
For permission to copy or to republish, contact the copyright owner named on the first page. 
For AIAA-held copyright, write to AIAA Permissions Department, 
1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344. 

 
 
 
 

AIAA  2003-0459 
 

Client-Server Java Programming 
For Wireless Mobile Robots 
 

 
 
Lyle N. Long, Anupam Sharma, and Frederic Souliez 
The Pennsylvania State University 
University Park, PA 

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 

41st Aerospace Sciences Meeting  
6 - 9 January 2003,  Reno, Nevada 

 
 



 2 
American Institute of Aeronautics and Astronautics 

Client-Server Java Programming  
for Wireless Mobile Robots 

 
Lyle N. Long1, Anupam Sharma2, and Frederic Souliez3 

Department of Aerospace Engineering  
The Pennsylvania State University 
http://www.personal.psu.edu/lnl 

lnl@psu.edu 
 
 

                                                           
Copyright 2002, Lyle N. Long, published with permission by AIAA 
1 Professor, Associate Fellow AIAA 
2 Graduate Research Assistant, Member AIAA 
3 Graduate Research Assistant, now at BMW, Munich, Member AIAA 

Abstract 
 
A client-server application for the remote control of a 
wireless mobile robot (a small four-wheel vehicle) is 
described. The application requires an onboard 
computer (e.g. a PC-104 or a laptop) running a Java 
Virtual Machine (JVM) on the vehicle. The mobile 
robot is the client, which is controlled by the server.  
The server can be any desktop machine or another 
mobile robot. We show how mobile robots can be 
controlled using any computer on the internet through a 
wireless Ethernet network.  This project uses 
commercial off-the-shelf (COTS) hardware and 
software.  The ultimate goal of this effort is to build 
autonomous or semi-autonomous air-borne vehicles 
which can run with little or no human intervention, but 
for the time being we are working with ground-base 
vehicles to develop the hardware and software. A small 
traditional radio-controlled aircraft (e.g. 2 meter wing 
span) could easily carry the computer required by the 
client. The approach we are using essentially gives the 
power of large desktop or Beowulf clusters to very 
small mobile robots, since the client is a complete 
internet-based PC. The client is basically an intelligent 
agent.  This approach can be extended to allow multiple 
vehicles to communicate with each other and with other 
computers on the internet. This is not an approach that 
can be used for real-time remote control of air-borne 
vehicles, but it is expected to be useful for autonomous 
and semi-autonomous vehicles, where it would be 
useful to occasionally send commands to the vehicle. 
This approach will also allow very powerful computers 
such as Beowulf clusters or parallel supercomputers to 

be used to control numerous mobile robots, since they 
too can act as servers. 
 
Introduction 
 
The concept of remotely controlling a vehicle was first 
used for military purposes by German motor-boats to 
ram enemy ships in World War I (WWI). They used 
radio waves to communicate with the remote motor-
boats. Remote control technology was enhanced further 
in WWII and is now used in a wide variety of 
commercial and military products. 
 
Remote control may be done using real, physical 
connections between the remote object and the user, or 
it may be done with wireless methods. Wireless remote 
control is often more desirable, especially when the 
distance between the user and the remote object is 
large. Over the years, researchers have tried different 
means of making wireless connections using flashes, 
ultrasonic waves, radio waves and infrared waves. All 
these have a restricted range of application. The idea of 
using computers to enhance the remote control is 
relatively new. Since the internet connects almost every 
part of the globe now, remote objects anywhere in the 
world can be controlled using networked computers if 
the interface controlling the remote object is a 
computer. If we couple wireless networking technology 
with networked computers, we can effectively achieve 
wireless control from global distances. This can be 
useful for a variety of purposes; including weapons 
systems, search and rescue operations, mine clearing, 
exploration, and reconnaissance. 
 



