A Model Checking Intermediate Language
 Initial Proposal

The NSF:CCRI Team

January 16, 2023

Intermediate Language (IL) goals

The IL has been designed so that it

- is a general enough intermediate target language for MC
- can support a variety of user-facing modeling languages
- can be directly supported by tools or compiled to lower level languages
- can leverage SAT/SMT technology

General design principles

IL models are meant to be produced and processed mostly by tools

General design principles

IL models are meant to be produced and processed mostly by tools

So the IL was designed to have

- simple, easily parsable syntax
- a rich set of data types
- little syntactic sugar, at least initially
- well-understood semantics
- a small but comprehensive set of commands
- simple translations to lower level languages such as Btor2 and Aiger

General design principles

IL models are meant to be produced and processed mostly by tools

So the IL was designed to have

- simple, easily parsable syntax
- a rich set of data types
- little syntactic sugar, at least initially
- well-understood semantics
- a small but comprehensive set of commands
- simple translations to lower level languages such as Btor2 and Aiger

General design principles

IL models are meant to be produced and processed mostly by tools

So the IL was designed to have

- simple, easily parsable syntax
- a rich set of data types
- little syntactic sugar, at least initially
- well-understood semantics
- a small but comprehensive set of commands
- simple translations to lower level languages such as Btor2 and Aiger

General design principles

IL models are meant to be produced and processed mostly by tools

So the IL was designed to have

- simple, easily parsable syntax
- a rich set of data types
- little syntactic sugar at least initially
- well-understood semantics
- a small but comprehensive set of commands
- simple translations to lower level languages such as Btor2 and Aiger

General design principles

IL models are meant to be produced and processed mostly by tools

So the IL was designed to have

- simple, easily parsable syntax
- a rich set of data types
- little syntactic sugar at least initially
- well-understood semantics
- a small but comprehensive set of commands
- simple translations to lower level languages such as Btor2 and Aiger

General design principles

IL models are meant to be produced and processed mostly by tools

So the IL was designed to have

- simple, easily parsable syntax
- a rich set of data types
- little syntactic sugar, at least initially
- well-understood semantics
- a small but comprehensive set of commands
- simple translations to lower level languages such as Btor2 and Aiger

General design principles

IL models are meant to be produced and processed mostly by tools

So the IL was designed to have

- simple, easily parsable syntax
- a rich set of data types
- little syntactic sugar, at least initially
- well-understood semantics
- a small but comprehensive set of commands
- simple translations to lower level languages such as Btor2 and Aiger

Design principles - implications

1. Little direct support for many of the features offered by

- hardware modeling languages such as VHDL and Verilog or
- system modeling languages such as SMV, TLA+, PROMELA, UNITY, Lustre

Design principles - implications

1. Little direct support for many of the features offered by

- hardware modeling languages such as VHDL and Verilog or
- system modeling languages such as SMV, TLA+, PROMELA, UNITY, Lustre

2. However, enough capability to reduce problems in those languages to problems in the IL

Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

- defines a transition system via the use of SMT formulas
- generally imposes minimal syntactic restrictions on those formulas
- is parametrized by a state signature, a sequence of typed variables
- partitions state variables into input, output and local variables
- is hierarchical, i.e., may include (instances of) previously defined systems as subsystems
- can encode both synchronous and asynchronous system composition

Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

- defines a transition system via the use of SMT formulas
- generally imposes minimal syntactic restrictions on those formulas
- is parametrized by a state signature, a sequence of typed variables
- partitions state variables into input, output and local variables
- is hierarchical, i.e., may include (instances of) previously defined systems as subsystems
- can encode both synchronous and asynchronous system composition

Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

- defines a transition system via the use of SMT formulas
- generally imposes minimal syntactic restrictions on those formulas
- is parametrized by a state signature, a sequence of typed variables
- partitions state variables into input, output and local variables
- is hierarchical, i.e., may include (instances of) previously defined systems as subsystems
- can encode both synchronous and asynchronous system composition

Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

- defines a transition system via the use of SMT formulas
- generally imposes minimal syntactic restrictions on those formulas
- is parametrized by a state signature, a sequence of typed variables
- partitions state variables into input, output and local variables
- is hierarchical, i.e., may include (instances of) previously defined systems as subsystems
- can encode both synchronous and asynchronous system composition

Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

- defines a transition system via the use of SMT formulas
- generally imposes minimal syntactic restrictions on those formulas
- is parametrized by a state signature, a sequence of typed variables
- partitions state variables into input, output and local variables
- is hierarchical, i.e., may include (instances of) previously defined systems as subsystems
- can encode both synchronous and asynchronous system composition

Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

- defines a transition system via the use of SMT formulas
- generally imposes minimal syntactic restrictions on those formulas
- is parametrized by a state signature, a sequence of typed variables
- partitions state variables into input, output and local variables
- is hierarchical, i.e., may include (instances of) previously defined systems as subsystems
- can encode both synchronous and asynchronous system composition

Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

- defines a transition system via the use of SMT formulas
- generally imposes minimal syntactic restrictions on those formulas
- is parametrized by a state signature, a sequence of typed variables
- partitions state variables into input, output and local variables
- is hierarchical, i.e., may include (instances of) previously defined systems as subsystems
- can encode both synchronous and asynchronous system composition

Current focus

Finite-state systems

Current focus

Finite-state systems
but with an eye to infinite-state systems too

Technical preliminaries

Formally, a transition system is a pair S of predicates of the form

$$
S=\left(I_{S}[\boldsymbol{i}, \mathbf{o}, \mathbf{s}], T_{S}\left[\mathbf{i}, \mathbf{o}, \mathbf{s}, \boldsymbol{i}^{\prime}, \mathbf{o}^{\prime}, \mathbf{s}^{\prime}\right]\right)
$$

Technical preliminaries

Formally, a transition system is a pair S of predicates of the form

$$
S=\left(I_{S}[\boldsymbol{i}, \mathbf{o}, \mathbf{s}], T_{S}\left[\mathbf{i}, \mathbf{o}, \mathbf{s}, \boldsymbol{i}^{\prime}, \mathbf{o}^{\prime}, \mathbf{s}^{\prime}\right]\right)
$$

where

- i and i^{\prime} are two tuples of input variables with the same length and type
- o and o^{\prime} are two tuples of output variables with the same length and type
- s and s^{\prime} are two tuples of local variables with the same length and type
- I_{s}, the initial state condition is a formula with free vars from $[i, 0, s]$
- T_{s}, the transition condition is a formula with free vars from $\left[i, o, s, i^{\prime}, o^{\prime}, s^{\prime}\right]$

