34–43,
2008.

[3] E. Vargo, R. Kincaid, and N. Alexandrov, “Towards optimal transport
networks,” Systemics, Cybernetics and Informatics, vol. 8, no. 4, pp.
59–64, 2010.

[4] ICAO, Procedures for Air Navigation Services - Rules of the air and
air traffic services, International Civil Aviation Organization, 2010, doc
4444-RAC/501.

[5] A. Jamakovic and S. Uhlig, “On the relationship between the algebraic
connectivity and graph’s robustness to node and link failures,” in Next
Generation Internet Networks, 3rd EuroNGI conference, 2007, pp. 96–
102.

[6] FAA, FAA Aerospace Forecasts FY 2008-2025, Federal Aviation Ad-
ministration, December 2010.

[7] A. Gibbons, Algorithmic Graph Theory. Cambridge University Press,
July 1985.

[8] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathemat-
ics Journal, vol. 23, pp. 298–305, 1973.

[9] J. Huang and Y. Dang, “Research on the complexity of weighted air
transportation network of express enterprise,” in The 1st International
Conference on Information Science and Engineering (ICISE 2009), Dec
2009, pp. 5077–5080.

[10] P. Wei and D. Sun, “Weighted algebraic connectivity: An application
to airport transportation network,” in the 18th IFAC World Congress,
Milan, Italy, Sep 2011.

[11] B. Mohar, “The Laplacian spectrum of graphs,” Graph Theory, Combi-
natorics, and Applications, vol. 2, pp. 871–898, 1991.

[12] A. Ghosh and S. Boyd, “Growing well-connected graphs,” in Proceed-
ings of the 45th IEEE Conference on Decision and Control, December
2006, pp. 6605–6611.

7







































 





























 
















(a) 2-opt exchange, �2opt
2 = 8.3411










 






































 



































(b) Tabu search, �tabu

2 = 10.0197

Fig. 7: 2-opt exchange and Tabu search solutions for a network with
25 airports where maximum number of itinerary legs were taken to be
4 (D  4). Since �

tabu

2 > �

2opt
2 , the feasible network corresponding

to the Tabu search method is more robust against the failure of
functionality of any airport.

[13] H. Nagarajan, S. Rathinam, S. Darbha, and K. R. Rajagopal, “Algo-
rithms for identifying stiff structures with maximal natural frequencies,”
Nonlinear analysis: real world applications, 2012.

[14] H. Nagarajan, S. Rathinam, S. Darbha, and K.R.Rajagopal, “Algorithms
for finding diameter-constrained graphs with maximum algebraic con-
nectivity,” Dynamics of Information Systems: Mathematical Founda-
tions, 2011.

[15] G. A. Croes, “A method for solving Traveling-Salesman problems,”
Operations Research, vol. 6, no. 6, pp. 791–812, Nov. 1958,
ArticleType: research-article / Full publication date: Nov. - Dec.,
1958 / Copyright 1958 INFORMS. [Online]. Available: http:
//www.jstor.org/stable/167074

[16] H. Nagarajan, S. Rathinam, S. Darbha, and K. Rajagopal, “Synthesizing
robust communication networks for uavs,” in American Control Confer-
ence, 2012. ACC’12. IEEE, 2012.

