
ICRAT 2018 

 

Autonomous On-Demand Free Flight Operations in 

Urban Air Mobility using Monte Carlo Tree Search

Xuxi Yang 

Aerospace Engineering Department 

Iowa State University 

Ames, IA, USA 

xuxiyang@iastate.edu 

Peng Wei 

Aerospace Engineering Department 

Iowa State University 

Ames, IA, USA 

pwei@iastate.edu 

 
Abstract—Vertical takeoff and landing (VTOL) aircraft for 

personal air transportation or on-demand air taxi will bring 

fundamental changes to city infrastructures and daily commutes. 

NASA, Uber, and Airbus have been exploring the exciting 

concept of Urban Air Mobility (UAM). In order to enable safe 

and efficient autonomous on-demand free flight operations in 

this UAM concept, a computational guidance algorithm was 

designed and analyzed with collision avoidance capability. The 

approach is to formulate this problem as a Markov Decision 

Process and solve it using an online algorithm called Monte 

Carlo Tree Search. For the sake of illustration, a simplified 

numerical experiment was created to test the performance of this 

algorithm. Results show that this algorithm can help aircraft 

quickly reach the trip destination and avoid conflicts with other 

aircraft. 

Keywords: Urban Air Mobility, Autonomous Free Flight, On-

Demand Air Transportation, Collision Avoidance, Monte Carlo 

Tree Search 

I.  INTRODUCTION 

A. Motivation 

NASA, Uber and Airbus have been exploring the exciting 
new concept of Urban Air Mobility (UAM) [1-5], where the 
vertical takeoff and landing (VTOL) aircraft may be either 
human piloted or autonomous for passenger transport in 
personal commute or on-demand air taxi. The UAM operations 
are expected to fundamentally change cities and people’s lives 
to reduce commute time and stress. The vehicle technology 
and airspace operation concepts are critical for UAM 
realization. Through close collaborations and discussions with 
colleagues from NASA, Uber and Airbus, in this paper the 
authors investigate how to combine the power of onboard 
aircraft intelligence (vehicle technology) and the advantage of 
the free flight idea (airspace operation concept) to enable safe 
and efficient flight operations in on-demand urban air 
transportation.  

The idea of this paper is inspired from the analogy where a 
lot of people walking in a crowded plaza (Times Square in 
New York or Tiananmen Square in Beijing) and they do not 
collide into each other. In a crowded plaza, a person can avoid 

collision with other people by observing and judging the 
position, velocity, direction, and even intention of other people. 
So for aircraft equipped with autonomous avionics system, it 
should be similar: one aircraft should be able to avoid other 
intruder aircraft by sensing their positions and velocities while 
flying toward its destination. 

The concept of “Free Flight” was proposed primarily for 
future air transportation applications because it has the 
potential to cope with the ongoing congestion of the current 
ATC system. It was shown in previous work that Free Flight 
with Airborne Separation is able to handle a higher traffic 
density with the same or higher level of safety [6]. Besides, 
Free Flight can also bring fuel and time efficiency [7,8]. In a 
Free Flight framework, it is implied that aircraft will be 
responsible for their own separation assurance. The loss of an 
airway structure, however, may make the process of detecting 
and resolving conflicts between aircraft more complex. 
Accordingly, automated conflict detection and resolution tools 
will be required to aid pilots and/or ground controllers in 
ensuring traffic separation. 

In this paper, a computational guidance algorithm with 
collision avoidance capability is proposed using Monte Carlo 
Tree Search, where the input of this algorithm is the position, 
velocity of other aircraft, and the position of the destination. 
Through onboard sensed information of other aircraft, the 
aircraft will perform online sequential decision making to 
select actions in real time with onboard avionics. The series of 
actions will generate a trajectory which can guide the aircraft 
to quickly reach its goal and avoid potential conflicts. The 
proposed algorithm provides a potential solution framework to 
enable autonomous on-demand free flight operations in urban 
air mobility. 

