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Abstract 

Under startup conditions, supersonic combustors must atomize and ignite liquid fuel at hypersonic speeds. Little is 
known about fluid atomization in a supersonic cross flow experimentally and few methods exist to investigate the 
behavior numerically. In order to simulate this behavior an approach must be used that naturally accounts for the 
multiscale nature of the atomization process. In this work, a five equation interface-capturing scheme is developed 
to solve the compressible multi-component Navier-Stokes equations. The gas phase is modeled as an ideal gas and 
the liquid phase is modeled using a stiffened-gas equation of state. In order to account for the truly multiscale nature 
of this fluid behavior, the governing equations are solved using the highly efficient Parallel Adaptive Wavelet-
Collocation Method (PAWCM). The PAWCM uses wavelets to dynamically adapt the grid used to represent the 
solution, which minimizes the overall computational cost and allows larger simulations to be performed. Shocks and 
interfaces are captured using a modified version of the hyperbolic solver developed specifically for the PAWCM. 
Surface tension is modeled using a continuous surface approach. One and two-dimensional simulations are used to 
demonstrate the method’s capabilities. 
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Introduction  
The reliable atomization and ignition of liquid fuel 

injected into supersonic combustors is a significant lim-
itation in SCRamjet development. Little is known about 
primary and secondary breakup processes in supersonic 
crossflows. A large body of literature exists that de-
scribes the breakup behavior of liquid droplets (second-
ary atomization) after being impacted by a shock wave 
to induce a strong shear[1]. However, most of the work 
uses shock waves that still induce subsonic post-shock 
velocities. 

In shock tube experiments a droplet is impacted by 
a shock wave that passes over the droplet and causes 
minimal deformation during this interaction. The ad-
vantage of this approach is that a drop can be subjected 
to a step change in ambient flow that is nearly uniform 
over its surface[2]–[13]. An unequal pressure distribu-
tion forms around the droplet after the shock passes and 
deforms the initially spherical droplet. Interfacial ten-
sion and viscous forces resist this deformation and it is 
the competition between these resistive and pressure 
forces that determines the evolution of the droplet. Typ-
ical breakup modes include vibrational, bag, multi-
mode, sheet-thinning, and catastrophic. 

The use of direct numerical simulations has be-
come more common in the last two decades to investi-
gate droplet breakup and atomization behavior. Zaleski 
et al.[14] performed 2D water column simulations of 
the Navier-Stokes equations with constant density and 
viscosity. Igra and Takayama[15] showed experimen-
tally that breakup behavior is similar between a 2D wa-
ter column and a spherical droplet. Han and Tryggva-
son [16], [17] solved the axi-symmetric Navier-Stokes 
equations in order to simulate a spherical droplet frag-
mentation with a density ratio of 10. Transitional 𝑊𝑒 
numbers did not match experiments and it is thought 
that this may be because most experiments are conduct-
ed at much higher density ratios. Aalburg et al.[18] 
(expanded upon this work to simulate drop deformation 
at higher density ratios but did not have sufficient reso-
lution to simulate breakup. 

Quan and Schmidt[19] developed a 3D code with 
compressibility effects in ambient gas. Chang and 
Liou[20] developed a stratified flow model that can 
simulate the interaction of a shock wave with a liquid 
drop. Initial results indicate good agreement with exper-
imental results of Theofanous et al.[13] at high Mach 
numbers. Khare et al.[21] used a volume of fluid meth-
od to perform full 3-D simulations using the incom-
pressible multi-fluid Navier-Stokes equations and re-
produced the transitional Weber numbers reasonably 
well.  

Most of the studies on secondary atomization focus 
on the breakup of a spherical droplet from a shock wave 
(experimental) or impulsively started flow (numerical). 
While most of the numerical simulations of interfacial 

flows have been incompressible, there have been only a 
few studies[22]–[24] done in compressible flows. Other 
approaches neglect surface tension and analyze shock 
wave interactions with either bubbles[25]–[27] or the 
early stages of droplet deformation[28]. 