 3 
American Institute of Aeronautics and Astronautics 

 

In this paper we discuss the remote control of a vehicle 
using Java [Ref. 1 and 2]. We chose Java because it is 
platform independent, and we wanted our remote object 
to be controlled from any machine. Also, Java provides 
an easy implementation of Graphical User Interfaces 
(GUI) which is highly desirable. This is essentially a 
model problem to explore the use of networked 
computers for the remote control of mobile robots. In 
this paper we present some ideas which can help 
develop the concepts of semi-autonomous systems and 
groups of semi-autonomous systems for devices with 
embedded computers. 
 
Wireless mobile robots which can be controlled via the 
internet will basically be very capable platforms for 
intelligent agent devices.  The robots described herein 
are relatively small, but have fairly significant onboard 
processing power.  These systems could have onboard 
cameras with neural network-based image processing.  
They could also have onboard GPS and many different 
types of sensors. 
 
Our goal was to remotely maneuver a vehicle which has 
an onboard networked computer from another computer 
on the internet. The embedded computer has a wireless 
ethernet card which has a range of about 300 meters, 
but these will work over several miles (line of sight) 
with larger antennae and more powerful base units 
(access points). We implemented Client-Server 
programming to achieve remote control. The computer 
on the vehicle is called the client, and the machine 
which controls the vehicle is called the server. The 
client machine is always on and running the client 
program which listens for messages from the server. 
The idea is to have autonomous or semi-autonomous 
vehicles which can maneuver with little human 
intervention. Of course, at this moment our server is 
controlled by a human being, but this job can be taken 
over by a computer in the future. 
 
A GUI to maneuver the vehicle was designed to run on 
the server machine. Through the GUI the user can set 
the throttle and the direction of the vehicle. The GUI 
also shows an image of the area in front of the vehicle 
from the onboard camera.  There are essentially two 
parts to solving this problem: (1) We need an interface 
between the software and the hardware i.e. the servos 
on the vehicle, and (2) we need the Client-Server 
program to do the remote control. We discuss these in 
the following sections. 
 
The Hardware Interface 
 
We chose a radio-controlled electric truck (Traxxas 
Stampede) as the mobile robot. This is a popular 1/10th 

scale radio control vehicle which comes with an 
onboard receiver.  The truck has a good shock absorber-
spring suspension system, a slipper clutch, and a 
differential.  The receiver is normally connected to the 
speed controller and a single servo that controls the 
steering.  It typically uses a large 1500 mAh 7.2 volt 
battery.  Figure 1 shows the vehicle with a small 
Toshiba Libretto laptop, and Figure 2 shows the vehicle 
with a PC-104 computer.  We basically replaced the 
standard radio-control receiver with the computer and 
some other electronics. The onboard computer drives 
the servo motors through the serial port. The laptop and 
the PC-104 both have wireless ethernet cards which 
communicate with a wireless access point that is on the 
internet.   It would be fairly straight-forward to add 
GPS hardware to the systems as well.   We have now 
begun a larger version of this system using a larger 
mobile robot, an example image of one of these is 
shown in Figure 3.  These will allow us to use larger 
computers and incorporate more sensors. 
 

 
         Figure 1.  Vehicle with Toshiba laptop. 

 
 
 

 
Figure 2. Vehicle with PC-104 computer. 

 
 



 4 
American Institute of Aeronautics and Astronautics 

 

 
Figure 3. Zagros Max99 mobile robot with 12 inch 

diameter platforms [from Ref. 3] 
 
The Toshiba laptop was a Libretto model 70CT, which 
has a 120 MHz Pentium processor and 32 MB memory.  
It has a 6 inch diagonal TFT matrix screen.  It also has a 
serial port, parallel port, and a type III PC card port.  
The maximum battery life is 4.5 hours.  With the larger 
battery this system weighs 2.2 pounds and is 8.3 x 4.5 x 
1.4 inches.  It can run MS Windows or Linux.  This 
laptop was purchased for $500, but they are no longer 
in production,. A good, more modern replacement for 
this would be the new Fujitsu Lifebook P-series. 
 