B. Related Work 

There have been many important contributions to the topic 
of collision avoidance algorithms for aircraft. Kuchar and 
Yang had a comprehensive overview of 33 different methods 
for conflict avoidance problem, including force field 
techniques, genetic algorithms, rule based methods, and 
optimization techniques [9]. Some later methods such as 



ICRAT 2018 

 
mixed-integer programming performs well for small networks 
but difficult to adapt to stochastic dynamic models [10-12]. 
Formulating the collision avoidance problem as a Markov 
Decision Process (MDP) has been shown to improve safety 
and operational efficiency [13,14]. The MDP-based method 
can also be adapted to handle the cooperation among aircraft 
[15]. However, the MDP-based algorithm needs to discretize 
the state space and build the transition model, which can lead 
to loss of information and inaccuracy of the solution. In 
addition, whether the MDP model can accurately reflect the 
dynamics of the real world needs more investigation. In this 
paper, an online Monte Carlo Tree Search algorithm was used 
to solve the computational guidance and collision avoidance 
problem for autonomous on-demand free flight operations in 
urban air mobility, where there is no need to discretize the state 
space. And the results show that this algorithm has very 
promising performance. 

The structure of the paper is as follows: in Section II, the 
background of MDP and MCTS will be introduced. In Section 
III, the description of the problem and its mathematical 
formulation of MDP are presented. Section IV presents the 
designed MCTS algorithm to solve this problem. The 
numerical experiment and results are shown in Section V. And 
Section VI is the conclusion. 

II. BACKGROUND 

A. Markov Decision Process (MDP) 

The Markov Decision Process (MDP) includes the 
following components: 

 The state space  which consists of all the possible 
states. 

 The action space  which consists of all the actions 

that the agent can take. 

 Transition function 
1( | , )t t ts s a  which describes 

the probability of arriving at state 
1ts , given the 

current state 
ts  and action  

ta . 

 The reward function 
1( , , )t t ts a s  which decides 

how much reward the agent will collect after a 

transition 
1, ,t t ts a s . The reward function may only 

depend on the current state 
ts , which will be the case 

in this paper. 

 A discount factor [0,1]  which decides the 

preference on immediate reward versus future 
rewards. Setting the discount factor less than 1 is also 
beneficial for the convergence of cumulative reward. 

In a MDP problem, a policy  is a mapping from the state 
to one specific action (known as deterministic policy) 

:  

The goal of MDP is to find an optimal policy *,  which 

can maximize the expected cumulative reward: 

0

* arg max , |
T

t t

t

R s a  

B. Monte Carlo Tree Search (MCTS) 

MCTS is a very popular online algorithm designed to solve 
sequential decision making problems because it is a “statistical 
anytime” algorithm for which more computing power 
generally leads to better performance, and it can be used with 
little or no domain knowledge to obtain a successful result on 
difficult problems [16]. The basic idea is to judge the value of 
an action by taking random samples in the decision space and 
building a search tree according to the results. The agent 
doesn’t need to be trained to get good performance. However, 
the agent usually needs high computation resources to achieve 
a decent result. 

The MCTS algorithm involves running many simulations 
from the current state while estimating the state-action value 
( Q  value) of the states in the tree. And the state-action value 

( , )Q s a  is the expected sum of discounted reward resulting 

from choosing action a  from state s . The following is an 

overview of the iteration steps of a typical MCTS algorithm 
called Upper Confidence Bound for Trees (UCT): 

 Selection: when the process is in the tree, select the 
node j  to maximize 

2ln
2j

j

n
UCT X C

n
 

where jX  is the normalized state-action value at 

node j , and n  is the number of times the current 

node has been visited, 
jn  is the number of times child 

j  has been visited, C  is a positive constant. The first 

term represents the exploitation based on the current 
knowledge, and the second term represents the 
exploration to gather more information for some 
actions.  

 Expansion: one (or more) child nodes are added to 
expand the tree, according to the available actions. 