The breakup of droplets is a truly multiscale behav-
ior and requires a multiscale approach. The Parallel 
Adaptive Wavelet-Collocation Method[29]–[31] is an 
intrinsically multiscale numerical approach that uses 
wavelets to determine which points are necessary to 
represent a solution within some a priori prescribed 
accuracy. In this work, a compressible multiphase inter-
facial flow methodology is developed within the 
PAWCM framework. 

The paper is organized as follows. First the govern-
ing equations used to model the multiphase flow are 
described in detail. Second, the numerical method used 
to implement the system equations are described. Then 
some results demonstrating the method’s capabilities 
are presented, followed by conclusions. 
 
Multi-fluid compressible flow model  

Multi-fluid/multi-component simulations are mod-
eled using the quasi-conservative, volume fraction ap-
proach Navier-Stokes equations, 

 
𝜕 𝜌!𝛼!
𝜕𝑡

+ ∇ ∙ 𝜌!𝛼!𝒖 = 0 

𝜕 𝜌!𝛼!
𝜕𝑡

+ ∇ ∙ 𝜌!𝛼!𝒖 = 0 

𝜕 𝜌𝒖
𝜕𝑡

+ ∇ ∙ 𝜌𝒖𝒖 + 𝑝𝑰 − 𝑻 = 𝒇 

𝜕𝜌𝑒!
𝜕𝑡

+ ∇ ∙ 𝜌𝑒! + 𝑃𝑰 𝒖 − 𝑻.𝒖 = 𝒇 ∙ 𝒖 

𝜕𝛼!
𝜕𝑡

+ ∇𝛼!𝑢 = 𝛼!∇. 𝑢, 

 
where 𝜌 is the total density,  𝒖 is the vector of velocity 
components, 𝑝 is the pressure, 𝑒! is the total energy, 𝛼 
is the volume fraction, 𝑰  is the identity tensor and 𝑻 is 
the stress tensor defined as, 
 

𝑻 = 2𝜇
1
2
∇𝒖 + ∇𝒖 𝑻 −

1
3
∇ ∙ 𝒖 𝑰    

 
where 𝜇 is the shear stress. This coefficient is calculat-
ed using the mixture rule   𝜇 = 𝛼!𝜇! + 𝛼!𝜇![27]. The 
current focus is on viscous effects and terms associated 
with thermal diffusion are ignored. Additionally 𝜇! and 
𝜇!  are modeled as constants so that 𝜇 is a function of 
composition only. Both assumptions, however, can be 
lifted, when appropriate terms are used to calculate 
temperature[32]. 
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All equations are written in conservative form ex-
cept the advection equation for the volume fraction. It 
has been shown that this equation is needed to calculate 
and preserve pressure equilibrium at the fluid interface 
and including the divergence term maintains 
0 ≤ 𝛼! ≤ 1.  

This set of equations is written for two fluids, but it 
is easily extendable to account for more than two fluids 
by adding a density and advection equation. Moreover, 
these equations conserve the mass of each fluid and the 
energy of the system and they do not generate spurious 
oscillations at the interface (necessary criteria for a 
multiphase simulation).   

The system of equations is closed using the stiff-
ened gas equation of state (EOS) to account for differ-
ent phases in the flow, 

 

𝑝 + 𝛾Π! = 𝛾 − 1 𝜌𝑒! −
1
2
𝜌𝒖𝒖 , 

 
where 𝛾 is the multicomponent ratio of specific heats 
and Π!(𝑃𝑎) is the multicomponent fitting parameter 
for different components in the flow. 

Following the mixture rules in the interface captur-
ing method (𝜌!𝛼! + 𝜌!𝛼! = 𝜌,𝛼! + 𝛼! = 1), 𝛾  and  Π! 
are found using the following: 

 
1

𝛾 − 1
=

𝛼!
𝛾! − 1

+
1 − 𝛼!
𝛾! − 1

 

  
𝛾Π!