The PC-104 was obtained from EMJembedded.com, 
and is a MOPS LCD6.  This has a 166 MHz Pentium 
processor. It has two serial ports, a parallel port, IDE 
interface, onboard VGA, floppy drive interface, USB 
port, and keyboard port.  We added a PCMCIA port and 
a wireless Ethernet card, a 64 MByte solid state disk, 
and a hard-drive.  This system is lighter than the 
Toshiba, since it does not have to carry the display and 
keyboard.  The PC-104 can be run from batteries 
through a power converter (the board requires 5 volts).  
You could fairly easily spend $1000 for a fully-ready 
PC-104 system. 
 
Java 
 
We chose Java for this application because it is object 
oriented, has GUI capabilities, has remote method 
invocation (RMI), has integrated graphics, and it can 
easily drive devices through serial and parallel ports.  
All of these could also be accomplished using C++, 
however.  C++ is also object oriented.  GUI’s can be 
incorporated into C++ using FLTK [Ref. 9]. Graphics 
can be incorporated using OpenGL [Ref. 10].  Remote 
method invocation can be done with CORBA or even 

Unix sockets, which we have implemented in a library 
called POSSE [Ref. 11 - 14].  In addition, there are 
readily available C++ libraries for accessing serial and 
parallel ports.  Java is said to be portable, but it is 
difficult to really claim that it is more portable than 
C++.   Thread programming is a part of the Java 
language and not part of C++, however POSIX thread 
libraries are readily available for C++.  So you could do 
what we have done here with C++, but it would require 
several of the above libraries. 
 
When Java was created there was a huge amount of 
fanfare.  This is typical of new technology, as shown in 
the Gartner Hype Cycle [Ref. 15] in Figure 4. In our 
opinion, Java is roughly in the “slope of enlightenment” 
period. Java is a very good programming language, but 
it has been a bit oversold. Microsoft has not helped the 
situation by continually arguing with Sun over its use 
and implementation. Java has also suffered from 
performance issues, but some recent compilers have 
demonstrated that it can achieve very good performance 
[Ref. 16 - 17].  The Java Grande Forum [Ref. 18] has 
some good suggestions for how Java can be improved, 
these are mainly related to how Java performs floating 
point operations.  One of the good features of Java is its 
memory management and automatic garbage collection, 
but this is a drawback for real-time applications.  This 
has led to a Real-Time Java implementation [Ref. 19], 
but there are still concerns about whether this 
implementation can be used in safety-critical 
applications.  There is also the issue of the need for 
Java to work well in legacy systems, and to interact 
reliably with C++ and Ada.     C++ is not perfect either, 
since it includes features left over from C.  In safety-
critical systems it is still very difficult to develop highly 
reliable code without memory leaks or unpredictable 
behavior. 

 
Figure 4. Gartner Hype Cycle [Ref. 15] 

 
One of the amazing aspects of this project is that the 
entire code is only 730 lines long.  This includes the 

Technology
Trigger

Peak of 
Inflated
Expectations

Trough of
Disillusionment

Slope of
Enlightenment

Plateau of
Productivity

Visibility

Time



 5 
American Institute of Aeronautics and Astronautics 

 

servo control, the remote method invocation, the GUI,  
and the camera source.  This is possible because so 
much of the functionality that we needed was already 
part of Java.  In addition, the clients and servers can be 
completely different types of machines and operating 
systems. 
 
The Client-Server Program 
 
The second part of the project was to be able to 
communicate with the onboard computer on the vehicle 
in real time. This was achieved by Java Client-Server 
programming. The vehicle is the client and the server 
machine can be any computer on the network. The 
server program is always listening to calls from the 
client and responds appropriately. Java provides 
Remote Method Invocation (RMI) for invoking remote 
method calls on different Java Virtual Machines 
(JVMs). This is illustrated in Figure 5. RMI is similar to 
CORBA, and allows one to use remote objects as 
though they were local. The client-server programming 
essentially requires two programs and an interface. The 
two programs are for the client and the server and they 
may run on different JVMs. The interface declares the 
remote methods which can be called on a remote object.  
 

