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The viability of using the Direct Simulation Monte Carlo (DSMC) approach to study
the blast-impact problem is assessed. An uncoupled analysis of the problem is performed
where the solid body is not allowed to move or deform. The numerical simulations are
designed to mimic the actual shock-tube experiments. Our code is validated against the
shock-tube (Riemann) problem. A novel approach to model the inflow boundary condition
is presented which can be used with both particle and continuum methods. A generic
implementation of the solid boundary condition for particle methods is described which
can easily and efficiently handle arbitrary-shaped bodies. This approach is demonstrated
by computing load definition for two model geometries - a box and an ‘I’ shaped beam.

Introduction

TRAGIC mishaps such as the attacks on the World
Trade Center and the USS Cole have necessitated

the design and construction of blast-resistant struc-
tures that can be used to protect critical buildings.
This is an extremely challenging task since it is so
difficult to estimate the magnitude of the blast, and
the location (inside/outside a building) of the explo-
sive. Since we cannot estimate the “threat” we are
fighting against, we have to design our structures for
“performance”, the performance defined as the abil-
ity to withstand unexpected forces. A preliminary
requirement in the design of such blast-resistant struc-
tures is to have a time history of the pressure on the
body which is subjected to a blast-impact. This is
called load definition. This study is aimed at obtain-
ing accurate load definition on the body in a reasonable
amount of time.

After an explosion, a blast (shock) wave is formed
which travels outward in three dimensions. The in-
tensity of the wave continuously decreases with the
distance from the explosion center. A typical pressure
history from an explosion at a point some distance off
the explosion center is shown in Fig. 1

Bleakney et.al.2 were the first to experimentally in-
vestigate the loading on structures due to impact from
a shock wave. Although the pressure falls steadily be-
hind the shock front, the rate of decay is so slow that
the first few hundred feet of the wave can be considered
flat topped.1 Hence, the initial loading on the struc-
tures may be studied using shock-tube experiments
(c.f. ref.2). Bleakney et.al.2 conducted a variety of
shock-tube experiments to provide a large amount of
basic data on blast-loading for future analyses by oth-
ers. However, unfortunately, no significant follow-up
investigation of this problem has been published.
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Fig. 1 Pressure/distance variation a few seconds
after the explosion of a hydrogen bomb.1

Although shock-tube experiments are not too ex-
pensive to perform, scientists are now becoming more
and more inclined towards doing numerical experi-
ments. A numerical experiment is a simulation of
the actual experiment using a computer. This inclina-
tion is partly because of the rapid growth in computer
speed and partly because of the ease in performing
these numerical experiments. In fact, the computer
simulations in most cases are cheaper than the ac-
tual experiments. The authors are motivated by the
same reasons to use a computer as a tool to solve
the blast-impact problem. The solution to this prob-
lem requires a coupling between fluid dynamics and
structural dynamics. In this paper, we neglect the
coupling and assume that the solid body does not de-
form or move because of the impact. Hence, we are
solving a simplified problem which lies completely in
the fluid dynamics domain. Our ultimate goal, how-
ever, is to develop a simulation approach that includes
deformable structures.

A hierarchy of mathematical models are available
to solve fluid dynamics problems. These models have
varying degrees of approximation and can be broadly
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classified into two groups - 1) continuum methods
which treat the fluid as a continuous medium and, 2)
particle methods which treat the fluid as made up of
particles. Although the continuum approach is pop-
ular for many engineering problems, it has a limited
range of applicability. The continuum approximation
fails for rarefied gas flows, and flows in nanodevices.
On the other hand, particle methods do not make the
continuum approximation, are more intuitive, easy to
apply, and can give approximate results (with statisti-
cal scatter) much faster that the continuum methods.

The different particle methods in use are the molec-
ular dynamics model, Monte Carlo methods and the
direct solution of Boltzmann equation.3 The most fun-
damental is the ‘molecular dynamics’ model. Here
the particles are moved according to the Newton’s law
(F = ma). It can even account for quantum mechan-
ical effects. However, it is extremely computationally
intensive and is not extensively used for engineering
problems.