𝛾 − 1
=
𝛼!𝛾!𝜋!!

𝛾! − 1
+
(1 − 𝛼!)𝛾!𝜋!!

𝛾! − 1
   

 
where values of 𝛾 and 𝜋! are listed in Table 1 for air, 
water, and Helium. The speed of sound is defined 
as  𝑐 = 𝛾 𝑝 + 𝜋! /𝜌. 

Any additional forces being applied to the fluid are 
contained in  𝒇. In multiphase flows, one of the most 
important forces is the capillary force. Thus, the corre-
sponding force and power terms are added to the sys-
tem of equations using a continuum surface force model 
(CSF), 

 
𝒇 = −𝜎𝜅∇𝛼!, 

𝒇.𝒖 = −𝜎𝜅𝒖 ∙ ∇𝛼!, 

 
where 𝜎(𝑁/𝑚) is the surface tension and 𝜅 is the cur-
vature of the interface for the higher density fluid (in 
this case 𝛼!). The curvature 𝜅  is calculated using  
 

𝜅 = ∇ ∙ 𝒏, 
 
where 𝒏 = ∇!!

∇!!
 is the normal vector. Details on normal 

vector calculations are described in detail in the next 
section.  

Finally, the above equations are non-
dimensionalized using a reference density, speed of 
sound, and length scale. This introduces two non-
dimensional parameters, namely the acoustic Reynolds 
and Weber numbers: 

 
𝑅𝑒! = 𝜌!𝑐!𝑙/𝜇! 

𝑊𝑒! = 𝜌!𝑐!!𝑙/𝜎. 

 
Numerical Implementation  

The Parallel Adaptive Wavelet Collocation Method 
(PAWCM), makes use of second generation wavelets to 
dynamically adapt the grid to localized structures in the 
flow in time and space[29]–[31]. This approach allows 
the solution to be approximated using a subset of the 
points that would normally be used with a uniform grid 
scheme. Dynamic domain partitioning is used for paral-
lel computations and the method has been shown to 
scale well on up to 2048 processors[31]. 

In this paper, a second order finite difference dis-
cretization for the spatial terms are used along with a 
third order Total Variation Diminishing (TVD) Runge-
Kutta (RK) time integration scheme. A modified ver-
sion of the original hyperbolic solver developed for the 
PAWCM[33] that uses a TVD flux limiter to add artifi-
cial viscosity to the regions where a lower order flux is 
required. Therefore, for the tests that include sharp den-
sity and pressure jumps (e.g. shock waves), the order of 
accuracy drops to between first and second order in 
those regions. Similar to flux terms, the source terms 
are discretized in a consistent form.  

 
Interface capturing model 

For simplicity, both the shock and fluid interface 
are captured over several cells using an interface/shock 

Fluid 𝜌[𝑘𝑔/𝑚!] 𝛾 𝜋![𝐺𝑃𝑎] 𝑐[𝑚/𝑠]       
Air 1.205 1.4 0 343       

Water 
Helium 

998 
0.166 

4.4 
1.67 

1 
0 

1450 
1008 

      

Table 1.  Parameters used in stiffened gas EOS[27]. 
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capturing approach. The diffusive nature of the numeri-
cal scheme requires the fluid interface to be steepened 
for certain variables. After the fluid evolution is solved 
for in physical time, the interface is steepened by iterat-
ing in false time 𝜏.  

The employed interface steepening technique uses 
a combination of interface and density sharpening to 
minimize the thickness of the numerically diffused in-
terface. This approach uses a semi-conservative level 
set function where the volume fraction of the liquid 
phase indicates the interface.  This function takes the 
values zero or one on either side of the interface with 
𝛼! = 0.5 indicating the actual interface location. The 
boundary between immiscible materials is modeled by 
the smooth variation of  𝛼! between these limits. Fol-
lowing the approach outlined by Shukla et al.[26], the 
interface function is steepened in false time using a 
compression step  

 
!!!  
!"

