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Intermediate Language (IL) goals

The IL has been designed so that it

is a general enough intermediate target language for MC

® can support a variety of user-facing modeling languages

can be directly supported by tools or compiled to lower level
languages

can leverage SAT/SMT technology
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General design principles

IL models are meant to be produced and processed mostly
by tools
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IL models are meant to be produced and processed mostly
by tools

So the IL was designed to have

simple, easily parsable syntax

arich set of data types

little syntactic sugar, at least initially
well-understood semantics

a small but comprehensive set of commands

simple translations to lower level languages
such as Btor2 and Aiger
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Design principles — implications

1. Little direct support for many of the features offered by

® hardware modeling languages such as VHDL and Verilog or

® system modeling languages such as SMV, TLA+, PROMELA, UNITY, Lustre
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Design principles — implications

1. Little direct support for many of the features offered by

® hardware modeling languages such as VHDL and Verilog or

® system modeling languages such as SMV, TLA+, PROMELA, UNITY, Lustre

2. However, enough capability to reduce problems
in those languages to problems in the IL
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Current proposal

Extension the SMT-LIB language with new commands to define and check systems
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Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

defines a transition system via the use of SMT formulas

generally imposes minimal syntactic restrictions on those formulas
is parametrized by a state signature, a sequence of typed variables
partitions state variables into input, output and local variables

is hierarchical, i.e., may include (instances of) previously defined systems as
subsystems

can encode both synchronous and asynchronous system composition
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Current focus

Finite-state systems
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Current focus

Finite-state systems

but with an eye to infinite-state systems too
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Technical preliminaries

Formally, a transition system is a pair S of predicates of the form

S = (ks[i,o,s], Ts[i,0,s,i’,0",s])
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S = (ks[i,o,s], Ts[i,0,s,i’,0",s])

where
¢ jand i’ are two tuples of input variables with the same length and type
® oand o’ are two tuples of output variables with the same length and type
® sand s’ are two tuples of local variables with the same length and type
® /s, theinitial state condition is a formula with free vars from [i, 0, s]
® Ts, the transition condition is a formula with free vars from [i,0.s.i’, 0", ']

Note: A (full) state of Sis a valuation of (i, 0, s)
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SMT-LIB commands

Asin SMT-LIB

(set-logic L)

(declare-sort s n)

(define-sort s (u; --- u,) 7)
(declare-fun f ((x; o1) - (x, 0,)) o)
(define-fun f ((x; o1) -+ (X, op)) o t)

(declare-datatype d (---))
(assert F)

(perhaps a few more)
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SMT-LIB commands

New

(define-system S ---)

(check-system S ---)

(declare-enum-sort s (c¢; ---

Cn))
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Logical semantics

Adefine-system command implicitly defines a model (i.e., a Kripke structure) of
First-Order Linear Temporal Logic (FO-LTL)
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Logical semantics

Adefine-system command implicitly defines a model (i.e., a Kripke structure) of
First-Order Linear Temporal Logic (FO-LTL)
An FO-LTL formula F[f. x, x'| with

¢ free (immutable) constants/functions (aka, uninterpreted symbols) from f
e free (mutable) variables from x, x’

is satisfiable in an SMT theory 7 if there is

1. a7 -interpretation 7 of f and
2. aninfinite trace 7 over x in 7

that satisfy F
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Trace semantics

Fix
® an FOL-LTL formula F[f, x, x'| over a theory T
® a7 -interpretation 7 of f

® aninfinite trace 7 = so, 51, ... wheres; is an assignment of x into 7 forall/ > 0

Let 7 = s;, s41,...foralli >0
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Trace semantics

Fix
® an FOL-LTL formula F[f, x, x'| over a theory T
® a7 -interpretation 7 of f

® aninfinite trace 7 = so, 51, ... wheres; is an assignment of x into 7 forall/ > 0

Let 7' = s, 551, ...foralli >0

(Z,7) satisfies F ,written (Z. ) = F, iff

1. Z[x > so(x), x' + si(x)] satisfiesF  when F is atomic

2. (Z,n) =G when F is =G

3. (Z.7n)=Gjforj=1.2 when Fis Gy A G,

4. (Z,7m")EG when Fis next G
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Finite-Trace semantics

Fix

® an FOL-LTL formula F[f, x, x'| over a theory T

® a7 -interpretation 7 of f

® aninfinite trace 7 = so. 51, . ..