 
Figure 5.  Java Remote Method Invocation (RMI)  

[Ref.6 ] 
 

The client-server interface has two methods (or 
functions): (1) ``getThrottle'' : to fetch the throttle value 
from the remote object (server), and (2) ``getYaw'' : to 
fetch the yaw value (for steering). The interface only 
declares the remote methods, it does not define the 
action they perform. This interface has to extend the 
java.rmi.Remote interface to inherit the basic features 
of RMI. Also, each remote method declared in this 

interface has to throw a java.rmi.RemoteException. 
This is required because while working on networked 
machines there is always a possibility of a connection 
failure which has to be caught or thrown. One should 
also note that only the methods defined in the remote 
interface can be used with the remote objects. 
 
The Server Program 
 
The GUI is coupled to the server so the client (vehicle) 
does not have to worry about how the maneuvering is 
done - it can be manual or programmed. The GUI only 
interacts with the server which is on the same machine 
and hence the network is not clogged by just 
transferring data for Graphical interfacing. The only 
data which runs through the ``external'' network is the 
value of throttle and yaw (stored as integers) (and the 
camera image), which are read at a specific rate. The 
integer values of throttle and yaw are the ``private'' 
members of the object which is accessed by the client 
through the remote methods declared in the interface. 
 
As shown in Figure 6, the Graphical user interface 
provides two controls to the user : (1) throttle value 
which can range from -100 units (reverse) to 100 units, 
and (2) yaw value which ranges from -45 to 45 degrees. 
The user specifies the value by sliding the ``JSliders'' 
provided by the {javax.Graphics} class. The event 
handlers (mouse motion listeners) are embedded into 
the sliders which listen to any ``drag'' events from the 
mouse. Thus when the user drags the throttle slider, the 
event handler associated with throttle changes the value 
of throttle in the server object, and similarly with the 
yaw (steering) control.  An onboard camera image 
appears inside the GUI also when the vehicle is 
running. 
 
Another important thing the server has to do is to 
register itself in the ``rmiregistry''. The rmiregistry is 
like a directory of remote objects. It contains the 
addresses where the remote objects are located in the 
server. When a client has to fetch the server object (the 
remote object), it contacts the rmiregistry, looks up the 
address and fetches the object from that address. The 
server is registered with the name ``Server'' on the 
localhost (IP = 127.0.0.1). Once registered, a server can 
be accessed using the protocol: 
  ``rmi://machineIP/ServerName''.  

 

CLIENT SERVER

MyClient MyServer

Stub Skeleton

Object

Registry



 6 
American Institute of Aeronautics and Astronautics 

 

Figure 6.  Simple Graphical User Interface (GUI) for 
Vehicle Control 

 
The Client Program 
 
The client program requires two different 
communications: (1) with the server to get throttle and 
yaw values, and (2) with the hardware (servos). The 
server program needs to do two things: (1) establish 
contact with the client, and (2) get a remote reference to 
the remote object so that it can be accessed as a local 
object. The contact is established by contacting the 
rmiregistry running on the server and locating the 
remote object. This is done using the following.  
 
  Server server = 
   (Server)Naming.lookup("rmi://host/Server"); 
 
The above actually does both tasks at once. It contacts 
the server and also stores a reference to the remote 
object in ``server'' which is of the type ``Server'' 
(interface). Once we have a remote reference to the 
server object we can access its members which are 
``throttle'' and ``yaw'' using the methods declared in the 
remote interface. "getThrottle()" and "getYaw()" are 
used to achieve this. Now that we have the values of 
throttle and yaw available remotely, we can write them 
to the servos and thus have our vehicle running. This, 
however, is not a trivial task.  
 
We create an object of type "Servo" which provides 
two methods to write to the two servos associated with 
throttle and steering control. Then we pass the values of 
throttle and yaw to these methods and the methods 
write them to the respective servos. The process of 
accessing the control parameter values and writing 
them on the servos continues in an indefinite loop until 
the user shuts the connection or there is some error in 
connecting to the server. This constitutes a fully 
functional client-server program and a remote 
controlled mobile robot. 