= 𝒏 ∙ ∇ 𝜖!(𝒏 ∙ ∇𝛼!) − 𝛼!   1 − 𝛼!   , 
 
where 𝒏  is the normal vector and 𝜖! is a length-scale on 
the order of the grid spacing. In this equation the first 
term on the right hand side serves as a diffusion term to 
maintain nonlinear stability and the second term steep-
ens the interface. 

Since the density is a function of local flow condi-
tions in compressible flows a separate steepening equa-
tion is required for each density equation. The approach 
outlined by Shukla et al.[26] is used to steepen the den-
sity. The compression step for the phase 1 density takes 
the form 

 
𝑑𝛼!𝜌!
𝑑𝜏

= 𝐻𝒏 ∙ ∇ 𝜖! .∇ 𝛼!𝜌! − 1 − 2𝛼! ∇ 𝛼!𝜌!  
 
The same approach is used for phase 2. The term H is a 
smoothed Heaviside function 
 

𝐻 = tanh (!! !!!!
!"!!

!
. 

 
This function localizes the compression of density to 
the interface region. 

The interface function and the density for each 
phase are steepened after each timestep. A single steep-
ening iteration is used after each step in physical time. 
A false time CFL condition is established to calculate 
the false time step size ∆𝜏 = 𝐶𝐹𝐿! ∙ ℎ, where h is the 
smallest grid size in the domain and 𝐶𝐹𝐿! is the steep-
ening 𝐶𝐹𝐿 number. Values for this parameter vary be-
tween 0.1 and 0.5 depending upon the desired steep-
ness. 

 
 

Normal vector calculation  
Normal vectors are required to evaluate the right-

hand side of the steepening equation and calculating the 
surface tension force. In both shock and interface cap-
turing schemes, the representation of a sharp physical 
interface is most realistic if the interface thickness is 
minimized. This corresponds to taking  𝜖! as small as 
possible during the compression step. However, accu-
rate computation of the gradients of the interface func-
tion, 𝛼!, particularly those that define normal, are well-
behaved only if 𝛼!  is sufficiently resolved with the 
computational mesh. Otherwise, numerical artifacts 
appear and quickly disrupt the attractive properties of 
compression scheme. This is in contrast with the mod-
eling objective of maintaining a sharp interface. In or-
der to address this issue, Shukla et. al.[26] propose an 
auxiliary function  

	
  

𝜓 =
α!
!

α!
! + 1 − 𝛼! !   

  ,          𝛽 < 1 

 
that is more continuous across the fluid interface and 
provides gradients that contain less numerical noise. 
This function can be used to calculate the same normal 
vector values as would be calculated using 𝛼!, but uses 
smoother gradients. The normal vector is then repre-
sented as 
 

𝒏 = ∇!!
∇!!

= ∇!
∇!

  . 
 
In this function a small value of 𝛽 alleviates the prob-
lems associated the steep gradients of 𝛼! because the 
width of the hyperbolic tangent profile for  𝜓 is  1/
𝛽  times that of 𝛼!. In this work 𝛽 =   0.1 is usually suf-
ficient to provide smooth and well-defined normal vec-
tors. 

An additional advantage of using the smoother 
function 𝜓 to calculate the normal vectors instead of 𝛼! 
is that the curvature 𝜅 contains less noise after calculat-
ing a second derivative by using  𝜓. This approach elim-
inates the need to filter oscillations in the curvature 
retroactively.  

 
 

Numerical Results  
To show the robustness of the proposed method to 

solve compressible multiphase flows, 1-D and 2-D sim-
ulations have been performed. For brevity, only five 
test problems are contained here. Each problem has its 
own unique properties that assess the performance of 
the numerical method.  
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1D Advection of an isolated multiphase interface 
The advection of an isolated water/air interface un-

der atmospheric pressure in a periodic domain is a sim-
ple test that determines whether the numerical method 
produces any spurious oscillations at the fluid interface 
for pressure and velocity[27]. These oscillations, which 
appear initially in pressure terms (𝑂 10!!  to 
𝑂(10!!)), may occur when the interface capturing 
method is not implemented correctly and or the con-
servative sharpening technique used is not consistent 
with the associated numerical implementation. No sur-
face tension is used in this 1D simulation, but one itera-
tion of steepening is applied with a 𝐶𝐹𝐿! = 0.25. 