Technical preliminaries

Formally, a transition system is a pair S of predicates of the form

$$
S=\left(I_{S}[\boldsymbol{i}, \mathbf{o}, \mathbf{s}], T_{S}\left[\mathbf{i}, \mathbf{o}, \mathbf{s}, \boldsymbol{i}^{\prime}, \mathbf{o}^{\prime}, \mathbf{s}^{\prime}\right]\right)
$$

where

- i and i^{\prime} are two tuples of input variables with the same length and type
- o and o^{\prime} are two tuples of output variables with the same length and type
- s and s^{\prime} are two tuples of local variables with the same length and type
- I_{S}, the initial state condition is a formula with free vars from $[i, 0, s]$
- T_{s}, the transition condition is a formula with free vars from $\left[i, o, s, i^{\prime}, o^{\prime}, s^{\prime}\right]$

Note: A (full) state of S is a valuation of (i, o, s)

SMT-LIB commands

As in SMT-LIB

```
(set-logic L)
(declare-sort s n)
(define-sort s ( }\mp@subsup{u}{1}{}\cdots\cdots\mp@subsup{u}{n}{})\tau
(declare-fun f(()
(define-fun f ((和 㳖) \cdots ( 
(declare-datatype d (...))
(assert F)
(perhaps a few more)
```


SMT-LIB commands

```
New
(define-system S ...)
(check-system S ...)
(declare-enum-sort s (}\mp@subsup{c}{1}{}\cdots\cdots, cm)
```


Logical semantics

A define-system command implicitly defines a model (i.e., a Kripke structure) of First-Order Linear Temporal Logic (FO-LTL)

Logical semantics

A define-system command implicitly defines a model (i.e., a Kripke structure) of First-Order Linear Temporal Logic (FO-LTL)

An FO-LTL formula $F\left[\boldsymbol{f}, \boldsymbol{x}, \boldsymbol{x}^{\prime}\right]$ with

- free (immutable) constants/functions (aka, uninterpreted symbols) from f
- free (mutable) variables from $\boldsymbol{x}, \boldsymbol{x}^{\prime}$
is satisfiable in an SMT theory \mathcal{T} if there is

Logical semantics

A define-system command implicitly defines a model (i.e., a Kripke structure) of First-Order Linear Temporal Logic (FO-LTL)

An FO-LTL formula $F\left[\boldsymbol{f}, \boldsymbol{x}, \boldsymbol{x}^{\prime}\right]$ with

- free (immutable) constants/functions (aka, uninterpreted symbols) from f
- free (mutable) variables from $\boldsymbol{x}, \boldsymbol{x}^{\prime}$
is satisfiable in an SMT theory \mathcal{T} if there is

1. a \mathcal{T}-interpretation \mathcal{I} of f and
2. an infinite trace π over x in \mathcal{I}
that satisfy F

Trace semantics

Fix

- an FOL-LTL formula $F\left[\boldsymbol{f}, \boldsymbol{x}, \boldsymbol{x}^{\prime}\right]$ over a theory \mathcal{T}
- a \mathcal{T}-interpretation \mathcal{I} of f
- an infinite trace $\pi=s_{0}, s_{1}, \ldots$ where s_{i} is an assignment of x into \mathcal{I} for all $i \geq 0$

Let $\pi^{i}=s_{i}, s_{i+1}, \ldots$ for all $i \geq 0$

Trace semantics

Fix

- an FOL-LTL formula $F\left[\boldsymbol{f}, \boldsymbol{x}, \boldsymbol{x}^{\prime}\right]$ over a theory \mathcal{T}
- a \mathcal{T}-interpretation \mathcal{I} of f
- an infinite trace $\pi=s_{0}, s_{1}, \ldots$ where s_{i} is an assignment of x into \mathcal{I} for all $i \geq 0$

Let $\pi^{i}=s_{i}, s_{i+1}, \ldots$ for all $i \geq 0$
(\mathcal{I}, π) satisfies F, written ($\mathcal{I}, \pi) \mid=F$, iff

1. $\mathcal{I}\left[\boldsymbol{X} \mapsto s_{0}(\boldsymbol{x}), \boldsymbol{x}^{\prime} \mapsto s_{1}(\boldsymbol{x})\right]$ satisfies $F \quad$ when F is atomic
2. $(I, \pi) \not \vDash G \quad$ when F is $\neg G$
3. $(I, \pi) \models G_{j}$ for $j=1,2 \quad$ when F is $G_{1} \wedge G_{2}$
4. $\left(\mathcal{I}, \pi^{1}\right) \models G$
5. $\left(\mathcal{I}, \pi^{i}\right) \models G$ for all $i=0, \ldots, \quad$ when F is always G
6. $\left(\mathcal{I}, \pi^{i}\right) \models G$ for some $i=0, \ldots, \quad$ when F is eventually G
7. ...

Finite-Trace semantics

Fix

- an FOL-LTL formula $F\left[\boldsymbol{f}, \boldsymbol{x}, \boldsymbol{x}^{\prime}\right]$ over a theory \mathcal{T}
- a \mathcal{T}-interpretation \mathcal{I} of f
- an infinite trace $\pi=s_{0}, s_{1}, \ldots$ where s_{i} is an assignment of x into \mathcal{I} for all $i \geq 0$

Let $\pi^{i}=s_{i}, s_{i+1}, \ldots$ for all $i \geq 0$
(\mathcal{I}, π) n-satisfies F for some $n>0$, written $(\mathcal{I}, \pi) \models_{n} F$, iff

1. $\mathcal{I}\left[\boldsymbol{X} \mapsto s_{0}(\boldsymbol{x}), \boldsymbol{x}^{\prime} \mapsto s_{1}(\boldsymbol{x})\right]$ satisfies F
2. $(\mathcal{I}, \pi) \mid \not{ }_{n} G$
3. $(\mathcal{I}, \pi) \models_{n} G_{j}$ for $j=1,2$
4. $\left(\mathcal{I}, \pi^{1}\right) \models_{n-1} G$ and $n-1>0$
5. $\left(\mathcal{I}, \pi^{i}\right) \models_{n-i} G$ for all $i=0, \ldots, n-1 \quad$ when F is always G
6. $\left(\mathcal{I}, \pi^{i}\right) \models_{n-i} G$ for some $i=0, \ldots, n-1 \quad$ when F is eventually G
7.