Both Monte Carlo approaches and the Boltzmann
equation are derived from the Lioville equation. The
continuum equations (e.g. Navier-Stokes) can be de-
rived from the Boltzmann equation if one assumes the
Knudsen number is small. The term “Monte Carlo”
was adopted by von Neumann for methods involving
statistical techniques, such as the use of random num-
bers, to find the solutions to mathematical or physi-
cal problems. The first documented application of a
Monte Carlo method appears in a paper by G. Comte
de Buffon in 1777. He described an experiment in
which a needle of length L is thrown randomly onto
a floor ruled with parallel straight lines a distance D
apart. He then estimated the probability that the nee-
dle would intersect a line, by throwing the needle many
times and calculating the ratio of the number of throws
intersecting a line to the total number of throws. This
is referred to as “Buffon’s Needle Experiment”. Later,
Laplace suggested that the same idea could be used to
evaluate π from the throws of the needle. Lord Kelvin4

used the Monte Carlo method in 1901 to perform time
integrals which appeared in his kinetic theory of gases.
However, It was only in 1940s that the Monte Carlo
methods were developed enough to be used for solving
engineering problems.

The Direct Simulation Monte Carlo (DSMC)
method has gained a lot of popularity since it was de-
veloped by Bird.5,6 DSMC has been successfully used
for hypersonic flows5,7, 8 where the continuum approxi-
mation breaks down and the traditional Navier-Stokes
equations are not valid. In fact, DSMC has become
de facto the principal tool to investigate such flows.
DSMC is also very useful for modeling flows involving
chemical reactions.9,10 The DSMC approach is well
suited for our problem because of the ease of modeling
the solid body. An arbitrary shaped body can be han-
dled with the same ease as a regular shaped object. A

complicated geometry is extremely difficult to incor-
porate in conventional computational fluid dynamics
(CFD) methods. A new approach by Morris et.al.11

of representing the solid body by a dense fluid may
be used to model arbitrary shaped bodies, but this
is still under development. Also, Long12 developed a
technique for handling very complex bodies in CFD.

In this paper we explore using DSMC to model
the blast-impact problem. We developed a Fortran
90 code to solve this problem. Our code is validated
against the shock-tube (Riemann) problem. The solid
boundary condition is applied in a numerically efficient
manner. A novel approach to model the inflow bound-
ary condition is presented which significantly reduces
the computation cost. We present the impact study
on two two-dimensional solid bodies - a cube and an
I-beam for different shock strengths. For the present
study, these bodies are not deformed or moved by the
shock impact. A deformation in the body relieves the
pressure on it, hence we are overestimating the load
on the body. Although it is unphysical, it is a good
first-hand approximation and it allows for a safer de-
sign.

DSMC

The Monte Carlo methods can be used not only for
naturally stochastic problems, but also for determin-
istic problems. The DSMC approach is partly prob-
abilistic and partly deterministic. It is derived from
the kinetic theory of gases and it employs the basics
of Monte Carlo methods.

The Knudsen number for a flow is defined as the
ratio of the mean free path of the gas to the length
scale in the problem.

Kn = λ/L (1)

Local length scales may be used in problems where the
Knudsen number may change across the domain, for
example, L = ρ/ |∇ρ|. Inviscid flows have Kn = 0.
For Kn > 0.1 the approximation for the shear and
heat fluxes breaks down and the governing equations
do not form a closed set. Hence the Navier-Stokes
equations are only valid for very small Knudsen num-
bers. The DSMC method works for the whole range of
Kn provided the fluid is dilute. However, for low Kn,
DSMC can be very computationally expensive. Here
we present an approach to make it efficient at low Kn.
This is not the first attempt to apply DSMC for low
Kn flows. DSMC has been shown to work in the near
continuum regime by Merkle et. al.13

DSMC uses a representative set of particles which
are concurrently followed through representative colli-
sions and boundary interactions in simulated physical
space. Each simulated particle may represent mil-
lions of actual gas molecules. The simulated space
is divided into a number of cells (grid) to calculate
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the macroscopic quantities. The macroscopic quanti-
ties are obtained by sampling the molecular (particle)
properties over the particles in each cell. The impor-
tant assumption in the DSMC procedure is that the
molecular motion and the intermolecular collisions are
uncoupled over the time step. This limits the size of
the time step to be of the order of the mean collision
time, and the cell size to be of the order of the mean
free path. This is, however, a very stringent limit and
can be relaxed at a very minimal cost when dealing
with continuum flows. Since the boundary layer on
the body and the structure of the shock have no sig-
nificant effect on the load definition, we can ignore
these for our computations. Hence, we essentially per-
form Euler calculations using DSMC with a time step
orders of magnitude larger than the mean collision
time. According to the kinetic theory, a large num-
ber of intermolecular collisions should be performed
when the time step is chosen to be very large. This
is what makes DSMC computationally expensive for
continuum flows. However, for our case, we restrict
the number of collisions to a number which is suffi-
cient to bring the flow to thermal equilibrium. Any
additional collisions do not improve the accuracy of
the computations. The only region which may get
adversely affected by this limit on the number of col-
lision is the shock-wave region, but again, we are not
interested in the details of the shock structure. This
approach works extremely well as is shown in the fol-
lowing section.