 Simulation: a simulation is run from the new nodes 
according to the default policy to produce an 
outcome. 

 Backpropagation: the simulation result is ‘backed up’ 
(i.e. backpropagated) through the selected nodes to 
update their statistics. 



ICRAT 2018 

 

III. PROBLEM FORMULATION 

A. Problem Statement 

The goal of this paper is to control an aircraft through a 
series of actions so that the aircraft can quickly arrive at the 
destination while avoiding potential conflict with other intruder 
aircraft during the flight. Guiding the aircraft through a series 
of actions is a sequential decision making problem which can 
be formulated as an MDP problem. In this process, the action 
is decided directly from the state, which incorporates all the 
information (the position and velocity of intruder aircraft, the 
position of the destination or goal) for the agent to decide 
which action is optimal for the corresponding state. 

In this paper, a simplified scenario is considered: all the 
intruders can only fly straight at a fixed velocity, and only one 
aircraft (the ownship) is equipped with MCTS algorithm and 
will try to reach its goal. The collisions between intruders are 
not considered in this paper. 

When controlling the aircraft, only horizontal actions are 
considered in this paper, which means all the aircraft will be 
flying at the same height and this problem can be solved in 2 
dimension. This assumption is reasonable because UTM limits 
its focus to a narrow altitude band with one proposal restricting 
altitudes to between 200 and 500 feet [17]. 

The objectives for this specific MDP problem are two-fold: 
the first is to guide the aircraft to the goal state in a short time, 
and the second is to avoid any conflicts between the controlled 
aircraft and other intruder aircraft. Therefore, the reward 
function should be able to capture both two objectives. 

Based on the above description, this problem will be 
mathematically formulated as an MDP problem in the next 
subsection. 

B. MDP Formulation 

1) State Space:  
A state includes all the information the ownship need for its 

decision making: the position and velocity of the ownship and 
all the intruder aircraft, together with the goal position. Two 

numbers ( , )x y  are needed for the position of an aircraft. And 

another two numbers ( , )x yv v  are needed to describe the 

velocity of an aircraft. With this simplified assumption, the 
trajectory of each intruder will be fully determined by the 

above four numbers. For ownship, besides its position ( , )x y  

and velocity ( , )x yv v , the heading angle is also included in the 

state, which can make determining the next state much easier. 
So if there are n  intruders, 1 ownship, and 1 goal, it will need 

4 5 1 2n  numbers to describe the current state. In 

conclusion, the state space is a subset of 4 7n , and each state 
is a 4 7n  dimensional vector, with each element in this 

vector taking a value in a different range. 

 

Figure 1. an example state of the MDP problem. 

For example, in Fig 1, the yellow aircraft is ownship, the 
red aircraft is the intruder, and the green star is the goal 
position for the ownship. If the position and velocity of 

intruder is ( , )x yi i  and ( , )vx vyi i , the position and velocity of 

ownship is ( , )x yo o  and ( , )vx vyo o , and the heading angle of 

ownship is o , the position of goal state is ( , )x yg g , then the 

state will simply be ( , , , , , , , , , , )x y vx vy x y vx vy x yi i i i o o o o o g g . If 

there are more than one intruders, the information of other 
intruders will also be included in the state. 

2) Action Space:  
At each time step (1 sec), the ownship can choose to turn 

left for 2°, turn right for 2°, or go straight. Specifically, the 
action space is  

{ 2 / ,0 / ,2 / }s s s  

And the ownship maintains the action during this time step. 

It’s natural to consider extending the set of actions (conflict 
resolution advisories) to include change in speed and 
combinations of resolutions (e.g., turn left and speed up 
simultaneously). However, using MCTS algorithm to calculate 
the optimal action will be more time consuming with the 
extended action space since the tree size will be much larger. 

3) Dynamical Model: 
After the ownship chooses an action, a simple kinematic 

model will be used to compute state transition for ownship: 

cos

sin

x v

y v

a

 



ICRAT 2018 

 

where v  is the speed of the intruder,  is the heading angle, 

and a  is the action that he ownship is currently taking, which 

takes the value options of -2°/s, 0°/s, 2°/s. 