. ...
when F is atomic when F is $\neg G$ when F is $G_{1} \wedge G_{2}$ when F is next G

System definition command

(Base case)

```
(define-system S
    :input ((i, 㳖) ... (im \deltam)) ; input vars
    :output ((ol }\mp@subsup{\tau}{1}{})\cdots\cdots(\mp@subsup{o}{n}{}\mp@subsup{\tau}{n}{\prime})) ; output var
    :local ((s 的) \cdots (sp \deltap)) ; local vars
    :init | ; initial state formula
    :trans T ; transition formula
    :inv P ; invariant formula
)
```


System definition command

（Base case）

```
(define-system S
    :input ((il 左) \cdots (im 有)) ; input vars
    :output (( (ol }\mp@subsup{\tau}{1}{\prime})\cdots\cdots(\mp@subsup{o}{n}{}\mp@subsup{\tau}{n}{\prime})) ; output var
    :local ((s 的) \cdots (sp
    :init | ; initial state formula
    :trans T ; transition formula
    :inv P ; invariant formula
where
```

－each var gets a primed copy：$i_{1}^{\prime}, \ldots, o_{1}^{\prime}, \ldots, s_{1}^{\prime}, \ldots$
－I and P are one－state formulas（over unprimed vars only）
－T is a two－state formula（over unprimed and primed vars）
－all attributes are optional and their order is immaterial
－however，：input，：output，：local must occur before ：init，：trans，：inv

System definition command

(Base case)

```
(define-system S
```



```
    :output ((ol }\mp@subsup{\tau}{1}{})\cdots\cdots(\mp@subsup{o}{n}{}\mp@subsup{\tau}{n}{\prime})) ; output var
    :local ((s 的) \cdots (sp \deltap)) ; local vars
    :init | ; initial state formula
    :trans T ; transition formula
    :inv P ; invariant formula
```

Semantics
$S=\left(I_{s}, T_{s}\right)=\left(I[i, \mathbf{o}, \boldsymbol{s}], P[i, \mathbf{o}, \boldsymbol{s}] \wedge T\left[i, \mathbf{o}, \mathbf{s}, \boldsymbol{i}^{\prime}, \mathbf{o}^{\prime}, \mathbf{s}^{\prime}\right]\right)$
where $\boldsymbol{i}=\left(i_{1}, \ldots, i_{m}\right), \boldsymbol{o}=\left(o_{1}, \ldots, o_{n}\right), \boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$
S denotes the set of all infinite traces that satisfy the FO-LTL formula
$I_{S} \wedge$ always T_{S}

System definition command

（Base case）

```
(define-system S
    :input ((il 左) \cdots (im 有)) ; input vars
    :output (( (ol }\mp@subsup{\tau}{1}{\prime})\cdots\cdots(\mp@subsup{o}{n}{}\mp@subsup{\tau}{n}{\prime})) ; output var
    :local ((s 的) \cdots (sp \deltap)) ; local vars
    :init | ; initial state formula
    :trans T ; transition formula
    :inv P ; invariant formula
```


Note：

Systems are meant to be progressive：every reachable state has a successor wrt T_{S}
However，they may not be because of the generality of T and P
（It is possible to define deadlocking systems）

Default values for missing attributes

attribute	default
:input	()
:output	()
:local	()
:init	true
:trans	true
:inv	true

Examples

```
; The output of Delay is initially in [0,10] and
; then is the previous input
(define-system Delay
    :input ((in Int))
    :output ((out Int))
    :init (<= 0 out 10) ; more than one possible initial output
    :trans (= out' in) ; the new output is the old input
)
; A clocked lossless channel, stuttering when clock is false
(define-system StutteringClockedCopy
    :input ((clock Bool) (in Int))
    :output ((out Int))
    :init (=> clock (= out in)) ; out is arbitrary when clock is false
    :trans (ite clock (= out' in') (= out' out))
)
```


Examples

```
(declare-datatype Event (par (X) (Absent) (Present (val X))))
; An event-triggered channel that arbitrarily loses its input data
(define-system LossyIntChannel
    :input ((in (Event Int)))
    :output ((out (Event Int)))
    :inv (or (= out in) (= out Absent))
)
```


Examples

```
(declare-datatype Event (par (X) (Absent) (Present (val X))))
; An event-triggered channel that arbitrarily loses its input data
(define-system LossyIntChannel
    :input ((in (Event Int)))
    :output ((out (Event Int)))
    :inv (or (= out in) (= out Absent))
)
; Equivalent formulation using unconstrained local state
(define-system LossyIntChannel
    :input ((in (Event Int)))
    :output ((out (Event Int)))
    :local ((s Bool))
    ; at all times, whether the input event is transmitted
    ; or not depends on value of s
    :inv (= out (ite s in Absent))
)
```


Example: timed light switch

TimedSwitch models a timed light switch where, once on, the light stays on for 10 steps unless it is switched off before

A Boolean input is provided as a toggle signal

Example: timed light switch

```
(define-enum-sort LightStatus (On Off))
; Guarded-transitions-style definition
(define-system TimedSwitch :input ((press Bool)) :output ((sig Bool))
    :local ((s LightStatus) (n Int))
    :inv (= sig (= s On))
    :init (and
        (= n 0)
        (ite press (= s On) (= s Off))
    )
    :trans (and
            (=> (and (= s Off) (not press')) ; Off ->
            (and (= s' Off) (= n' n))) ; Off
            (=> (and (= s Off) press') ; Off ->
            (and (= s' On) (= n' n))) ; On
            (=> (and (= s On) (not press') (< 10 n)) ; On ->
            (and (= s' On) (= n' (+ n 1))))) ; On
            (=> (and (= s On) (or press' (>= n 10)) ; On ->
            (and (= s' Off) (= n' 0)))) ; Off
    )
)
```