 
To compile and run the programs you need to compile 
the client, server, and implementation programs using 
javac.  Then the stub and skeleton class files are created 
by running the implementation class file through rmic.  
The stub is actually a client side proxy for the remote 
object.  The skeleton is a server-side function that 
actually interacts with the remote object.  You also need 
to start the rmi registry on the server-side  (using  
“rmiregistry &” in Linux and “start rmiregistry” in MS 
Windows).  The final step is to run the server code on 
the server, and the client code on the client.  You may 
also have to start the webcam software. 
 
Serial Port Interface 
 
To control the servo motors we use the javax.comm 
library [Ref. 4] by passing messages to them through a 
serial port.  This library can also be used with a parallel 
port, and could be used for a wide variety of 
applications including printers, scanners, bar-code 
readers, etc.  The javax.comm library provides an 
event-style interface based on the Java event model.  
Figure 7 illustrates the various interface layers required. 
This portion of the project was tested by writing a 
sample program where the user inputs a servo position 
(in degrees), and the servo responds by rotating through 
the prescribed angle. A couple of methods were then 
added to this Java class which take the angle as a 
parameter and it was used to rotate the servos. These 
servos were then connected to the throttle and the 
steering control 
 
In between the servo motors and the serial port we use a 
Mini Serial Servo Controller (SSC II) [Ref. 5].  Figure 
8 shows a Mini SSC II, which can be connected to up to 
eight servo motors.  It connects to the serial port 
through a standard phone jack and is powered by a 9 
volt battery. 
 

 
Figure 7.  Javax.comm library interface layers 

 

Application using a

Serial/Parallel Device

Device Manager

Port Manager

Physical or Logical Device

Device
Interface

Device Service
Interface



 7 
American Institute of Aeronautics and Astronautics 

 

Figure 8. Mini SSC II  (Ref. 5) 
 
 
Here we describe some basic programming aspects 
regarding the javax.com library for serial/parallel port 
communication. 
 

CommPortIdentifier portId; 
 Enumeration portList; 
 SerialPort serialPort; 
 
The above three variables are essential to using the 
serial ports via the javax.com library. portId and 
portList provide the program with the list of existing 
ports to be used for serial or parallel communications. 
serialPort is an extension of the abstract class 
CommPort that contains all necessary attributes to 
communicate with serial or parallel devices. The 
process required to open a data stream with one serial 
port in the servoControl code is described below: 
 
portList=CommPortIdentifier.getPortIdentifiers(); 
 
while (portList.hasMoreElements()) { 
   portId=(CommPortIdentifier)portList.nextElement(); 
       if(portId.getPortType()==   
  CommPortIdentifier.PORT_SERIAL) { 
            if (portId.getName().equals("COM1")) { 
 try { serialPort = (SerialPort) 
                         portId.open("ServoControl", 2000); 
 } catch (PortInUseException e)  
 
In a typical java try/catch procedure, a list of available 
ports is returned to the program via the enumeration 
portList of possible ports. The next step is to associate 
an application ServoControl to a serial port. The 
targeted serial port has a type (PORT_SERIAL) and a 
name (COM1 on Windows, /dev/tty on Solaris).  This 
application name assigned during the opening phase of 
the port combined with the 2000 millisecond time-out 
allow several applications to use that same port. The 
synchronization process takes place by associating a 
synchronization byte to the port. 
 
The routine handling the yaw control of the truck is 
listed below (a similar function exists for the throttle 

control). The servo to which the port is connected has 
to be identified (here the servo motor responsible for 
the yaw angle of the truck) and the amount of yaw 
(messageToPort) is also output to the port as a byte 
value (from 0 to 256, corresponding to a ± 45º yaw 
angle). 
 
public static void writeToYawServo(byte     
 messageToPort, byte servoYaw_idvalue) { 
       try { outputStream.write(message_sync); 
 } catch (IOException e) {} 
       try { outputStream.write(servoYaw_idvalue); 
 } catch (IOException e) {} 
       try { outputStream.write(messageToPort); 
     } catch (IOException e) {} 
} 
 