Code Validation

We validate our code against the shock-tube (Rie-
mann) problem. The shock-tube is initially divided
into two chambers separated by a diaphragm. One
chamber contains a hot gas at high pressure and den-
sity and the other contains a cold gas at low pressure
and density. The gases in the two chambers may be
different but in our simulations they are the same. The
diaphragm is then burst and the hot gas (driver) is
allowed to expand into the cold (driven) section. A
shock wave and an expansion wave are formed which
travel in opposite directions. The shock wave moves at
supersonic speed into the driven section and the expan-
sion wave travels into the driver section. Although the
expansion wave travels into the driver section, the mo-
tion of the gas is always in the direction of the shock
wave. A schematic of the shock-tube problem with
the pressure distribution both before and after the di-
aphragm is burst is sketched in Fig. 2. There are four
distinct regions marked ‘1’,‘2’,‘3’ and ‘4’ in Fig. 2.
Region ‘1’ is the cold gas which is undisturbed by the
shock wave. Region ‘2’ contains the gas immediately
behind the shock traveling at a constant speed. The
‘contact surface’ across which the density and temper-
ature are discontinuous lies in this region. The region
between the head and the tail of the expansion fan is
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Fig. 2 A schematic of a shock-tube experiment;
the pressure distribution at t = 0 and some time
after the diaphragm is burst.

mark region ‘3’. In ‘3’ the flow properties change grad-
ually since the expansion process is isentropic. Region
‘4’ denotes the undisturbed hot gas. The interested
reader may refer to the monologue on shock tubes by
Wright1 for further reading.

The analytical solution to the Riemann problem is
available (c.f. ref.14). We assume that the ratio of the
specific heat constants of the gas, γ does not change
with temperature (which is valid for the low temper-
ature range). Our simplified equations (Eqs. 2) in
region ‘2’ are obtained using the normal shock rela-
tions.

p4

p1
=

p2

p1

{

1 −
(γ − 1)(a1/a4)(p2/p1 − 1)

√

2γ [2γ + (γ + 1)(p2/p1 − 1)]

}

−2γ

γ−1

u2 =
a1

γ

(

p2

p1
− 1

) (

(2γ/(γ + 1)

p2/p1 + (γ − 1)/(γ + 1)

)1/2

T2

T1
=

p2

p1

(

(γ + 1)/(γ − 1) + p2/p1

1 + (p2/p1)(γ + 1)/(γ − 1)

)

p2 = ρRT2 (2)

The velocity of the gas in region ‘2’ is constant
throughout and is equal to u2. The method of charac-
teristics yields the solution in region ‘3’ (−a4 ≤ x/t ≤
u3 − a3).

u3 =
2

γ + 1

(

a4 +
x

t

)

p3

p4
=

[

1 −
γ − 1

2
(u3/a4)

]2/(γ−1)

p3

p4
= (ρ3/ρ4)

γ = (T3/T4)
γ/γ−1 (3)

We used the same setup as in an experiment for our
numerical calculations. The flow properties are aver-
aged in the ‘y’ direction as this is a one dimensional
problem. A sample comparison is provided in Fig. 3
for the following set of values in SI units:

ρ1 = 1.226; ρ4 = 4.226; T1 = 300; T4 = 900
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Fig. 3 Code validation against the shock-tube
problem at t=3.6 ms. (a) density, (b) velocity, and
(c) pressure

The DSMC calculations capture the sharp gradients
and give an excellent overall match with the analytical
solution. The DSMC results show a slight smoothing
at the contact surface (refer Fig. 3 (a)) but it is not
of critical importance for the problem of interest.

Inflow Boundary Condition in DSMC

In the simulation of a shock tube we do additional
work to compute the expansion wave. Since we need to
study the impact only with the shock wave, the compu-
tation of the expansion wave is unnecessary and should
be avoided. One way to achieve this is by applying an
appropriate inflow boundary condition. A good choice
of the boundary condition is to use the properties in

region ‘2’. These properties do not change with time
for an infinitely long tube. Thus we have a time inde-
pendent inflow boundary condition that can simulate
the shock wave of the shock-tube without worrying
about the expansion wave. This boundary condition
can be used with conventional CFD schemes as well as
with particle methods such as DSMC.