Example: timed light switch

```
(define-enum-sort LightStatus (On Off))
; Set-of-transitions-style definition
(define-system TimedSwitch2 :input ((press Bool)) :output ((sig Bool))
    :local ((s LightStatus) (n Int))
    :inv (= sig (= s On))
    :init (and
        (= n 0)
        (ite press (= s On) (= s Off))
    )
    :trans
        (let (; Transitions
            (stay-off (and (= s Off) (not press') (= s' Off) (= n' n)))
            (turn-on (and (= s Off) press' (= s' On) (= n' n)))
            (stay-on (and (= s On) (not press') (< n 10) (= s' On)
                    (= n' (+ n 1))))
                (turn-off (and (= s On) (or press' (>= n 10))
                    (= s' Off) (= n' 0)))
                )
            (or stay-off turn-on turn-off stay-on)
        )
)
```


Example: timed light switch

```
(define-enum-sort LightStatus (On Off))
; Equational-style definition
(define-system TimedSwitch3 :input ((press Bool)) :output ((sig Bool))
    :local ((s LightStatus) (n Int))
    :inv (= sig (= s On))
    :init (and
        (= n 0)
        (= s (ite press On Off))
    )
    :trans (and
        (= s' (ite press' (flip s)
        (ite (or (= s Off) (>= n 10)) Off
                        On)))
        (= n' (ite (or (= s Off) (s' Off)) 0
        (+ n 1)))
    )
)
(define-fun flip ((s LightStatus)) LightStatus (ite (= s Off) On Off))
```


Special predicate: OnlyChange

For every system $S=\left(I_{S}[\boldsymbol{i}, \mathbf{o}, \boldsymbol{s}], T_{S}\left[\mathbf{i}, \boldsymbol{o}, \boldsymbol{s}, \boldsymbol{i}^{\prime}, \mathbf{o}^{\prime}, \boldsymbol{s}^{\prime}\right]\right)$
OnlyChange is a multi-arity predicate over $\boldsymbol{o}, \boldsymbol{s}, \boldsymbol{o}^{\prime}, \boldsymbol{s}^{\prime}$:

$$
\text { OnlyChange }\left(x_{1}, \ldots, x_{n}\right) \equiv \bigwedge\left\{y^{\prime}=y \mid y \in\left(\mathbf{o} \cup \boldsymbol{s} \cup \boldsymbol{o}^{\prime} \cup \boldsymbol{s}^{\prime}\right) \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right\}
$$

Fixes the value of all output and local variables not in $\left(x_{1}, \ldots, x_{n}\right)$

Special predicate: OnlyChange

For every system $S=\left(I_{S}[\boldsymbol{i}, \mathbf{o}, \boldsymbol{s}], T_{S}\left[\mathbf{i}, \boldsymbol{o}, \boldsymbol{s}, \boldsymbol{i}^{\prime}, \mathbf{o}^{\prime}, \boldsymbol{s}^{\prime}\right]\right)$
OnlyChange is a multi-arity predicate over $\boldsymbol{o}, \boldsymbol{s}, \boldsymbol{o}^{\prime}, \boldsymbol{s}^{\prime}$:

$$
\text { OnlyChange }\left(x_{1}, \ldots, x_{n}\right) \equiv \bigwedge\left\{y^{\prime}=y \mid y \in\left(\mathbf{o} \cup \boldsymbol{s} \cup \boldsymbol{o}^{\prime} \cup \boldsymbol{s}^{\prime}\right) \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right\}
$$

Fixes the value of all output and local variables not in $\left(x_{1}, \ldots, x_{n}\right)$

It is a useful abbreviation in transition conditions to express transitions that leave many state variables unchanged

Special predicate: OnlyChange

For every system $S=\left(I_{S}[\boldsymbol{i}, \mathbf{o}, \boldsymbol{s}], T_{S}\left[\mathbf{i}, \boldsymbol{o}, \boldsymbol{s}, \boldsymbol{i}^{\prime}, \mathbf{o}^{\prime}, \boldsymbol{s}^{\prime}\right]\right)$
OnlyChange is a multi-arity predicate over $\boldsymbol{o}, \boldsymbol{s}, \boldsymbol{o}^{\prime}, \boldsymbol{s}^{\prime}$:

$$
\text { OnlyChange }\left(x_{1}, \ldots, x_{n}\right) \equiv \bigwedge\left\{y^{\prime}=y \mid y \in\left(\mathbf{o} \cup \boldsymbol{s} \cup \boldsymbol{o}^{\prime} \cup \boldsymbol{s}^{\prime}\right) \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right\}
$$

Fixes the value of all output and local variables not in $\left(x_{1}, \ldots, x_{n}\right)$

It is a useful abbreviation in transition conditions to express transitions that leave many state variables unchanged

Note: OnlyChange $\left(x_{1}, \ldots, x_{n}\right)$ does not actually constrain the x_{i} 's in any way

Example

```
; increment n}\mp@subsup{n}{i}{}\mathrm{ iff n=i; n}\mp@subsup{n}{i}{}\mathrm{ is 0 initially if not incremented
(define-system Increment :input ((i Int))
    :output ((inc Bool) (n1 Int) (n2 Int) ... (n5 Int))
    :inv (= inc (<= 1 i 5))
    :init (and
        (=> (= n 1) (and (= n1 1) (= n2 n3 n4 n5 0)))
        (=> (= n 5) (and (= n5 1) (= n1 n2 n3 n4 0)))
        (=> (not (<= 1 n 5)) (= n1 n2 n3 n4 n5 0))
    )
    :trans (and
        (=> (= n' 1) (and (= n1' (+ n1 1)) (OnlyChange inc n1)))
        (=> (= n' 5) (and (= n5' (+ n5 1)) (OnlyChange inc n5)))
        (=> (not (<= 1 n' 5)) (OnlyChange inc))
    )
)
```


System definition－Synchronous composition

```
(define-system S
    :input ((il 左) \cdots (im 有m)) ; input vars
    :output ((ol 江) \cdots (on \mp@subsup{\tau}{n}{})) ; output vars
    :local ((s 的) \cdots (sp \deltap)) ; local vars
```



```
    :subsys (N Nq (S S 政 攵)) ) ; component subsystem
)
```

where
1．$q>0$ and each S_{i} is the name of a system other than S
2．S_{1}, \ldots, S_{q} need not be all distinct
3．each N_{i} is a local synonym for S_{i} ，with $N_{1}, \ldots N_{q}$ distinct
4．each x_{i} consists of $S^{\prime} s$ variables of the same type as S_{i}＇s input
5．each y_{i} consists of S＇s local／output variables of the same type as S_{i}＇s output
6．the directed subsystem graph rooted at S is acyclic