Video Images 
 
The mobile robot also has a camera onboard so the 
remote user can see the view in front of the vehicle.  
For this we use a standard PC web camera.  It is 
possible to capture the images in Java on the client and 
then send the images to the server using Java, however 
currently we use a simpler approach.  We used a simple 
webcam package (e.g. Webcam2000) which continually 
grabs the image from the camera and saves it to disk.  
You could also install the Apache webserver [Ref. 7] on 
the onboard computer (on the robot).  The camera can 
store images at a frequency of about one per second. 
The image is stored in a public directory which can be 
accessed from remote machines using the HTTP 
protocol. On the server side, Java was used to 
continuously poll the client images. This requires 
creating a URL object (in a try-catch block), and then 
using 
 
  image =  
    Toolkit.getDefaultToolkit().createImage( url ); 
 
in MediaTracker.  The image can be drawn in the server 
GUI using the drawImage method.  This code was run 
in a separate thread in the server implementation code. 
Thus the images can appear on a server thousands of 
miles from the client (robot).   
 
The update speed of these images is fairly slow, so the 
above approach is only suitable for low-speed vehicles.  
We are currently working on incorporating more robust 
vision systems, including stereographics.  Stereo 
camera systems can be obtained from SRI [Ref. 8] and 
other vendors.  High resolution graphics requires fairly 
high bandwidth networking or robust compression 
algorithms.  A video that runs at 30 frames/second at 
1024x768 resolution and 24-bit color would require 
roughly 566 Mbits/second without compression. This is 



 8 
American Institute of Aeronautics and Astronautics 

 

higher than the peak speed of Fast Ethernet, and might 
be more than is possible using gigabit ethernet. The 
peak speed of wireless Ethernet is only 11 or 55 
Mbits/second, for IEEE 802.11b and 802.11a, 
respectively. So an 802.11b network can only sustain, 
at most, about 8 frames/second at 320x240 resolution 
and 8-bit color. 
 
Future Hardware Platforms 
 
While Java is not perfect and has been somewhat 
oversold, it has a very natural place in the embedded 
systems market.  It may soon be in the “plateau of 
productivity” regime, and serve a very important role. 
We believe the pace of Java acceptance will accelerate 
due to the recent release of several new Java processors.  
Many of these run Java code in native mode without the 
need for an operating system.   Table 1 shows several 
different embedded processors that are now available.  
To use many of these you would also need a 
development kit or board, which typically costs a few 
hundred dollars. Website addresses are given, in case 
the reader would like more information.  The 
processors cover a wide range of performance, price, 
and power consumption ranges.  All can run Java, but 
some (such as the OOpic) seem to stray fairly far from 
the standard.  The table shows nominal power 
consumption for each one also, but this would vary 
dramatically depending on what other devices are 
connected to the processors (especially an RF 
antennae).  The power consumption is a very important 
item for some applications such as micro air vehicles, 
since battery weight often dominates those designs. 
 
The Javelin Stamp is very interesting, but it runs a 
subset of Java. So it would be difficult to port some 
existing Java code to it.  The main limitations of the 
Javelin Stamp environment are [20]: 
 

• Single Thread 
• No Garbage Collection 
• Subset of Primative Data Types 
• Subset of Java Libraries 
• Strings are ASCII 
• No Interfaces 
• One Dimensional Arrays 

 
Even though the user cannot implement threads, the 
Javelin does have several Virtual Peripherals that do 
run as separate threads, and these are very useful.  
Some of these are: pulse width modulation (PWM), 
analog to digital (ADC), digital to analog (DAC), and 
serial port interfaces (UART).  You can use up to six of 
these.    The absence of garbage collection is probably a 
good thing for embedded systems.  The primitive data 
type limitations are important to mention.  Variables 
declared  as   int  are  16  bits,  so  they  can  vary  from 
-32,768 to 32,767.  Also, there are no floating point 
variables, which will make it difficult to implement 
some algorithms onboard.    
 
While some of the Java processor boards include 
Ethernet (e.g. TINI), the others do not.  And none of 
them currently include wireless Ethernet.  There are, 
however, RF devices available.  For example, there are 
transceivers from RF Digital that cost less than $100. 
 