Here, the relation between the bank angle and the turning 
angle can be determined through the following equation: 

tang

v
 

where  is the bank angle of ownship, and v  is the speed of 

ownship. If the action is chosen to be 2°/s, and the speed of 

ownship is 20 /m s , then the bank angle of the aircraft will be 

4°. 

In addition, it is assumed that there is no noise when 
executing the chosen action, which means this process is 
deterministic. The simplicity of this dynamical model helps us 
reduce the computation time of MCTS algorithm and obtain a 
converged solution. 

4) Terminal State: 
For safety, the conflict of two aircraft is defined when the 

distance of two aircraft is less than a minimum separation 

distance 320minr m . And the terminal state of this MDP 

includes three different types of states: 

 The distance from ownship to any intruder is less than 
minr  (referred to as a conflict state in the following); 

 The ownship flies out of the map (referred to as a 
boundary state in the following); 

 The ownship reaches the goal position (referred to as 
a goal state in the following).  

The terminal state can be determined by examining the 
state information. For example, suppose the current state is 

( , , , , , , , , , , )x y vx vy x y vx vy x yi i i i o o o o o g g  

Then this state will be a conflict state if 

2 2( ) ( ) min

x x y yi o i o r  

If this state is not a conflict state, it will be a boundary state if 
the current position of ownship is out of the map. Finally, the 
goal state can be determined similar to the conflict state by 
calculating the distance from the ownship to the goal position. 

5) Reward Function: 
The goal in this paper is to make an aircraft quickly reach 

its destination and avoid potential conflict. These two 
objectives can be captured in the reward function defined as 
follows: 

1,         if  is goal state
( )

0,        otherwise

s
R s  

Reaching a conflict state or a boundary state before the goal 
state will terminate the whole process with a reward of 0, 
which the agent will try to avoid. Reaching a goal state will 
terminate this process with a reward of 1. Together with a 
discount factor less than 1, the agent will try to reach the goal 
state as soon as possible. 

IV. SOLUTION METHOD 

A. UCT Algorithm 

For the MDP formulated above, the most popular algorithm 
in the MCTS family, the Upper Confidence Bound for Trees 
(UCT), is used to solve this problem. UCT has some promising 
properties: it’s very simple and efficient, and guaranteed to be 
within a constant factor of the best possible bound on the 
growth of regret. And it can balance exploration and 
exploitation very well.  

 

Figure 2. One iteration of general MCTS approach [16]. 

Before presenting the UCT algorithm for the above MDP 
formulated in Section III, several ideas and concepts need to be 
stated first: 

In the MCTS algorithm, the nodes in the search tree will be 
the states in the state space of the MDP problem. In the 
remaining part of this paper, the state and the node will be used 
interchangeably. The child nodes of a node are all the possible 
next states (nodes) resulting from different actions from current 
state (node). Here, it should be noted that taking one action 
from the current state will only lead to one next state since this 
MDP problem is deterministic. So, each node will have at most 
3 child nodes. 

Informally, in Fig 2., an edge connecting the parent node 
and child node can be regarded as an action, which leads the 
parent node (current state) to the child node (next state).  

After introducing the basic setting for the search tree of 
MCTS algorithm, it is now time to describe how to apply the 
UCT algorithm to solve the MDP problem. 

The first step of the UCT algorithm is selection. Every time 
the ownship is in the tree, it selects a child node with 
maximum value: 

2ln
2j

j

n
UCT X C

n
 



ICRAT 2018 

 

Here the first term jX  will be referred as exploitation term, 

which is directly from the formula 

( ) / ( )jX Q v N v  

where the number ( )N v  is the times this node has been visited 

before and the value ( )Q v  is the total reward of all playouts 

that passed through this node (so that ( ) / ( )Q v N v  is an 

approximation of the node’s state-action value). The second 

term 2 2ln / jC n n  is referred to as exploration, a higher C  

value will emphasize exploration and a lower C  value will 

encourage exploitation. It should be noted that the value of C  

should depend on the value scale of jX . Since the value of 

1/ 2C was shown by Kocsis and Szepesvari [18] to satisfy 

the Hoeffding inequality with rewards in the range [0,1] , it is 

reasonable to set 1/ 2C  in this paper. 