System definition－Synchronous composition

```
(define-system S
    :input ((il 左) \cdots (im 有m)) ; input vars
    :output ((o\mp@subsup{o}{1}{}) \cdots (on \mp@subsup{\tau}{n}{})) ; output vars
    :local ((s 的) \cdots (sp \deltap)) ; local vars
    :subsys (N N ( Slll
```



```
)
```


Semantics

Let $S_{k}=\left(I_{k}\left[i_{k}, \boldsymbol{o}_{k}, \boldsymbol{s}_{k}\right], T_{k}\left[i_{k}, \boldsymbol{o}_{k}, \boldsymbol{s}_{k}, \boldsymbol{i}_{k}^{\prime}, \boldsymbol{o}_{k}^{\prime}, \boldsymbol{s}_{k}^{\prime}\right]\right)$ for $k=1, \ldots, q$ ，with $s_{1}, \ldots, \boldsymbol{s}_{q}$ all distinct
Let $\boldsymbol{i}=\left(i_{1}, \ldots, i_{m}\right), \boldsymbol{o}=\left(o_{1}, \ldots, o_{n}\right), \boldsymbol{s}=s_{1}, \ldots, s_{q}, \boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{q}$

$$
S=\left(I_{S}[\boldsymbol{i}, \boldsymbol{o}, \boldsymbol{s}], T_{S}\left[i, o, s, i^{\prime}, \boldsymbol{o}^{\prime}, \mathbf{s}^{\prime}\right]\right)
$$

with

$$
I_{S}=\bigwedge_{k=1}^{q} I_{k}\left[\boldsymbol{x}_{k}, \boldsymbol{y}_{k}, \boldsymbol{s}_{k}\right]
$$

$$
T_{S}=\bigwedge_{k=1}^{q} T_{k}\left[\boldsymbol{x}_{k}, \boldsymbol{y}_{k}, \boldsymbol{s}_{k}, \boldsymbol{x}_{k}^{\prime}, \boldsymbol{y}_{k}^{\prime}, \boldsymbol{s}_{k}^{\prime}\right]
$$

System definition - Synchr. composition extended

```
(define-system S
```



```
    :output ((ol 江) \cdots (on \mp@subsup{\tau}{n}{})) ; output vars
    :local ((s1 的) \cdots. (sp \delta ) ) ; local vars
    :subsys (N N ( Slll}\mp@subsup{\boldsymbol{N}}{1}{}\mp@subsup{\boldsymbol{y}}{1}{\prime})) ; component subsystem
```



```
    :init l ; initial state formula
    :trans T ; transition formula
    :inv P ; invariant formula
```


Semantics

$$
S=\left(I_{S}[\boldsymbol{i}, \boldsymbol{o}, \boldsymbol{s}], T_{S}\left[\mathbf{i}, \boldsymbol{o}, \mathbf{s}, \boldsymbol{i}^{\prime}, \boldsymbol{o}^{\prime}, \boldsymbol{s}^{\prime}\right]\right)
$$

with

$$
I_{S}=I \wedge \bigwedge_{k=1}^{q} I_{k}\left[\boldsymbol{x}_{k}, \boldsymbol{y}_{k}, \boldsymbol{s}_{k}\right]
$$

$$
T_{S}=T \wedge P \wedge \bigwedge_{k=1}^{q} T_{k}\left[\boldsymbol{x}_{k}, \boldsymbol{y}_{k}, \boldsymbol{s}_{k}, \boldsymbol{x}_{k}^{\prime}, \boldsymbol{y}_{k}^{\prime}, \boldsymbol{s}_{k}^{\prime}\right]
$$

Examples

```
(define-system Latch :imput ((s Bool) (r Bool)) :output ((o Bool))
    :local ((b Bool))
    :trans (= o' (or (and s (or (not r) b))
                                (and (not s) (not r) o)))
)
(define-system OneBitCounter :input ((inc Bool) (start Bool))
    :output ((out Bool) (carry Bool))
    :local ((set Bool) (reset Bool))
    :subsys (L (Latch set reset out))
    :inv (and (= set (and inc (not reset)))
                        (= reset (or carry start))
                        (= carry (and inc out)))
)
(define-system ThreeBitCounter
    :input ((inc Bool) (start Bool))
    :output ((out0 Bool) (out1 Bool) (out2 Bool))
    :local ((car0 Bool) (car1 Bool) (car2 Bool))
    :subsys (C1 (OneBitCounter inc start out0 car0))
    :subsys (C2 (OneBitCounter car0 start out1 car1))
    :subsys (C3 (OneBitCounter car1 start out2 car2))
)
```


Expressiveness

define-system + SMT-LIB commands and types appear sufficient to allow faithful reductions from (full or large fragment of)

- Moore and Mealy machines
- I/O automata
- SMV and nuXMV
- UNITY
- TLA+
- Reactive Modules
- Lustre
- SAL

System checking command

```
(check-system S
    :input ((i i \delta 苃 \cdots (im \deltam)) ; renaming of S's input vars
    :output ((ol 稚) \cdots (on \mp@subsup{\tau}{n}{})) ; renaming of S's output vars
    :local ((s, 泣) \cdots (sp \deltap)) ; renaming of S's local vars
    :assumption (a A)
    :reachable (r R)
    :fairness (f F)
    :current (c C)
    :query
)
; environmental assumption
; reachability condition
; fairness condition
; initiality condition
(q (g}\mp@subsup{g}{1}{}\cdots\mp@subsup{g}{q}{})) ; trace query to be checke
```


System checking command

```
(check-system S
    :input ((i i \delta 苃 \cdots (im \deltam)) ; renaming of S's input vars
    :output ((ol \mp@subsup{\tau}{1}{})\cdots(\mp@subsup{o}{n}{}\mp@subsup{\tau}{n}{})) ; renaming of S's output vars
    :local ((s, 泣) \cdots (sp 坫)) ; renaming of S's local vars
    :assumption (a A)
    :reachable (r R)
    :fairness (f F)
    :current (c C)
    :query
)
where
```

－a, r, f, c, q are identifiers；each g_{i} ranges over $\{a, r, f, c\}$
－C is a one－state（non－temporal）formula over the given vars
－A，R，F are one－or two－state（non－temporal）formulas over the given vars
－all attributes are optional and their order is immaterial
－all attributes but the first three are repeatable