Let 7' = s, 551, ...foralli >0

(z,

No ok e

o

where s; is an assignment of x into 7 forall/ > 0

) n-satisfies F for some n > 0, written (Z, 7) |=, F, iff

T[x = so(x), x" + s1(x)] satisfies F

(Z,7) #n G

(Z,7) =0 G forj = 1,2

(Z,7") =no1 Gandn — 1 >0

(Z,7") =y i G foralli=0,....,n—1
(Z,7") =pi G forsomei=0,...,n—1

when F is atomic
when F is =G

when Fis Gy A G,
when F is next G

when F is always G
when F is eventually G
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System definition command (Base case)

(define-system S

:input ((ip 61) +-+ (im 6m)) ; input vars

routput ( (o m) -+ (o, 7)) ; output vars

:local ((sy 1) -+ (sp 9)) ; local vars

:init / ; initial state formula
:trans T ; transition formula
:inv P ; invariant formula
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System definition command (Base case)

(define-system S

:input ((iy 01) «++ (im 6m)) ; input vars

routput ( (o m) -+ (o, 7)) ; output vars

:local ((sy 1) -+ (sp 9)) ; local vars

:init / ; initial state formula
:trans T ; transition formula
:inv P ; invariant formula

)

where
® eachvar gets a primed copy: i/, ..., 0,..., 5, ...
® /and P are one-state formulas (over unprimed vars only)
® T isatwo-state formula (over unprimed and primed vars)

all attributes are optional and their order is immaterial
» however, :input, :output, :local must occur before :init, :trans, :inv
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System definition command (Base case)

(define-system S

:input ((iy 01) «++ (im 6m)) ; input vars

routput ( (o m) -+ (o, 7)) ; output vars

:local ((sy 1) -+ (sp 9)) ; local vars

:init / ; initial state formula
:trans T ; transition formula
:inv P ; invariant formula

Semantics
S=(Is,Ts) = (l[i,o,s], Pli,0,s] A T[i,o0,s,i’ 0’ s])
wherei = (i1, ... in),0=(01,...,05),5 = (51,...,5,)

S denotes the set of all infinite traces that satisfy the FO-LTL formula

Is A always Ts
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System definition command (Base case)

(define-system S

:input ((iy 01) «++ (im 6m)) ; input vars

routput ( (o m) -+ (o, 7)) ; output vars

:local ((sy 1) -+ (sp 9)) ; local vars

:init / ; initial state formula
:trans T ; transition formula
:inv P ; invariant formula

Note:

Systems are meant to be progressive: every reachable state has a successor wrt Ts
However, they may not be because of the generality of T and P

(It is possible to define deadlocking systems)
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Default values for missing attributes

attribute

:input
:output
:local
rinit
:trans
tinv
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Examples

; The output of Delay is initially in [0,10] and
; then is the previous input
(define-system Delay
:input ((in Int))
:output ((out Int))
:init (<= 0 out 10) ; more than one possible initial output
:trans (= out’ in) ; the new output is the old input
)

; A clocked lossless channel, stuttering when clock is false
(define-system StutteringClockedCopy
:input ((clock Bool) (in Int))
routput ((out Int))
:init (=> clock (= out in)) ; out is arbitrary when clock is false
:trans (ite clock (= out’ in’) (= out’ out))
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Examples
(declare-datatype Event (par (X) (Absent) (Present (val X))))

; An event-triggered channel that arbitrarily loses its input data
(define-system LossyIntChannel

:input ((in (Event Int)))

:output ((out (Event Int)))

:inv (or (= out in) (= out Absent))
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Examples
(declare-datatype Event (par (X) (Absent) (Present (val X))))

; An event-triggered channel that arbitrarily loses its input data
(define-system LossyIntChannel

:input ((in (Event Int)))

:output ((out (Event Int)))

:inv (or (= out in) (= out Absent))

; Equivalent formulation using unconstrained local state
(define-system LossyIntChannel

:input ((in (Event Int)))

:output ((out (Event Int)))

:local ((s Bool))

; at all times, whether the input event is transmitted

; or not depends on value of s

:inv (= out (ite s in Absent))
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Example: timed light switch

TimedSwitch models atimed light switch where, once on, the light stays on for 10
steps unless it is switched off before

A Boolean input is provided as a toggle signal
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Example: timed light switch

(define-enum-sort LightStatus (On 0ff))

; Guarded-transitions-style definition

(define-system TimedSwitch :input ((press Bool))

:local ((s LightStatus) (n Int))
:inv (= sig (= s 0n))

:init

(and

(=n 0)
(ite press (= s On) (= s 0ff))

)

:trans (and

(=>

(and
(and
(and
(and
(and
(and
(and
(and

~ e~~~ o~~~ —~

s 0ff)
s’ 0ff)

(not press’))
(=n"n)))

s 0ff) press’)

s’ 0n)

(=n’n)))

s On) (not press’) (< 10 n))

s’ 0n)

(=n" (+n1))))

s On) (or press’ (>= n 10))

s’ 0ff)

(=n"0)))

routput ((sig Bool))

off
off

->

off -

On
On
On

On -

off

->

15/36



Example: timed light switch

(define-enum-sort LightStatus (On 0ff))