The treatment of the inflow boundary condition in
DSMC is different than in the CFD schemes. This is
because the boundary condition is known in terms of
flow variables whereas we need the number, position
and velocity of the entering particles. The number flux
of the particles, Ṅi can be obtained by integrating the
equilibrium distribution function over the entire range
of velocity.7

Ṅi =
nβ3

π3/2

∫

∞

∞

∫

∞

∞

∫

∞

−c0cosθ

(u′ + c0cosθ)

× exp{−β2(u′2 + v′2 + w′2)}du′dv′dw′ (4)

Using standard integrals and realizing that θ = 0 for
the inflow boundary in our case, Eq. 4 can be reduced
to

Ṅi =
n

2π1/2β

[

exp(−s2) + π1/2s{1 + erf(s)}
]

(5)

where s = c0β = c0/c
′

m is the molecular speed ratio.
The velocities of the entering particles are given by

a Maxwellian distribution about the inflow velocity.
The velocity of the particles should be such that in
the next time step they move into the domain. The
entering particles are uniformly distributed on the in-
flow boundary and moved in by a distance equal to
its velocity times the time step. The particles which
move out of the domain through the inflow boundary
are ignored.

This approach gives excellent results and a compar-
ison with the analytical solution for the shock-tube
problem is provided in Fig. 4. We use inflow bound-
ary condition on the left ‘x’ boundary, wall boundary
condition on the right ‘x’ boundary and in ‘y’ direc-
tion and periodic boundary condition in ‘z’ direction.
It should be noted that the inflow boundary cannot
be placed arbitrarily close to the body as the reflected
shock will change the conditions on the boundary.

Solid Boundary Condition in DSMC

The ultimate goal of a blast-impact simulation is
to couple the shock-wave simulation with a structural
dynamics model. This would allow the deformation of
the solid body in real time as the stress on the body
exceeds the yield stress. Although we do not allow de-
formation of the solid body in the present simulations,
a very general approach to model the solid boundary
is developed. This will allow us to use the same code
with little change when the body is simultaneously de-
formed.
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Fig. 4 Verification of the inflow boundary condi-
tion. Comparison with the analytical solution of
the shock-tube problem at t=3.6 ms. (a) density,
(b) velocity, and (c) pressure

We implement the inviscid boundary condition in
our DSMC calculation by imposing specular reflection
of the molecules when they hit a solid surface. The
solid surfaces are made of triangular patches to incor-
porate arbitrary-shaped bodies. The patches may be
arbitrarily oriented in 3-dimensions and the molecules
are also moving in a 3-dimensional space. We need
to find the post-collision position and velocity of the
molecules reflected off the solid surface. The probabil-
ity of a collision of a molecule with a given triangle
is very small and therefore it is imperative to de-
vise a computationally efficient algorithm to reject the
molecules which do not collide with the triangle.

A quick way to eliminate the molecules which will
definitely not collide with the solid body is by check-
ing if the molecule crosses into a box bounding the
solid body. It is much cheaper to check the intersec-
tion with a bounding box (a cuboid) than an arbitrary
solid body since it only requires six logical statements
in a subroutine to compare the three Cartesian coor-
dinates (position) with the dimensions of the box. An
easy way to implement this is by using the Sutherland
line clipping algorithm in three dimensions. This al-
gorithm is pretty widely used in polygon clipping in
computer graphics applications.

The Sutherland clipping algorithm15 is widely used
in computer graphics applications to clip polygons vis-
ible in a canvas. The idea is to have an efficient way
to ignore the line segments that lie completely outside
the canvas. If we extend the canvas to 3 dimensions,
we get a box and instead of 2-D line segments we can
deal with 3D line segments. Correlating line segments
with the motion of molecules in one time step, and the
3D box with a box bounding our solid object, we can
directly use the Sutherland algorithm for our problem.

