High Performance Computing and GPU Programming

Lecture 2: GPU Core
GPU Intro Cont.
Programming Model
GPU Memory

GPU Intro

GPU Intro

• CPU vs. GPU

CPU
SIMD – Single instruction multiple data vector units

GPU
SIMT – Single instruction multiple threads

GPU Intro

• CPU vs. GPU

	GPU – Tesla K20	CPU – Intel I7
Cores	Main memory	4 (8)
Memory	5 GB	32 KB L1 cache / core 256 KB L2 cache / core 8 MB L3 shared
Clock Speed	2.6 GHz	3.2 GHz
Bandwidth	208 GB/s	25.6 GB/s
FLOPS	1.17 x 10^12	70 x 10^9

- Three major topics in GPU computing
 - Architecture Management
 - Threads and blocks How to set-up?
 - Memory Management
 - This is where you get speed!
 - Algorithm Management
 - Optimization and massive parallelism

 SM creates, manages, schedules, and executes threads in groups of parallel threads - Warps

- Warps are not easy
 - Warp size is 32 threads on current GPUs
 - Threads in a warp start together
 - When an SM has a task or block:
 - The threads are split into warps
 - A sort of "scheduling" is done
- Most of the time we have to ignore this
 - Not all problems fit into a multiple of 32!
 - Many papers claim 500x speed-up for matrix operations
 - The cases are for sizes of 32x32, 256x256, 512x512, ect...


```
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}
int main()
{
    ...
    // Kernel invocation with N threads
    VecAdd<<<1, N>>>(A, B, C);
    ...
}
```

Memory must be allocated

```
// Host code
int main()
    // Allocate input vectors in host memory
    float* A h = (float*)malloc(N * sizeof(float));
    float* B h = (float*)malloc(N * sizeof(float));
    // Initialize input vectors
    // Allocate vectors in device memory
    float* A d, B d, C d;
    cudaMalloc(&A d, N * sizeof(float));
    cudaMalloc(&B d, N * sizeof(float));
    cudaMalloc(&C d, N * sizeof(float));
    // Copy vectors from host memory to device memory
    cudaMemcpy(A d, A h, N * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(B d, B h, N * sizeof(float), cudaMemcpyHostToDevice);
    // Invoke kernel
    VecAdd<<<1, N>>>(A d, B d, C d, N);
    // Copy result from device memory to host memory
    cudaMemcpy(C h, C d, N * sizeof(float), cudaMemcpyDeviceToHost);
    // Free device memory
    cudaFree(d A); cudaFree(d B); cudaFree(d C);
```

```
// Device code
__global__ void VecAdd(float* A, float* B, float* C, int N)
{
   int i = blockDim.x * blockIdx.x + threadIdx.x;
   if (i < N)
        C[i] = A[i] + B[i];
}</pre>
```

- Thread Hierarchy
 - Controlled by "dim3" declaration
 - Threads have a limit!

Now consider a multi-block multi-thread problem

Break it up!

	Threads	Blocks	Grid
ldx.x	0,1	0,1	-
Idx.y	0,1	0,1	-
Dim.x	-	2	2
Dim.y	-	2	2

- We will discuss more on threads later
- Introduce memory Diagram!

- Global Memory
 - Main GPU memory but also slow!
 - Try to never run computations here only in some situations
 - All blocks and all threads

- Texture Memory
 - A little complicated to explain
 - You can read data from here fast!
 - But cannot write data directly
 - All blocks and all threads

Local Memory

- Local to each thread in the block
- Able to communicate but never do it!
- Registers are here
- Very fast

Shared Memory

- Difficult to use correctly but very powerful
- 150x faster than global memory
- Local to the block

Starting an application – We must ...

Global Memory

- 1. Allocate everything we need to the GPU into global memory
- 2. You must decide what goes into the texture cache

Texture Memory

- 3. Now execute a CUDA kernel everything we need is there
- 4. Decide what memory you need and where you need it from
- 5. Run computations store result into global memory when done
- 6. Use this memory in other kernels
- There are several deciding factors on where you get you memory and where you store it

Where to get it?

Global Memory

- Coalesced
- That's it!

Texture Memory

- Non-Coalesced
- That's it!

- What is Coalesced?
 - The single most important thing you can do
 - All threads in a HALF Warp access global memory at the same time
 - Again...Warps...
 - How about simple!
 - Neighboring threads access neighboring cells in memory

Where to put it?

Local Memory

- Coalesced access
- One access by thread then move on!
- Huge performance
- Basically do I need...
 - Coalesced computations?
 - No sharing data?

Shared Memory

- for/do loops
- Required by other blocks
- Required by other threads
- Basically do I need ...
 - Repeated access?
 - Shared access?

Wrap Up

- Next time...
 - CUDA for you
 - What you need, where to get it, how to install it
 - Thread index mapping
 - 2-D or 3-D to 1-D
 - Introduce CUDA memory types
 - Texture, local, global, shared
 - Program interpolation function (if time permits it)
 - CPU vs. GPU implementation