High Performance Computing and GPU Programming

Lecture 1: Introduction

Objectives
C++/CPU Review
GPU Intro
Programming Model
Objectives
Objectives

• Before we begin...a little motivation

<table>
<thead>
<tr>
<th>Processor</th>
<th>Cores</th>
<th>Time/Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon 2.67GHz</td>
<td>8</td>
<td>0.85 secs</td>
</tr>
<tr>
<td>Tesla C1070</td>
<td>240</td>
<td>0.057 secs</td>
</tr>
</tbody>
</table>
Objectives

<table>
<thead>
<tr>
<th></th>
<th>Intel Xeon 2.67GHz</th>
<th>Tesla C2070</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUs Cores</td>
<td>4 CPUs – 32 Cores</td>
<td>4 GPUs – 1,792 Cores</td>
</tr>
<tr>
<td>Processing Time</td>
<td>~145 days</td>
<td>~6 days</td>
</tr>
</tbody>
</table>
Objectives

• I have three goals
 – Develop good programming skills and practices
 – Understand GPU programming and architecture
 – Achieve peak performance through code optimization
Objectives

To reach these goals you need

- Understanding of pointers and computer memory
- Knowledge of some computer language
 - C, C++, FORTRAN – I prefer C++

- Patience
 - Learning GPU computing can be VERY frustrating
C++/CPU Review
How does computer memory work?

- **CPU Register**
- **CPU Cache**
 - Level 1
 - Level 2
- **Random Access Memory**
 - Physical RAM
 - Virtual RAM
- **Storage Device Types**
- **External Storage Sources**

Temporary Storage

Permanent Storage
• Why is this important?
 – Your computer takes time to access data
 – Your computer takes time to operate data

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Latency (clocks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABS</td>
<td>3</td>
</tr>
<tr>
<td>FADD</td>
<td>6</td>
</tr>
<tr>
<td>FSUB</td>
<td>6</td>
</tr>
<tr>
<td>FMULT</td>
<td>8</td>
</tr>
<tr>
<td>FDIV (S)</td>
<td>30</td>
</tr>
<tr>
<td>FDIV (D)</td>
<td>44</td>
</tr>
</tbody>
</table>
• Processor stalling
 – Idling occurs when a processor cannot execute the next instruction due to dependency

<table>
<thead>
<tr>
<th>Intel Nehalem Processor</th>
<th>Memory</th>
<th>Latency (clocks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Main memory</td>
<td>~100</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>~4</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>~10</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>~40</td>
</tr>
</tbody>
</table>

– CPU’s try to “hide” latency in caches
 • Cache – store subset of data closer to processing elements for fast access
 • Latency – you are hungry, place an order, you are served 30 mins later. The latency is 30 minutes.
Latency depends on where the food is
- If stored in your mini-fridge by your desk – fast access (this is on-chip storage)
- If you want a burger at the hub, you got to go get it (this is off-chip storage)

Once you have the food
- Bandwidth
 - How much can you scarf down in 1 second?
 - Depends on food organization in storage and what food you have
 - Also – How are you eating your food?
Very basic C++ code

Remember – C++ starts at 0 ... NOT 1!
 – First element in array A is A[0], NOT A[1]
• Pointers
 – Why do we need them?
 • Memory management
 • GPU computing REQUIRES them

```c++
#define n 16
int main() {
  //Define the pointer type
double *a, **b;
  //Allocate them
  a = new double[n];
b = new double*[n];
  for (int i=0; i<n; i++) b[i] = new double[n]

  //Operate with them
  for (int i=0; i<n; i++) {
    a[i] = ... 
b[0][i] = ... 
b[1][i] = ...
  }
}
```
Pointers

What do they do?

- Point to memory location where information can be found
- Allow dynamic allocation – On the fly memory management
- Can freely pass into functions and operate on them

In the case of large data storage

- Array to function
 - Pass ALL data into function – Takes time
- Pointer to function
 - Passes only memory LOCATION to function
 - Much faster!

