High Performance Computing and GPU Programming

Lecture 1: Introduction
Objectives
C++/CPU Review
GPU Intro
Programming Model

Before we begin...a little motivation

Intel Xeon 2.67GHz 8 Cores 0.85 secs/iteration Tesla C1070 240 CUDA cores 0.057 secs/iteration

Intel Xeon 2.67GHz	Tesla C2070	
4 CPUs – 32 Cores	4 GPUs – 1,792 Cores	
~145 days	~6 days	

I have three goals

Develop good programming skills and practices

Understand GPU programming and architecture

Achieve peak performance through code optimization

- To reach these goals you need
 - Understanding of pointers and computer memory

- Knowledge of some computer language
 - C, C++, FORTRAN I prefer C++

- Patience
 - Learning GPU computing can be VERY frustrating

How does computer memory work?

- Why is this important?
 - Your computer takes time to access data
 - Your computer takes time to operate of data

Intel Processor			
Instruction	Latency (clocks)		
FABS	3		
FADD	6		
FSUB	6		
FMULT	8		
FDIV (S)	30		
FDIV (D)	44		

Processor stalling

Idling occurs when a processor cannot execute the next instruction due to dependency

Intel Nehalem Processor			
Memory	Latency (clocks)		
Main memory	~100		
L1	~4		
L2	~10		
L3	~40		

- CPU's try to "hide" latency in caches
 - Cache store subset of data closer to processing elements for fast access
 - Latency you are hungry, place an order, you are served 30 mins later. The latency is 30 minutes.

- Latency depends on where the food is
 - If stored in your mini-fridge by your desk fast access (this is on-chip storage)
 - If you want a burger at the hub, you got to go get it (this is off-chip storage)
- Once you have the food
 - Bandwidth
 - How much can you scarf down in 1 second?
 - Depends on food organization in storage and what food you have
 - Also How are you eating your food?

- Very basic C++ code
- Remember C++ starts at 0 ... NOT 1!
 - First element in array A is A[0], NOT A[1]

- Pointers
 - Why do we need them?
 - Memory management
 - GPU computing REQUIRES them

```
#define n 16
int main() {
   //Define the pointer type
   double *a, **b;
   //Allocate them
   a = new double[n];
   b = new double*[n];
   for (int i=0; i< n; i++) b[i] = new double[n]
   //Operate with them
   for (int i=0; i<n; i++) {
      a[i] = ...
      b[0][i] = ...
      b[1][i] = ...
```

Pointers

- What do they do?
 - Point to memory location where information can be found
 - Allow dynamic allocation On the fly memory management
 - Can freely pass into functions an operate on them
- In the case of large data storage
 - Array to function
 - Pass ALL data into function Takes time
 - Pointer to function
 - Passes only memory LOCATION to function
 - Much faster!

- Storage
 - 1-D storage of all arrays
 - Multi-dimensional arrays are more convenience
 - With GPU's, multi-dimensional arrays are:
 - More hassle
 - Slower
 - Conversion is simple

• CPU vs. GPU

CPU
SIMD – Single instruction multiple data vector units

GPU
SIMT – Single instruction multiple threads

CPU vs. GPU

Floating point operations per second

Memory Bandwidth

• CPU vs. GPU

	GPU – Tesla K20	CPU – Intel I7	
Cores	Main memory	4 (8)	
Memory	5 GB 32 KB L1 cache / core 256 KB L2 cache / core 8 MB L3 shared		
Clock Speed	2.6 GHz	3.2 GHz	
Bandwidth	208 GB/s	25.6 GB/s	
FLOPS	1.17 x 10^12	70 x 10^9	

- Why the difference?
 - GPU specialized for compute intensive highly parallel computation – graphics rendering
 - More devoted to data processing rather than caching
- For CPU parallelism Rely on:
 - Parallel libraries Convenient
 - Compiler Very hard
- For GPU parallelism
 - Language extension requiring human interaction
 - YOU must generate the parallel executable

- Another fact:
 - Everything costs \$\$\$
 - AFRL supercomputer
 - >\$100,000
 - Plus a ridiculous amount of power consumption
 - GPU Tesla K20
 - ~ \$5,000
 - Put it in your desktop with a large power supply
 - GPU GTX 660
 - ~ \$200
 - Cheap AND fast Not a lot to work with however

- Compute Unified Device Architecture
 - NVIDIA CUDA GPU Programming
 - Not exactly High Performance Computing (HPC) Shares same aspect
 - Combine multiple GPUs together HPC GPU cluster
 - Data is executed over many threads in parallel
 - Controlled with:
 - Grid
 - Blocks
 - Threads

 SM creates, manages, schedules, and executes threads in groups of parallel threads - Warps

- Warps are not easy
 - Warp size is 32 threads on current GPUs
 - Threads in a warp start together
 - When an SM has a task or block:
 - The threads are split into warps
 - A sort of "scheduling" is done
- Most of the time we have to ignore this
 - Not all problems fit into a multiple of 32!
 - Many papers claim 500x speed-up for matrix operations
 - The cases are for sizes of 32x32, 256x256, 512x512, ect...


```
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}
int main()
{
    ...
    // Kernel invocation with N threads
    VecAdd<<<1, N>>>(A, B, C);
    ...
}
```

Memory must be allocated

```
// Host code
int main()
    // Allocate input vectors in host memory
    float* A h = (float*)malloc(N * sizeof(float));
    float* B h = (float*)malloc(N * sizeof(float));
    // Initialize input vectors
    // Allocate vectors in device memory
    float* A d, B d, C d;
    cudaMalloc(&A d, N * sizeof(float));
    cudaMalloc(&B d, N * sizeof(float));
    cudaMalloc(&C d, N * sizeof(float));
    // Copy vectors from host memory to device memory
    cudaMemcpy(A d, A h, N * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(B d, B h, N * sizeof(float), cudaMemcpyHostToDevice);
    // Invoke kernel
    VecAdd<<<1, N>>>(A d, B d, C d, N);
    // Copy result from device memory to host memory
    cudaMemcpy(C h, C d, N * sizeof(float), cudaMemcpyDeviceToHost);
    // Free device memory
    cudaFree(d A); cudaFree(d B); cudaFree(d C);
```

```
// Device code
__global__ void VecAdd(float* A, float* B, float* C, int N)
   int i = blockDim.x * blockIdx.x + threadIdx.x;
   if (i < N)
        C[i] = A[i] + B[i];
}</pre>
```

- Thread Hierarchy
 - Controlled by "dim3" declaration
 - Threads have a limit!

Now consider a multi-block multi-thread problem

Break it up!

```
// Kernel definition
    global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N && j < N)
        C[i][j] = A[i][j] + B[i][j];
}

int main()
{
    ...
    // Kernel invocation
    dim3 threadsPerBlock(2, 2);
    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    ...
}
```


	Threads	Blocks	Grid
ldx.x	0,1	0,1	-
ldx.y	0,1	0,1	-
Dim.x	-	2	2
Dim.y	-	2	2

Wrap Up

- Next time...
 - CUDA for you
 - What you need, where to get it, how to install it
 - Thread index mapping
 - 2-D or 3-D to 1-D
 - Introduce CUDA memory types
 - Texture, local, global, shared
 - Program interpolation function (if time permits it)
 - CPU vs. GPU implementation