The initial condition for the problem normalized by 
the density and speed of sound in water is[27]: 

 
𝛼!𝜌!,𝛼!𝜌!, 𝑢,𝑃,𝛼!
= 1.204×10!!, 0,0.01,4.82×10!!, 1 − 1 ≤ 𝑥 ≤ 0

0,1,0.01,4.82×10!!, 0                                                       0 ≤ 𝑥 ≤ 1
  

  
The solution is integrated in time with a CFL=0.5 for 
one period until 𝑡 = 20. The volume fraction and densi-
ty at the end of the simulation are shown in Fig. 1 for 
solutions on adaptive and uniform grids (200 cells). The 
figures show that only a minimal number of points are 
used across the interface and the adaptive method has 
the same solution with around half the points as the 
uniform grid. Also the method is able to handle high 
density ratios with minimal amounts of numerical dif-
fusion. 

 
     a) Volume fraction 

 
        b) Density 

Figure 1. Volume fraction (a) and density (b) for the 1-D advection problem. 
 

                                   
           a) Pressure fluctuations       b) Velocity fluctuations 

Figure 2.  Error in pressure and velocity fluctuations for the 1-D advection problem. 
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In order to demonstrate the magnitude of spurious 
oscillations at the interface, the error in pressure and 
velocity are plotted in Fig. 2. Both uniform and adap-
tive grids create minimal oscillations (error  ~𝑂(10!!)), 
which confirms the ability of the method to minimize 
such errors, especially in an interface capturing method 
with high density ratios. 
 
Gas-Liquid Riemann Problem  

The gas liquid Riemann problem was originally 
used to model under water explosions. Since the prob-
lem incorporates two phases in a compressible set up, it 
is a good test problem for the stiffened gas equation of 
state. This problem contains no molecular viscosity. 

Highly compressed air on the left is adjacent to wa-
ter at atmospheric pressure on the right. The initial con-
dition is given by[27] 

 
𝛼!𝜌!,𝛼!𝜌!, 𝑢,𝑃,𝛼!  

=    1.241,0,0,2.573,1                                   − 1 ≤ 𝑥 < 0
0,0.991,0,3.059×10!!, 0               0 ≤ 𝑥 ≤ 1  

 
The simulation is performed with a base grid of 20 
points with 7 levels of refinement for an effective uni-
form grid resolution of 2,560 points. Of these 2,560 
points, the solution is represented with around 100 
points. The CFL number used for the time integration is 
0.5 and the simulation is run until 𝑡 = 0.2. Similar to 
the previous problem, a single step of steepening is 
performed in pseudo-time with a 𝐶𝐹𝐿! number of 0.25. 
Figure 3 compares the analytical solution with the nu-
merical simulation for velocity, pressure and density. 
The results show that the method is able to predict the 
correct location of the transmitted and reflected shocks. 
As should be expected, the pressure and velocity are 
constant across the interface. 

 

2D Advecting Water Column  
The first two-dimensional test case is the advection 

of a water column. When a water column is advecting 
the spurious oscillations at the material interfaces can 
contaminate the fine flow features and have a negative 
impact on both the reliability and quality of computed 
solutions[27]. This can lead to interface deformation 
and mass loss. Therefore, the main challenge of this 
problem is shape preservation and mass conservation 
while moving. In this problem the rectangular computa-
tional domain is Ω = −2.5, 2.5 × −2.5, 2.5 . A water 
column of unit radius is placed in air with its center 
initially located at the origin. The rest of the initial con-
dition for this problem, normalized by gas density and 
speed of sound, is 

  
𝑟 = 𝑥! + 𝑦! 