Figure 5 illustrates the Sutherland algorithm in 2D.
The 2D space is divided by the square (canvas) into
4 regions with respect to the canvas - LEFT, TOP,
RIGHT and BOTTOM. Each point in the 2D space
can now be located by using a binary representation in
four bits one each for LEFT, TOP, RIGHT and BOT-
TOM. The appropriate bits are turned on depending
on the location of the point (i.e. if the point is to the
left and top of the square then the LEFT and TOP
bits are 1 and the rest are 0). It is intuitive that if we
get a nonzero value when we perform an “AND” op-
eration on the binary representation of the end points
of a line segment, the segment will never intersect the
canvas.

c

c

c

LTRB

L − left
T − top
R − right
B − bottom

00001000

1100 0100 0110

0010

00110001
1001

LEFT

TOP

RIGHT

BOTTOM

Fig. 5 Sutherland line clipping algorithm for a 2-D
case. The lines marked with c© should be clipped.

This concept is easily extended to 3 dimensions by
adding two more bits - OUT and IN for the third di-
mension. Figure 6 illustrates the point. The “AND”
operation is now performed over the 6-bit binary rep-
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resentation but there is no increase in cost for this
check. The cost increase is only in identifying the (bi-
nary) location of the particle in the 3D space.

L − left
T− top
R−right
B−bottom

O − out
I  − in

B=1

R=1

O=1

T=1

L=1

I=1

O  I  L  T  R  B

Fig. 6 Sutherland line clipping algorithm ex-
tended to 3 dimensions.

Once we are through the bounding box test and the
line segment is found to intersect the bounding box,
we do further tests to eliminate the molecules which
may not intersect the solid body. If there is no colli-
sion (with the solid body), the molecule would go from
position A to position B in the time interval ∆t (refer
Fig. 7). We use a parametric representation of the
line segment AB.

X = XA + Vt (6)

where V = XB − XA is the fictitious velocity of the
molecule such that the molecule will reach B from A
in t = 1 unit. For finite AB, t can range only between
0 and 1.

1

2

3

A

B
′

XC

XI

Bn̂

Fig. 7 A schematic of a molecule reflecting off a
solid triangular surface.

The equation of an infinite plane formed by the three
points X1,X2 and X3 is

(X − X1).n̂ = 0 (7)

where, X is the vector defining the plane and n̂ is a
unit normal to the plane calculated using Eq. 8.

n̂ =
(X1 − X2) × (X3 − X2)

|(X1 − X2) × (X3 − X2)|
(8)

Note that the normal to the plane need not be calcu-
lated at every time step. It may be calculated during
the first iteration and stored for the rest of the simula-
tion. The intersection point, XI of the segment with
the infinite plane can be obtained by simultaneously
solving Eqs. 9 and 10 for t∗ and XI .

(XI − X1).n̂ = 0 (9)

XI = XA + Vt∗ (10)

The solution of the above equations is

t∗ =
(XA − X1).n̂

V.n̂
(11)

and XI may be obtained from Eq. 10 using t∗ from
Eq. 11. The finite segment, AB intersects the infinite
plane only if 0 ≤ t∗ ≤ 1 The equality on either side
meaning that XI is the same as XA or XB . If t∗ does
not satisfy the above condition, then we can say that
the molecule will not hit the triangle. If, however, t∗

satisfies the above condition then we need to find out
if XI lies inside the triangle.

A quick elimination of a number of molecules not in-
tersecting the triangle may be performed by checking
if XI lies outside a circle enclosing the triangle. An
obvious choice for this is the circumcircle, but we do
not choose the circumcircle because it is computation-
ally involving to obtain the center of a circumcircle in
three dimensions. We choose a circle with a radius, r
= 2/3× the largest edge of the triangle, and its center
at the centroid. This circle will completely enclose the
triangle but will not exactly circumscribe it. The rea-
soning behind this is - the vertex of a triangle farthest
from its centroid is at a distance of 2/3× the maxi-
mum of the three medians. Since the largest edge of a
triangle is always greater than the largest median, the
circle with radius r and center at the centroid of the
triangle will completely enclose the triangle.

We calculate the centroid of the triangle and the
radius of the enclosing circle described above during
the first iteration. All XIs with |XI −XC | > r will hit
the infinite plane outside the circle and hence outside
the triangle. Here, XC is the centroid of the triangle.

If XI lies inside the circle then there is no shortcut
to figure out if it is inside the triangle or outside. Since
the vertices of all the triangles are stored in a specific
order (cyclic or anti-cyclic), the angles subtended by
each edge (viz.. 1-2, 2-3 and 3-1) of the triangle at the
point XI will all be either positive or negative if XI lies
inside the triangle. If it lies outside the triangle then
there will be a change of sign. Figure 8 illustrates the
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Fig. 8 An illustration showing that the angle sub-
tended by all the edges have the same sign if XI

is inside the triangle but they change sign if XI

is outside. The angle subtended is positive if it is
clockwise (represented by ‘c’), and negative if it is
anti-clockwise (represented by ‘ac’).

above point. In fact, the sum of the subtended angles
is equal to zero if XI is outside the triangle, but we
don’t want to do an extra summation.