System checking command

```
(check-system S
    :input ((i i \delta 苃 \cdots (im \deltam)) ; renaming of S's input vars
    :output ((ol 稚) \cdots (on \mp@subsup{\tau}{n}{})) ; renaming of S's output vars
    :local ((s, 泣) \cdots (sp \deltap)) ; renaming of S's local vars
    :assumption (a A)
    :reachable (r R)
    :fairness (f F)
    :current (c C)
    :query
)
; environmental assumption
; reachability condition
; fairness condition
; initiality condition
(q (g}\mp@subsup{g}{1}{}\cdots\mp@subsup{g}{q}{})) ; trace query to be checke
```


System checking command semantics

```
(check-system S
    :input ((i ( }\mp@subsup{\delta}{1}{})\cdots(\mp@subsup{i}{m}{}\mp@subsup{\delta}{m}{})) ; renaming of S's input var
    :output ((ol \tau
    :local ((s, 泣) \cdots (sp 京)) ; renaming of S's local vars
    :assumption (a A)
    :reachable (r R)
    :fairness (f F)
    :current (c C)
    :query (q (ar))
)
; environmental assumption
; reachability condition
```

Query q succeeds iff the formula below is n-satisfiable in LTL for some $n>0$

$$
I_{S} \wedge \text { always } T_{S} \wedge \text { always } A \wedge \text { eventually } R
$$

where I_{s} and T_{S} are the initial state and transition predicate of S modulo the renamings above

System checking command semantics

```
(check-system S
    :input ((i ( }\mp@subsup{\delta}{1}{})\cdots(\mp@subsup{i}{m}{}\mp@subsup{\delta}{m}{})) ; renaming of S's input var
    :output ((ol \mp@subsup{\tau}{1}{})\cdots(\mp@subsup{o}{n}{}\mp@subsup{\tau}{n}{})) ; renaming of S's output vars
    :local ((s, 泣) \cdots (sp 名)) ; renaming of S's local vars
    :assumption (a A)
    :reachable (r R)
    :fairness (f F)
    :current (c C)
    :query (q (afr))
)
```

Query q succeeds iff the formula below is satisfiable in LTL

$$
I_{S} \wedge \text { always } T_{S} \wedge \text { always } A \wedge \text { eventually } R \wedge \text { always eventually } F
$$

where I_{s} and T_{S} are the initial state and transition predicate of S modulo the renamings above

System checking command semantics

```
(check-system S
    :input ((i ( }\mp@subsup{\delta}{1}{})\cdots(\mp@subsup{i}{m}{}\mp@subsup{\delta}{m}{})) ; renaming of S's input var
    :output ((ol \mp@subsup{\tau}{1}{})\cdots(\mp@subsup{o}{n}{}\mp@subsup{\tau}{n}{})) ; renaming of S's output vars
    :local ((s, 泣) \cdots (sp 京)) ; renaming of S's local vars
    :assumption (a A)
    :reachable (r R)
    :fairness (f F)
    :current (c C)
(q (acre))
    :query
)
```

Query q succeeds iff the formula below is n-satisfiable in LTL for some $n>0$

$$
C \wedge \text { always } T_{S} \wedge \text { always } A \wedge \text { eventually } R
$$

where I_{s} and T_{S} are the initial state and transition predicate of S modulo the renamings above

System checking command semantics

```
(check-system S
    :input ((i, 有) \cdots (im \deltam)) ; renaming of S's input vars
    :output ((ol \tau
    :local ((s, 泣) \cdots (sp \deltap)) ; renaming of S's local vars
    :assumption (a A)
    :reachable (r R)
    :fairness (f F)
    :current (c C)
    :query (q (g1 的 汭)) ; trace query to be checked
)
```

For each successful query，the model checker is expected to produce
－a \mathcal{T}－interpretation \mathcal{I}（of the free immutable symbols）and
－a witnessing trace in I

System checking command semantics

```
(check-system S
    :input ((i, 汸) \cdots (im \deltam)) ; renaming of S's input vars
    :output ((ol \mp@subsup{\tau}{1}{})\cdots(\mp@subsup{o}{n}{}\mp@subsup{\tau}{n}{\prime})) ; renaming of S's output vars
    :local ((s, 泣) \cdots (sp 京)) ; renaming of S's local vars
    :assumption (a A)
    :reachable (r R)
    :fairness (f F)
    :current (c C)
    :query (q (g1 的 林)) ; trace query to be checked
)
```

For each successful query，the model checker is expected to produce
－a \mathcal{T}－interpretation \mathcal{I}（of the free immutable symbols）and
－a witnessing trace in I
Different queries may be given different interpretations and traces

Example 1

(check-system NonDetArbiter
:input ((req1 Bool) (req2 Bool))
:output ((gr1 Bool) (gr2 Bool))
; There are never concurrent requests
:assumption (a1 (not (and req1 req2)))
; The same request is never issued twice in a row
:assumption (a2 (and (=> req1 (not req1')) (=> req2 (not req2'))))
; Neg of: Every request is immediately granted
: reachable (r (not (and (=> req1 gr1) (=> req2 gr2))))
; check the reachability of r under assumptions a1 and a2
:query (q (a1 a2 r))
)

Example 2 - Temporal queries

```
(define-system Historically :input ((b Bool)) :output ((hb Bool))
    :init (= hb b) :trans (= hb' (and b' hb)))
(define-system Before :input ((b Bool)) :output ((bb Bool))
    :init (= bb' false) :trans (= bb' b))
(define-system Count :input ((b Bool)) :output ((c Int))
    :init (= c (ite b 1 0)) :trans (= c' (+ c (ite b 0 1))))
(define-system Monitor :input ((r1 Bool) (r2 Bool)) :output ((g1 Bool) (g2 Bool))
    :local ((a1 Bool) (a2 Bool) (b0 Bool) (b1 Bool) (b2 Bool)
            (h1 Bool) (h2 Bool) (c Int) (bf Bool))
    :subsys (A (NonDetArbiter r1 r2 g1 g2))
    :subsys (H1 (Historically al h1))
    :subsys (H2 (Historically a2 h2))
    :subsys (C (Count gl c))
    :subsys (B (Before b0 bf))
    :inv (and
        (= a1 (and (not r1) (not r2))) (= a2 (and (not g1) (not g2))) (= b0 (= c 4))
        (= b1 (=> h1 h2)) ; b1 = if there have been no requests, there have been no grants
        (= b2 (=> bf (not g1))))) ; b2 = a request is granted at most 4 times
(check-system Monitor :input ((r1 Bool) (r2 Bool))
    :output ((g1 Bool) (g2 Bool))
    :local (_ _ _ (b1 Bool) (b2 Bool) _ _ _ _)
    :assumption (A (not (and r1 r2))) :reachable (P (not (and b1 b2)))
    :query (Q (A P))
)
```