𝛼! =
1
2
1 + tanh

𝑟 − 1
Δ

 

 

𝛼!𝜌!,𝛼!𝜌!, 𝑢, 𝑣,𝑃 = 10!, 0,0.5, ,0.5,1           𝑟 ≤ 1  
0,1,0.5,0.5,1                             𝑟 > 1 

 
where phase 1 is water, 𝛼! = 1, and phase 2 is air, 
𝛼! = 0. The maximum resolution grid spacing Δ is 
used in the initial condition to ensure that the initial 
profile always uses the same number of grid points 
across the interface. There is no molecular viscosity in 
this test case. 

The solution is computed on an adaptive grid with 
two refinement levels to provide an effective grid of 
160×160 points. Figure 4 demonstrates the interface 
function profile at (a) the initial condition, (b) after half 
a period, and (c) after 10 periods of advection. The wa-
ter column moves diagonally in a periodic domain 
while the grids continuously adapt to the interface loca-

           
                       a) Velocity              b) Pressure    c) Density 

Figure 3. Velocity (a), pressure (b), and density (c) distributions for the 1-D Riemann problem. 
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tion. Figure 4(a) shows that the initial profile of the 
interface is smeared over several points. At the later 
times shown in Fig. 4(b) and (c), the compression 
scheme sharpens the interface and maintains a constant 
interface thickness of a few grid cells throughout the 
computations. Figure 4(c) also confirms that the method 
does not produce any noticeable oscillations near the 
interface. 

A contour plot that illustrates the interface location 
(𝛼! = 0.5) for the initial condition and after 10 periods 
of advection is shown in Fig. 5.  This shows that the 
interface size and shape is preserved and the mass is 
mostly conserved after several periods.  The black cir-
cle after 10 periods has a smaller diameter than the ini-
tial red circle. This change is associated with the initial 

thickness of the interface being larger than the steady-
state thickness that is maintained through a majority of 
the simulation. 
 
Shock water column interaction (no surface tension)  

Now we consider the interaction of a strong planar 
shock wave (𝑀 = 1.67) interacting with a water col-
umn. The shock moves to the left and has an initial po-
sition of 𝑥 = 15. The water column has an initial diam-
eter 𝐷 = 2 and is located at 𝑥 = 10. The computational 
domain is Ω = −20, 20 × −5, 5  and the equation of 
state parameters for water and air are given in Table. 1. 
The solution is computed on an adaptive grid with 
2560×640 effective grid points. 

Periodic boundary conditions are applied for the 
top and bottom boundaries. The left boundary is an 
outflow boundary. On the right boundary the post-
shock condition is imposed. The Initial conditions are 

  
𝑟 = (𝑥 − 10)! + 𝑦! 

𝛼! =
1
2
1 + tanh

𝑟 − 1
2𝜖!

 

𝛼!𝜌!,𝛼!𝜌!, 𝑢, 𝑣,𝑃  

= 10!𝛼!, 1 − 𝛼! , 0,0,0.714         𝑥 < 10
0, 2.111,−0.892,0  , 2.142           𝑥 > 10

  . 

Figure 6 shows the early interaction of the shock wave 
with the water column. The results agree qualitatively 
with the results of Igra et al.[34]. The incident shock 
and the subsequent wave systems in the wake of the 
deforming cylinder are visualized using numerical 
Schlieren images of the gas phase density (defined 
|∇𝜌!|) in the top portion of each figure. The bottom of 
each figure shows the dynamically adaptive grid col-
ored by pressure.  

 

        
 a) initial condition    b) after half a period         c) after 10 periods 
Figure 4. Profile of interface function at a) the initial condition, b) after half a period, and c) after 10 periods. 