The change in the sign of the subtended angles can
be perceived by looking at the directions of the cross
products - p×q, q×r and r×p, where p = X1−XI ,
q = X2 −XI and r = X3 −XI . If all of them point in
one direction then XI lies inside the triangle otherwise
it lies outside the triangle. If two vectors point in the
same direction their dot product is positive; if they
point in opposite directions then their dot product is
negative. Note that p × q, q × r and r × p are either
parallel or anti-parallel depending on whether XI lies
inside or outside the triangle since p, q and r are co-
planar. We check the dot products (p×q).(q×r) and
(q × r).(r × p); if both are positive then we conclude
that XI lies inside the triangle otherwise it lies outside
the triangle.

If a molecule hits the solid surface then it is bounced
off the surface specularly just like a light ray reflects
off a mirror. This is fairly easy to implement if we
write the velocity vector as a sum of the normal ve-
locity (normal to the plane) and tangential velocity.
The tangential direction is given by Vt = V − Vn.
For the reflected velocity, we just change the sign of
the normal velocity while the tangential component re-
mains unchanged. Hence, reflected velocity is Vt−Vn.
The final position is calculated by moving the parti-

cle with the reflected velocity for the remaining time
taking into consideration that there might be further
collisions if the solid body is concave.

Model Test Cases

Two model shapes were tested for blast impact us-
ing our DSMC code. These are a box and an ‘I’
shaped beam (I-beam). The I-beam was chosen be-
cause it is a concave geometry which is challenging to
model. A Cartesian grid is used to divide the rectan-
gular domain. The particles are distributed randomly
across the domain and their velocities are given by a
Maxwellian distribution at the start of each run. All
the particles inside the solid body (closed surface) are
removed. This is done to avoid any information ex-
change into the solid body because of intermolecular
collision. The solid and inflow boundary conditions are
applied as explained in the previous sections. The fol-
lowing set of initial conditions (in SI units) were used
for the cases presented here.

ρ1 = 1.226 ; T1 = 300 ; ρ4 = 1.226 ; T4 = 600

The shock wave generated has a Mach number of 1.18
and the temperature and pressure behind the wave are
351.9oK and 156561.9 N/m2. The density behind the
shock falls to 1.0246 kg/m3 for the chosen conditions.
This is a relatively mild shock wave which is chosen
purely for demonstration purpose.

The net force on the bodies is calculated by sum-
ming up the force due to each molecule which is ob-
tained using first principles - the rate of change of the
momentum of the particle. The loading on the box
and the I-beam are shown in Figs. 9 and 10 respec-
tively. A sharp jump in the force can be observed in
the case of the box which corresponds to the shock
wave hitting the front face. The points marked ‘1’ and
‘2’ in Fig. 10 correspond to the times when the shock
wave hits the flanges and the main spar respectively of
the I-beam. The pressure contour plots at these times
are shown in Figs. 12 and 13.
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Fig. 9 Time history of the loading on the Box.
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Fig. 10 Time history of the loading on the Ibeam.
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Fig. 11 Pressure plot when the shock wave hits
the box.
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Fig. 12 Pressure plot when the shock wave hits
the flanges of the I-beam; marked ‘1’ in Fig. 10
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Fig. 13 Pressure plot when the shock wave hits
the middle of the Ibeam; marked ‘2’ in Fig. 10

Conclusions

The DSMC approach has been used for an uncou-
pled analysis of the blast-impact problem. DSMC is
applied in an efficient way in the continuum regime by
limiting the number of collisions per time step. Our
DSMC code is validated against the shock-tube prob-
lem. A new inflow boundary condition is developed
which can simulate the shock wave without the corre-
sponding expansion wave. This reduces the size of the
computational domain and hence the cost associated
with it. The solid boundary condition is implemented
on a molecular basis in a very generic fashion. This
boundary condition can easily and efficiently handle
arbitrary-shaped geometries. The load definitions on
two model geometric shapes are presented for a chosen
set of conditions. DSMC has been shown to be capable
of simulating the load-definition problem. We intend
to do the coupled analysis in future where the solid
body deformation shall be modeled by a finite element
analysis.
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