One of the authors (Long) has programmed a small 
three-wheeled robot using the Javelin Stamp, which is 
shown in Figure 9.  It was fairly straight-forward to 
program robot motion and object avoidance with 
infrared emitters and detectors.  In the past we have 
programmed these using BASIC, and the ability to 
program in Java makes an enormous difference. The 
code is much more capable and maintainable.  These 
small embedded processors are excellent candidates for 
Java. 

Table 1.   Summary of some Java-capable processors. 
 

Processor Manufacturer 
(website) 

Speed 
 

Memory 
 

Size 
(cm x cm) 

Ether-
net 

Power 
(mA) 

Java Cost 
($) 

OOPic Savage Innovations 
(www.oopic.com) 

2 KIPS 0.2 KB 9 x 5 No 10 Yes 49 

Javelin 
Stamp 

Parallax 
(www.parallaxinc.com/) 

8 KIPS 64 KB 3 x 1.5 No 50 Yes 89 

JStamp Systronix 
( www.jstamp.com ) 
( www.ajile.com )  

3 M 
Byte 

codes/sec. 

2.5 MB 5 x 2.5 No 80 Yes 149 

TINI 
Board 

Dallas Semiconductor 
www.ibutton.com/TINI/) 

40 MHz 1 MB  10 x 3 Yes 250 Yes 67 

PC-104 JumpTec 
( www.adastra.com ) 

266 MHz 128 MB 10 x 10  Yes 1400 Yes 800 



 

 
 
Figure 9.  Three-wheeled mobile robot with Javelin 
Stamp processor and infrared sensors. 
 
 
Conclusions 
 
We have created a fairly functional remote controlled 
vehicle. The remote control can be done from anywhere 
in the world using a computer on the internet. The 
remote control is wireless due to the wireless ethernet 
card in the vehicle. Some very basic controls are 
currently provided to the user, as this is just an example 
to show how client-server programming can be used 
with embedded devices to achieve control of vehicles. 
Java is shown to be a very useful language for this 
application due to its ability to do client-server 
programming, GUI's, graphics, object oriented 
programming, and multiple threads. 
 
With the rapid advances being made in embedded 
processors and compilers, we will see many more 
devices using Java. 
 
References 
 
1. http://www.java.sun.com/ 
2. Horstmann, C. and Cornell, G., "Core Java," Sun, 

1999. 
3. https://www.zagrosrobotics.com/ 
4. http://java.sun.com/products/javacomm/ 

javadocs/Package-javax.comm.html 
5. http://www.seetron.com/ssc.htm/ 
6. http://java.sun.com/products/jdk/rmi/ 
7. http://www.apache.org/ 
8. http://www.ai.sri.com/~konolige/svs/ 
9. http://www.fltk.org/ 
10. http://www.opengl.org/ 
11. Modi, L. Long, N. Sezer-Uzol, and P. Plassmann, 

"Scalable Computational Steering System for 
Vizualization of Large-Scale CFD Simulations," 

AIAA Fluids Conference, AIAA paper 2002-2750, 
St. Louis, 2002  

12. Modi, L. Long, and P. Plassmann, "Real-Time 
Visualization of Wake-Vortex Simulations using 
Computational Steering and Beowulf Clusters," 
Parallel Computing Conference, Portugal, 2002 

13. Modi, A. “Real-Time Visualization of Aerospace 
Simulations using Computational Steering and 
Beowulf Clusters,” Ph.D. Dissertation, Penn State 
Univ., Aug., 2002. 

14. http://posse.sourceforge.net/ 
15. http://www4.gartner.com/ 
16. Genovesi, D. and Long, Lyle N., “An Object 

Oriented Approach to the Direct Simulation Monte 
Carlo Method,” Java Grande, Nov., 2002. 

17. Genovesi, D., “An Object Oriented Approach to 
the Direct Simulation Monte Carlo Method,” M.S. 
Thesis, Penn State Univ., May, 2002. 

18. http://www.javagrande.org/ 
19. http://www.rtj.org/ 
20. http://www.javelinstamp.com/docs/manual/ 

Javelin_Stamp_Manual_v1.0a.pdf 