 

 
 

Figure 5.  Comparison of the contour plot of interface 
location at initial condition (red line) and after 10 pe-
riods of advection (black line). 
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Transmitted and reflected shocks are generated 
from the impact of the incident shock with the water 
column. The interaction of these waves with the inter-
face leads to interfacial instabilities at the water-air 
interface and the wake structure behind the water col-
umn.  There is a high-pressure region associated with 
the forward stagnation point, behind the reflected wave. 
A transition from a shock reflection to a Mach reflec-
tion happens at a critical angle behind the water col-
umn. This transition leads to maximum drag experi-
enced by the column[28]. This phenomena has been 
reported in the literatures for both cylinders and 
spheres[34]. High pressure at the rear stagnation point 
is generated due to the convergent Mach stems behind 
the column.  

It can be seen that the grid is localized to regions of 
the flow that have localized structures necessary of in-
creased resolution. The results demonstrate that the 
dynamic grid adaptation used in the PAWCM approach 
makes the simulation of truly multiscale behavior such 
as this more computationally feasible for large-scale 
simulations. 
 
Oscillating Ellipse  

The last problem in this paper is an oscillating el-
lipse shaped water droplet with surface tension present. 
The initial pressure is uniform atmospheric pressure 
everywhere with zero velocity. The oscillation is due to 
the transfer between the potential energy of the inter-
face and the kinetic energy of the fluid. The surface 
tension forces deform the shape into a neutral shape 
(preferably a circle), because the potential energy be-
comes a minimum and therefore the kinetic energy goes 

to a maximum in that phase (𝑡 = 𝑇/4). The inward 
acting momentum in the 𝑥-direction causes the ellipse 
to elongate in the 𝑦-direction (𝑡 = 𝑇/2). The same 
events move the ellipse interface back to the original 
shape (𝑡 = 𝑇).  In order to illustrate the oscillation be-
havior, the globally integrated compressible kinetic 
energy  

 

𝐾𝐸 = 𝜌𝑢! + 𝜌𝑣! 𝑑𝐴 

 
is evaluated at each timestep. Figure 7 plots the KE 
over a single period T. It has been shown that the non-
dimensional time period it takes for an ellipse 
(𝑥!/𝑎! + 𝑦!/𝑏! = 1) to move back to the original 
shape after being disturbed by the surface tension forces 
is[22]: 
 

𝑇!"#$% = 2𝜋
𝑊𝑒 1 + 𝜌!𝜌!

𝑅!

6
 

 
where  𝑅 = 𝑎𝑏. For  𝑊𝑒 = 1, density ratio of 1000, 
and 𝑅𝑒 = 100 with 𝑅 = 3/5×5/3  for the ellipse, the 
period of oscillation becomes  𝑇!"#$% =   81.15. The 
simulation shows that this time is roughly 
about  𝑇!"#$%&'() ≈ 86.5. It is suspected that the differ-
ence exists because secondary oscillation modes also 
exist. Further details on these other modes can be found 
in Ref. [22].  

Figure 8 shows how the grid adapts to the droplets 
evolution with time. The high localization of the grid to 

(a) (d) 

  
(b) (e) 

  
(c) (f) 

  
Figure 6. Numerical Schlieren images (top) and dynamic adaptive grids colored by pressure contours (bottom) of a 
shock wave passing through a liquid droplet at 𝑡 = (a) 0.00 (b) 4.8 (c) 7.5 (d) 9.00 (e) 12.00 (f) 14.80 (top to bot-
tom, left to right). 
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the surface makes the PAWCM method highly suitable 
to capturing the multiscale nature of atomization pro-
cesses.  

 
Conclusions  

A compressible multiphase flow solver with sur-
face tension is developed for the Parallel Adaptive 
Wavelet-Collocation Method. One-dimensional test 
problems show the ability to resolve both shock and 
interfaces over just a few points. Spurious oscillations 
in velocity and pressure are minimal across the inter-
face. A two-dimensional test case for an advecting wa-
ter column in air demonstrates the method’s ability to 
maintain a steep fluid interface for long durations. An 
oscillating ellipse with surface tension was tested and 
the oscillation period matches the theoretical oscillation 
period reasonably well. For all cases, the grid dynami-
cally adapts to the solution illustrating the power of the 
approach to handle large problems with a large range of 
scales. 
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