Example 3 - Multiple queries

```
(check-system NonDetArbiter :input ((r1 Bool) (r2 Bool))
    :output ((g1 Bool) (g2 Bool))
    :assumption (a (not (and r1 r2)))
    ; Neg of: Every request is (immediately) granted
    :reachable (p1 (not (and (=> r1 g1) (=> r2 g2))))
    ; Neg of: In the absence of other requests, every request is granted
    :reachable (p2 (not (=> (!= r1 r2) (and (=> r1 g1) (=> r2 g2)))))
    ; Neg of: A request is granted only if present
    :reachable (p3 (not (and (=> g1 r1) (=> g2 r2))))
    ; Neg of: At most one request is granted at any one time
    :reachable (p4 (not (not (and g1 g2))))
    ; Neg of: In case of concurrent requests, one of them is always granted
    : reachable (p5 (not (=> (and r1 r2) (or g1 g2))))
    :query (q1 (a p1)) :query (q2 (a p2)) :query (q3 (a p3))
    :query (q4 (a p4)) :query (q5 (a p5))
)
```

Each query can be witnessed by a different \mathcal{T}-interpretation and trace in it

Output format for check-system

```
(define-system A :input ((i \sigmaA)) :output ((o \tau
```



```
    :subsys ( ... (S (A ...)) ...) ... )
(check-system B \cdots. :fairness (f ...) :reachable (r...)
    :query (q (r f ...)) ... )
Output:
(response
    :result ((q sat) ...) ; result is sat or unsat for each query
    :model (...) ; SMT-LIB interpretation of free symbols
    :trail (p (; state sequence
```



```
        ((i i ik ) (o o ok ) (s sk) (S::i is,k ) (S::O o os,k
        )
    :trail (l ( ... ))
    :trace (q :prefix p :lasso l) ; witness trace for query q is plw
```

)

Special predicate: Deadlock

For every system $S=\left(I_{S}[\boldsymbol{i}, \mathbf{o}, \boldsymbol{s}], T_{S}\left[\mathbf{i}, \mathbf{o}, \boldsymbol{s}, \boldsymbol{i}^{\prime}, \mathbf{o}^{\prime}, \boldsymbol{s}^{\prime}\right]\right)$
Deadlock is a predicate (implicitly) over i, o,s

Special predicate: Deadlock

For every system $S=\left(I_{S}[\boldsymbol{i}, \mathbf{o}, \boldsymbol{s}], T_{S}\left[\mathbf{i}, \mathbf{o}, \boldsymbol{s}, \boldsymbol{i}^{\prime}, \mathbf{o}^{\prime}, \boldsymbol{s}^{\prime}\right]\right)$
Deadlock is a predicate (implicitly) over i, o,s

$$
\begin{aligned}
& \text { A state }\left\{\mathbf{i} \mapsto \boldsymbol{i}_{0}, \mathbf{o} \mapsto \boldsymbol{o}_{0}, \boldsymbol{s} \mapsto \boldsymbol{s}_{0}\right\} \text { satisfies Deadlock, or } \\
& \text { is deadlocked, } \\
& \text { iff } \\
& \text { it satisfies the formula } \exists \mathbf{i}^{\prime} \forall \mathbf{o}^{\prime} \forall \mathbf{s}^{\prime} \neg T_{s}\left[\mathbf{i}, \boldsymbol{o}, \boldsymbol{s}, \mathbf{i}^{\prime}, \boldsymbol{o}^{\prime}, \boldsymbol{s}^{\prime}\right]
\end{aligned}
$$

Uses of Deadlock

Examples

- (check-system S :assumption (a A) :current (d Deadlock) :query (a d)) checks the existence of deadlocked states under assumption A

Uses of Deadlock

Examples

- (check-system S :assumption (a A) :current (d Deadlock) :query (a d)) checks the existence of deadlocked states under assumption A
- (check-system S ... :assumption (a A) : reachable (d Deadlock) :query ($a d$))
checks the reachability of deadlocked states under assumption A

Uses of Deadlock

Examples

- (check-system S :assumption (a A) :current (d Deadlock) :query (a d)) checks the existence of deadlocked states under assumption A
- (check-system S ... :assumption (a A) : reachable (d Deadlock) :query ($a d$))
checks the reachability of deadlocked states under assumption A
- (check-system S
:fairness (f true) : reachable (r R) :query (f r))
checks the reachability of R on infinite (hence deadlock-free) traces

What's intentionally missing (and why)

- Restrictions to just bit vector types
- Stronger syntactic restrictions for :init and :trans formulas
- Direct support for LTL, or your favorite temporal logic, in check-system
- Global (mutable) variables a la SAL
- Parametric components as in SMV or SAL
- Compositional reasoning features (i.e., assume-guarantee contracts)

What's intentionally missing (and why)

- Restrictions to just bit vector types

Other types are useful!