C++/CPU Review
Storage

- 1-D storage of all arrays
- Multi-dimensional arrays are more convenience
- With GPU’s, multi-dimensional arrays are:
 - More hassle
 - Slower
- Conversion is simple
GPU Intro
GPU Intro

- **CPU vs. GPU**

 - **CPU**
 - SIMD – Single instruction multiple data vector units

 - **GPU**
 - SIMT – Single instruction multiple threads
- CPU vs. GPU
GPU Intro

- **CPU vs. GPU**

<table>
<thead>
<tr>
<th></th>
<th>GPU – Tesla K20</th>
<th>CPU – Intel I7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores</td>
<td>Main memory</td>
<td>4 (8)</td>
</tr>
<tr>
<td>Memory</td>
<td>5 GB</td>
<td>32 KB L1 cache / core</td>
</tr>
<tr>
<td></td>
<td></td>
<td>256 KB L2 cache / core</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 MB L3 shared</td>
</tr>
<tr>
<td>Clock Speed</td>
<td>2.6 GHz</td>
<td>3.2 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>208 GB/s</td>
<td>25.6 GB/s</td>
</tr>
<tr>
<td>FLOPS</td>
<td>1.17×10^{12}</td>
<td>70×10^{9}</td>
</tr>
</tbody>
</table>
• Why the difference?
 – GPU specialized for compute intensive highly parallel computation – graphics rendering
 – More devoted to data processing rather than caching

• For CPU parallelism – Rely on:
 – Parallel libraries – Convenient
 – Compiler – Very hard

• For GPU parallelism
 – Language extension requiring human interaction
 – YOU must generate the parallel executable
Another fact:

- Everything costs $$$
- AFRL supercomputer
 - > $100,000
 - Plus a ridiculous amount of power consumption

- GPU Tesla K20
 - ~ $5,000
 - Put it in your desktop – with a large power supply

- GPU GTX 660
 - ~ $200
 - Cheap AND fast – Not a lot to work with however
Programming Model
Programming Model

• Compute Unified Device Architecture
 – NVIDIA CUDA GPU Programming
 – Not exactly High Performance Computing (HPC) – Shares same aspect
 • Combine multiple GPUs together – HPC GPU cluster
 – Data is executed over many threads in parallel
 – Controlled with:
 • Grid
 • Blocks
 • Threads
• SM creates, manages, schedules, and executes threads in groups of parallel threads - Warps
• Warps are not easy
 – Warp size is 32 threads on current GPUs
 – Threads in a warp start together
 – When an SM has a task or block:
 • The threads are split into warps
 • A sort of “scheduling” is done

• Most of the time we have to ignore this
 – Not all problems fit into a multiple of 32!
 – Many papers claim 500x speed-up for matrix operations
 • The cases are for sizes of 32x32, 256x256, 512x512, etc...
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C) {
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

int main() {
 ...
 // Kernel invocation with N threads
 VecAdd<<<1, N>>>(A, B, C);
 ...
}
Programming Model

- Memory must be allocated

```c
// Host code
int main()
{
    // Allocate input vectors in host memory
    float* A_h = (float*)malloc(N * sizeof(float));
    float* B_h = (float*)malloc(N * sizeof(float));

    // Initialize input vectors
    ...

    // Allocate vectors in device memory
    float* A_d, B_d, C_d;
    cudaMalloc(&A_d, N * sizeof(float));
    cudaMalloc(&B_d, N * sizeof(float));
    cudaMalloc(&C_d, N * sizeof(float));

    // Copy vectors from host memory to device memory
    cudaMemcpy(A_d, A_h, N * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(B_d, B_h, N * sizeof(float), cudaMemcpyHostToDevice);

    // Invoke kernel
    VecAdd<<<1, N>>>(A_d, B_d, C_d, N);

    // Copy result from device memory to host memory
    cudaMemcpy(C_h, C_d, N * sizeof(float), cudaMemcpyDeviceToHost);

    // Free device memory
    cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
}

// Device code
__global__ void VecAdd(float* A, float* B, float* C, int N)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < N)
        C[i] = A[i] + B[i];
}```
Programming Model

- Thread Hierarchy
  - Controlled by “dim3” declaration
  - Threads have a limit!

```c
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
 float C[N][N])
{
 int i = threadIdx.x;
 int j = threadIdx.y;
 C[i][j] = A[i][j] + B[i][j];
}

int main()
{
...
 // Kernel invocation with one block of N * N * 1 threads
 int numBlocks = 1;
 dim3 threadsPerBlock(N, N);
 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
 ...
}
```
Now consider a multi-block multi-thread problem

Break it up!
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N && j < N)
        C[i][j] = A[i][j] + B[i][j];
}

int main()
{
    ...
    // Kernel invocation
    dim3 threadsPerBlock(2, 2);
    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    ...
}
Wrap Up

• Next time...
  – CUDA for you
    • What you need, where to get it, how to install it
  – Thread index mapping
    • 2-D or 3-D to 1-D
  – Introduce CUDA memory types
    • Texture, local, global, shared
  – Program interpolation function (if time permits it)
    • CPU vs. GPU implementation