In the process of selection, if more than one child nodes 
have the same maximal value, the tie is broken by choosing the 
action a 0°, as in general, it is usually not desirable for the 

ownship to take unnecessary action. This often happens when 
the ownship is very close to the goal position, where all three 
actions will have same mean reward 1. In this case, the 
ownship doesn’t need to waste fuel by turning. 

Meanwhile, it is generally understood that 0jn  yields a 

UCT value of , so that if a node is never visited previously, 
it will be assigned to the largest possible value, to ensure that 
every child will be considered at least once before any 
expansion. This is the strategy used in this paper. 

The second step for UCT algorithm is expansion, which 
happens when the ownship is at a new node which it has never 
visited before. This step is simply adding this new node to the 
current tree under its parent node (the previous state), and 
setting its visiting number to 1 and cumulative reward to 0. 

While adding a new child node to the current node, the 
action which leads the current node to this new node should 
also be stored associated with this new node, since this action 
information will be used when selecting the best children.  

Next step is simulation. After a new node is added to the 
tree, its value should be determined by running a simulation to 
a terminal state following a random policy. After a random 
action is selected, the next state should be determined to 
advance the simulation. Since the state space includes all the 
information (position and velocity of all the aircraft and goal 
position), this process can be regarded as Markovian, which 
means the next state can be determined directly from the 
current state and the chosen action. Specifically, the next state 
will be determined as follows: 

For the intruder aircraft, its velocity remains unchanged 
since it’s assumed that intruder aircraft can only fly straight at 

fixed velocity. The position of next state is the sum of current 
position and current velocity (assuming the time step is 1 sec).  

For the goal position, it remains unchanged if the ownship 
doesn’t arrive at the goal state. If the ownship arrives at the 
goal state, this state will be a terminal state with reward of 1. 

For the ownship, the next state will be harder to determine 
since it also depends on the action chosen. At first the heading 
angle of ownship will change corresponding to the action 

chosen. Then new velocity ( , )x yv v  can be decided from the 

new direction: 

cos

sin

x

y

v v

v v
 

where v  is the fixed speed (20 m/s) of ownship. After getting 

the new velocity, adding it to the current position of the 
ownship will yield the position of ownship at the next state.  

A simple example is given to illustrate how the state is 
updated. Assume the current state is  

( , , , , , , , , , , )x y vx vy x y vx vy x yi i i i o o o o o g g  

and the chosen action is turning left, which means 

/2a s , then the next state 

( , , , , , , , , , , )x y vx vy x y vx vy x yi i i i o o o o o g g  

can be determined as follows: 

cos

sin

vx vx

vy vy

x x vx

y y vy

vx

vy

x x vx

y y vy

x x

y y

t

i i

i i

i i i

i i i

o o a

o v o

o v o

o o o

o o o

g g

g g

 

where 1t s  is the fixed time step, 20 /v m s is the fixed 

speed for ownship. 

Note that this process is not strictly following the kinematic 
model discussed before. But this approximation can perform 
well, especially when the time step is very small. 

In addition, in the simulation step, the ownship needs to 
simulate the whole process to a terminal state, after which it 



ICRAT 2018 

 
can get an evaluation of this generated trajectory. In this way, 
after simulating enough times, actions leading to the goal state 
will have a higher value and actions leading to conflicts won’t 
be preferred.  

The final step of MCTS is backpropagation. After 
simulating the whole process to one terminal state, the final 
reward should be given to the newly added nodes, and this 
score should be backed up to all the parents of the newly added 
nodes. 