- Stronger syntactic restrictions for :init and :trans formulas
- Direct support for LTL, or your favorite temporal logic, in check-system
- Global (mutable) variables a la SAL
- Parametric components as in SMV or SAL
- Compositional reasoning features (i.e., assume-guarantee contracts)

What's intentionally missing (and why)

- Restrictions to just bit vector types
- Stronger syntactic restrictions for :init and :trans formulas Should be enforced in the user-facing language
- Direct support for LTL, or your favorite temporal logic, in check-system
- Global (mutable) variables a la SAL
- Parametric components as in SMV or SAL
- Compositional reasoning features (i.e., assume-guarantee contracts)

What's intentionally missing (and why)

- Restrictions to just bit vector types
- Stronger syntactic restrictions for :init and :trans formulas
- Direct support for LTL, or your favorite temporal logic, in check-system Generality, mostly
- Global (mutable) variables a la SAL
- Parametric components as in SMV or SAL
- Compositional reasoning features (i.e., assume-guarantee contracts)

What's intentionally missing (and why)

- Restrictions to just bit vector types
- Stronger syntactic restrictions for :init and :trans formulas
- Direct support for LTL, or your favorite temporal logic, in check-system
- Global (mutable) variables a la SAL Tricky to get right
- Parametric components as in SMV or SAL
- Compositional reasoning features (i.e., assume-guarantee contracts)

What's intentionally missing (and why)

- Restrictions to just bit vector types
- Stronger syntactic restrictions for :init and :trans formulas
- Direct support for LTL, or your favorite temporal logic, in check-system
- Global (mutable) variables a la SAL
- Parametric components as in SMV or SAL Some support. The rest is better provided in the user-facing language
- Compositional reasoning features (i.e., assume-guarantee contracts)

What's intentionally missing (and why)

- Restrictions to just bit vector types
- Stronger syntactic restrictions for :init and :trans formulas
- Direct support for LTL, or your favorite temporal logic, in check-system
- Global (mutable) variables a la SAL
- Parametric components as in SMV or SAL
- Compositional reasoning features (i.e., assume-guarantee contracts) Too many different approaches out there

What's intentionally missing (and why)

- Restrictions to just bit vector types

Other types are useful!

- Stronger syntactic restrictions for :init and :trans formulas Should be enforced in the user-facing language
- Direct support for LTL, or your favorite temporal logic, in check-system Generality, mostly
- Global (mutable) variables a la SAL Tricky to get right
- Parametric components as in SMV or SAL Some support. The rest is better provided in the user-facing language
- Compositional reasoning features (i.e., assume-guarantee contracts) Too many different approaches out there

Discussion

What currently, intentionally or unintentionally, missing features would be imperative to have?

Possible Extensions

Multiqueries

```
(check-system S
    :input ((i)}(\mp@subsup{i}{1}{}\mp@subsup{\delta}{1}{})\cdots\cdots(im (im)
    :output (( (ol 
```


- Each query q_{i} can be witnessed by a different trace
- However, each free immutable symbol has the same interpretation across all queries

Executable system definitions

Local and output variables are defined exclusively equationally

```
(define-system TimedSwitch :input ((press Bool)) :output ((sig Bool))
    :local ((s LightStatus) (n Int))
    :inv-def (
        (sig (= s On))
    )
    :init-def (
        (n 0)
        (s (ite press On Off))
    )
    :next-def (
        (s' (ite press' (ite (= s Off) On Off))
            (ite (= s Off) Off (ite (< n 10) On Off))))
        (n' (ite (or (= s Off) (s' Off)) 0 (+ n 1)))
    ))
```

Restrictions: (guaranteeing progressiveness and executability)

- Each local or output variable must be listed in : inv-def or in both :init-def and :next-def
- No definitional cycles
- No uninterpreted symbols

Parametric definitions - Part I

```
(define-system Delay :param ((V Type) (d V) (n Int)) :input ((in V))
    :output ((out V))
    :local ((a (Array Int V)))
    :inv (and
        (= in (select a 0))
        (= out (select a n))
    )
    :init (forall ((i Int)) (=> (<= 1 i n)
                        (= (select a i) d))
    :trans (forall ((i Int)) (=> (<= 1 i n))
                                    (= (select a' i) (select a (- i l))))
            )
)
(check-system Delay :param ((V String) (d "") (n 4)) :input ((in String))
    :output ((out String))
    :local ((a (Array Int String)))
)
```

Restrictions: parameters are immutable (rigid)

Parametric definitions - Part II

New binders:
(foreach $\left.\left.\left(\begin{array}{lll}i_{1} & l_{1} & h_{1}\end{array}\right) \cdots\left(\begin{array}{lll}i_{n} & l_{n} & h_{n}\end{array}\right)\right) \quad F\right)$
(forsome $\left.\left.\left(\begin{array}{llllll}\left(i_{1}\right. & l_{1} & h_{1}\end{array}\right) \cdots\left(i_{n} l_{n} h_{n}\right)\right) \quad F\right)$
where

- i_{1}, \ldots, i_{n} are (integer) identifiers, the bound vars
- l_{k} and h_{k} are integer expressions that can eventually be evaluated statically
- F is a formula with free occurrences of i_{1}, \ldots, i_{n}

Parametric definitions - Part II

New binders:

```
(foreach ((illlll
(forsome ((illlll}\mp@subsup{i}{1}{}\mp@subsup{l}{1}{}\mp@subsup{h}{1}{\prime})\cdots\cdots(in\mp@code{l
```

where

- i_{1}, \ldots, i_{n} are (integer) identifiers, the bound vars
- l_{k} and h_{k} are integer expressions that can eventually be evaluated statically
- F is a formula with free occurrences of i_{1}, \ldots, i_{n}

Semantics

```
    (foreach ((i l h)) F) \equiv (and F[l/i]F[(l+1)/i] \cdotsF[l/i])
    (forsome ((i l h)) F) \equiv (or F[l/i] F[(l+1)/i] \cdotsF[l/i])
(foreach ( (bllll
(forsome (b1 \cdots. b b ) F) \equiv (forsome (b) (forsome (bllll
```


Parametric definitions - Part II

New binders:

```
(foreach ((illl}\mp@subsup{i}{1}{
(forsome ((illlll
```

where

- i_{1}, \ldots, i_{n} are (integer) identifiers, the bound vars
- l_{k} and h_{k} are integer expressions that can eventually be evaluated statically
- F is a formula with free occurrences of i_{1}, \ldots, i_{n}

Note

- (foreach ((i l h)) F) \equiv true when $l>h$
- (forsome $((i / h)) F) \equiv$ false when $/>h$
- (foreach ((i l h)) F) $\equiv F \equiv(f o r s o m e ~((i / h)) ~ F)$ when $l=h$

Examples

```
(define-system A :input ((i \tau)) :output ((o \tau)) ...)
; synchronous composition of A with itself n times
(define-system C :param ((n Int))
    :input ((i \tau))
    :output ((o \tau))
    :local ((s (Array Int \tau))
    :inv (and
            (= i (select s 0))
            (= o (select s n))
            (foreach ((k 1 n))
            (A (select s (- k l)) (select s k)))
)
)
```