One iteration of the above four steps is called one 
simulation. If the computation budget allows (e.g., the decision 
needs to be made in 100ms), enough simulations will be 
repeated, which can yield very accurate approximation of the 
value of different nodes. And the number of simulations can be 
also decided before the MCTS algorithm runs. When the 
simulation stops and the decision needs to be made, the most 
promising node can be easily selected by solely performing 
exploitation (set 0C ). 

B. Estimated Value Function 

The only remaining concern now is that the ownship may 
not have enough time to run this algorithm, since the algorithm 
presented in this paper is an online algorithm, which means it 
is vital for the ownship to think quickly to make decisions. 
Since simulating this process to a terminal state usually needs 

many steps, simulating this process to a fixed depth d  is 

beneficial to reduce computation time in the simulation step. If 

the algorithm simulates the process to the fixed depth d , 

which is a non-conflict state, the ownship should be able to 
estimate the value of this state. Intuitively, if this non-terminal 
state is closer the goal state, this state should be a better state if 
there is no other information, so the following estimated value 
function is used for the non-terminal states, so that the ownship 
can judge the goodness of any non-terminal state: 

      
( , )

( ) 1
max ( , )

d o g
sV

d o g
 if s  is non-terminal state 

where ( , )d o g  denotes the distance from ownship to goal 

position. And max ( , )d o g  is the maximum distance from 

ownship to the goal state, which is just the diagonal distance of 
the map. In this way, if there is no conflict with intruder or the 
border (which has reward 0), the ownship will get a positive 
reward, depending on how far the ownship is from the goal 
state. 

The above procedure is summarized in Algorithm 1.  

V. NUMERICAL EXPERIMENTS 

A. Simulator 

To test the performance of the proposed algorithm, a 
simulator was built where multiple aircraft can fly freely in the 

two-dimensional map. The map has 11km length and 8km 
width.  

 

At the beginning, the position of ownship is randomly 
generated, the speed of the ownship is fixed at 20 m/s, the 
flight direction is uniformly generated between 0° and 360°. 
Then a set of intruder aircraft are generated with speed 
uniformly distributed between 10 m/s and 20 m/s and with 
direction uniformly distributed between 0° and 360°. The goal 
position is also uniformly generated in the map. Based on the 
assumption before, the intruder aircraft can only fly at fixed 
velocity with fixed direction. Whenever any intruder flies out 
of the map, a new intruder is randomly generated with the 
same parameters described before. Whenever there is a 
collision between ownship and any intruder, the intruder will 
disappear, and a new intruder is generated, and currently the 
conflicts between intruders are not addressed in this paper. In 
this way, the number of intruders will always be fixed. In 



ICRAT 2018 

 
addition, the intruder shouldn’t appear too close to ownship, in 
which case the ownship might not be able to avoid this intruder 
no matter what action it takes. When the ownship reaches the 
goal, a new goal will be generated. Finally, if the ownship flies 
out of the map, a new ownship will be generated. The number 
of goals the ownship has reached and the number of conflicts it 
has with other intruders will be recorded during the process. 

B. Experiment setting 

In the MCTS algorithm, there are two parameters which are 
important to the performance of this algorithm: the number of 
simulations n  each time a decision needs to be made and the 

search depth d , which is discussed in Section IV. In the first 

experiment, the number of intruders is fixed to be 20, and the 
number of simulations is ranged from 100 to 1000 with step 
length 100, and the search depth is chosen from three numbers: 
2, 3, and 4. In 10,800 time steps, the total number of conflicts 
with intruders, and the number that reach goal positions are 
tracked and compared. These statistics will be referred to as the 
algorithm performance. In addition, the computation time of 
this algorithm used for each decision made is also compared. 
The performance and running time will be considered to pick 

the best parameters n  and d . Then in the second experiment, 

with the chosen parameter, the number of intruders will be 
ranged from 10 to 80 to test the ability of this algorithm. 

C. Result 

In Fig 3 and Fig 4, the performance of different parameters 

is compared. Fig 3 shows that the search depth 2d  

performs much worse than larger search depths. Fig 4 shows 
the more simulations that are run, the better the algorithm 
performs, since the goal is reached more often. These 
conclusions are consistent with the MCTS algorithm (more 
simulations and deeper search depth can yield better solution). 

Although there were some conflicts between the ownship 
and the intruders, there were no cases of near midair collisions 
(NMACs) in this simulations. Here, the NMAC is defined to 
be when two aircraft are closer than 30m. 

 

Figure 3. Number of conflicts with intruders in 10,800 time steps. 
Conflict is defined as the distance between two aircraft is less 

than 320m. 

 

Figure 4. Number of goals reached in 10,800 time steps. 

 

Figure 5. The running time for different parameter. 

For the running time, the simulator was run for 1,000 time 
steps for each chosen parameter, and then the average value 
was taken to approximate the running time for each decision. 
The results are plotted in Fig 5, from which it can be seen that 
search depth is main factor for slowing down this algorithm. 
And the running time under 100ms is acceptable for a real time 
decision making system, given that the decision are made 
every 1 second. 

After comparing the results in Fig 3, 4, and 5, 800n  and 

3d  were chosen for the second experiment with different 

numbers of intruders. In this second experiment, the numbers 
of NMACs, conflicts and goals reached are compared in 
10,800 time steps. 

From Fig 6, it can be shown that with the increase of 
number of intruders, the number of conflicts is increasing 
exponentially, and the number of goals reached is decreasing, 
since there are more intruders blocking the way to the goal 
state and the ownship needs more time to avoid them. The 



ICRAT 2018 

 
number of NMACs is very small, which means this algorithm 
is very effective at avoiding potential collisions when the 
intruder size is within a reasonable range. 

 

Figure 6. The performance of MCTS (with 3, 800d n ) by 

increasing the number of intruder aircraft. NMAC is defined as 
the distance between two aircraft is less than 30m. 

VI. CONCLUSION 

A computational guidance algorithm with collision 
avoidance capability for autonomous on-demand free flight 
operations in urban air mobility is proposed in this paper. The 
problem is formulated as a Markov Decision Process (MDP) 
with the action of the turning angle of the aircraft. The problem 
is then solved by using Monte Carlo Tree Search (MCTS) 
algorithm. Numerical experiments show that this proposed 
algorithm has promising performance to help an aircraft reach 
its destination and avoid potential conflicts even in relatively 
dense air traffic scenarios. This proposed algorithm provides a 
potential solution framework to enable autonomous on-demand 
free flight operations in urban air mobility. 

The contribution of this research is integrating the power of 
onboard aircraft intelligence (vehicle autonomy technology) 
and the advantage of the free flight concept for airspace 
operations to enable safe and efficient flight operations in on-
demand urban air transportation. 

Meanwhile, it should also be noted that the proposed 
algorithm is only tested under a simplified scenario, where all 
the intruders will execute their flight intention in a 
deterministic way. Future work will test the algorithm in the 
environment with uncertainties in the aircraft dynamics and 
intention execution. 

ACKOWLEDGEMENT 

This work has benefited from discussions with Mykel 
Kochenderfer at Stanford and Karthik Balakrishnan and 
Richard Golding at Airbus A^3. The authors thank Mykel 
Kochenderfer for inspiring the research idea and the A^3 

Altiscope team for their guidance and support throughout this 
work. 

REFERENCES 

[1] Gipson, Lillian. 2017. “NASA Embraces Urban Air Mobility, Calls for 
Market Study.” NASA. November 7. Accessed January 19.  
https://www.nasa.gov/aero/nasa-embraces-urban-air-mobility. 

[2] “Uber Elevate | The Future Of Urban Air Transport.” 2018. Accessed 
January 19. https://www.uber.com/info/elevate/ 

[3] Holden, J., and N. Goel. "Fast-Forwarding to a Future of On-Demand 
Urban Air Transportation." San Francisco, CA (2016). 

[4] “Urban air mobility.” 2017. Airbus. June 20. http://airbus-xo.com/urban-
air-mobility/. 

[5] “Future of urban mobility.” 2018. Airbus. Accessed January 19. 
http://www.airbus.com/newsroom/news/en/2016/12/My-Kind-Of-
Flyover.html. 

[6] Hoekstra, Jacco M., Ronald NHW van Gent, and Rob CJ Ruigrok. 
"Designing for safety: the ‘free flight’ air traffic management concept." 
Reliability Engineering & System Safety 75, no. 2 (2002): 215-232. 

[7] Clari, Mario SV Valenti, Rob CJ Ruigrok, Jacco M. Hoekstra, and 
Hendrikus G. Visser. "Cost-benefit study of free flight with airborne 
separation assurance." Air Traffic Control Quarterly 9, no. 4 (2001): 
287-309. 

[8] Krozel, Jimmy, and Mark Peters. "Conflict detection and resolution for 
free flight." Air Traffic Control Quarterly 5, no. 3 (1997): 181-212. 

[9] Kuchar, James K., and Lee C. Yang. "A review of conflict detection and 
resolution modeling methods." IEEE Transactions on intelligent 
transportation systems 1, no. 4 (2000): 179-189. 

[10] Schouwenaars, Tom, Mario Valenti, Eric Feron, and Jonathan How. 
"Implementation and flight test results of MILP-based UAV guidance." 
In Aerospace Conference, 2005 IEEE, pp. 1-13. IEEE, 2005. 

[11] Mellinger, Daniel, Alex Kushleyev, and Vijay Kumar. "Mixed-integer 
quadratic program trajectory generation for heterogeneous quadrotor 
teams." In Robotics and Automation (ICRA), 2012 IEEE International 
Conference on, pp. 477-483. IEEE, 2012. 

[12] Augugliaro, Federico, Angela P. Schoellig, and Raffaello D'Andrea. 
"Generation of collision-free trajectories for a quadrocopter fleet: A 
sequential convex programming approach." In Intelligent Robots and 
Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 1917-
1922. IEEE, 2012. 

[13] Kochenderfer, Mykel J., and J. P. Chryssanthacopoulos. "Robust 
airborne collision avoidance through dynamic programming." 
Massachusetts Institute of Technology, Lincoln Laboratory, Project 
Report ATC-371 (2011). 

[14] Chryssanthacopoulos, James P., and Mykel J. Kochenderfer. 
"Decomposition methods for optimized collision avoidance with 
multiple threats." Journal of Guidance, Control and Dynamics 35, no. 2 
(2012): 398-405. 

[15] Ong, Hao Yi, and Mykel J. Kochenderfer. "Markov Decision Process-
Based Distributed Conflict Resolution for Drone Air Traffic 
Management." Journal of Guidance, Control, and Dynamics (2016). 

[16] Browne, Cameron B., Edward Powley, Daniel Whitehouse, Simon M. 
Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego 
Perez, Spyridon Samothrakis, and Simon Colton. "A survey of monte 
carlo tree search methods." IEEE Transactions on Computational 
Intelligence and AI in games 4, no. 1 (2012): 1-43. 

[17] “Unmanned Aerial System Traffic Management Fact Sheet,” 2015. 

[18] Kocsis, Levente, Csaba Szepesvári, and Jan Willemson. "Improved 
monte-carlo search." Univ. Tartu, Estonia, Tech. Rep 1 (2006). 

https://www.nasa.gov/aero/nasa-embraces-urban-air-mobility
https://www.uber.com/info/elevate/
http://airbus-xo.com/urban-air-mobility/
http://airbus-xo.com/urban-air-mobility/
http://www.airbus.com/newsroom/news/en/2016/12/My-Kind-Of-Flyover.html
http://www.airbus.com/newsroom/news/en/2016/12/My-Kind-Of-Flyover.html