; Set-of-transitions-style definition
(define-system TimedSwitch2 :input ((press Bool)) :output ((sig Bool))
:local ((s LightStatus) (n Int))
:inv (= sig (= s 0n))
:init (and
(=n 0)
(ite press (= s On) (= s 0ff))
)
:trans
(let (; Transitions
(stay-off (and (
(turn-on (and (
(stay-on (and (
(=n
(
s

s Off) (not press’) (= s’ Off) (
s 0ff) press’ (= s’ On) (= n' n)
s On) (not press’) (< n 10) (= s
(+n1))))

s On) (or press’ (>= n 10))

0ff) (=n’ 0)))

(turn-off (and
(=

)
(or stay-off turn-on turn-off stay-on)

)
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Example: timed light switch

(define-enum-sort LightStatus (On 0ff))

; Equational-style definition
(define-system TimedSwitch3 :input ((press Bool)) :output ((sig Bool))
:local ((s LightStatus) (n Int))
:inv (= sig (= s 0n))
:init (and
(=n 0)
(= s (ite press On 0ff))
)
:trans (and
(= s’ (ite press’ (flip s)
(ite (or (= s Off) (>= n 10)) Off
On)))
(= n’ (ite (or (= s Off) (s’ 0ff)) O
(+n1)))
)
)

(define-fun flip ((s LightStatus)) LightStatus (ite (= s O0ff) On 0ff))
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Special predicate: OnlyChange

For every system S = (/s[i,0,s], Ts[i,0,s.i",0",s])

OnlyChange is a multi-arity predicate over o, s, o', s’
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OnlyChange is a multi-arity predicate over o, s, o’ s’:

OnlyChange(xy,...,x,) = /\{y’ =ylye(ousuo’ Us)\ {x,..., Xn}t}

Fixes the value of all output and local variables notin (x, . . ., Xn)

It is a useful abbreviation in transition conditions to express transitions
that leave many state variables unchanged
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Special predicate: OnlyChange

For every system S = (/s[i,0,s], Ts[i.0,s,i".0".s'])

OnlyChange is a multi-arity predicate over o, s, o’ s’:

It is a useful abbreviation in transition conditions to express transitions
that leave many state variables unchanged

Note: OnlyChange(xy, ..., x,) does not actually constrain the x;’s in any way
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Example

; increment n; iff n=i; n; is 0 initially if not incremented
(define-system Increment :input ((i Int))

:output ((inc Bool) (nl Int) (n2 Int) --- (n5 Int))
:inv (= inc (<= 1 i 5))
:init (and

(= (=n1l) (and (=nl 1) (=n2 n3 n4 n50)))

(;> (=n5) (and (=n51) (=nl n2n3nd 0)))
(=> (not (<= 1n5)) (=nln2n3nd4dn50))
)

:trans (and
(== (=n" 1) (and (= nl" (+ nl 1)) (OnlyChange inc nl)))

(;> (=n"5) (and (= n5" (+ n5 1)) (OnlyChange inc n5)))
> (not (<= 1 n’" 5)) (OnlyChange inc))
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System definition — Synchronous composition

(define-system S

:inpUt (s ()1) <o (im (5/77)) H inpUt vars
routput  ( (o1 1) --- (on 7)) ; output vars
:local ((s1 o1) -+ (sp &)) ; local vars
isubsys (N1 (S1 X1 y1)) ; component subsystem
:subsys  (Ng (Sq Xg ¥q)) ; component subsystem
)
where

1. g > 0and each S;is the name of a system other than S
Si...., Sy need not be all distinct

each /V; is a local synonym for S;, with Ny, ... N, distinct

each x; consists of S’s variables of the same type as S;’s input

each y; consists of S’s local/output variables of the same type as S;’s output

S U e

the directed subsystem graph rooted at S is acyclic
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System definition — Synchronous composition

(define-system S

:input ((ip 61) -+ (im Om)) ; input vars
routput  ( (o1 1) --- (0o, 7)) ; output vars
:local ((s1 o1) -+ (sp &p)) ; local vars
:subsys (N1 (S1 x1 y1)) ; component subsystem
:subsys  (Ng (Sq Xg ¥q)) ; component subsystem
)
Semantics
Let Sy = (Ik[ix, 0k, sk, Tilix, 0k, sk, i, 0},5s,])fork =1,... g,withs:, ..., s;alldistinct
Let i = (i1,...,im), 0 = (01,...,00), S =S1,...,S¢,S1,---,5q
S = (Isi, 0,s], Ts[i, 0,s,i",0",s])
with Is = AJ_ %, Yi, s Ts = Ny TelXi, Yi, Se, Xk, Vi, i
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System definition — Synchr. composition extended

(define-system S

:input ((ip 61) -+ (im Om)) ; input vars

routput  ( (o1 1) --- (0o, 7)) ; output vars
:local ((s1 o1) -+ (sp &p)) ; local vars
:subsys (N1 (S1 x1 y1)) ; component subsystem
:subsys  (Ng (Sq Xg ¥q)) ; component subsystem
:init / ; initial state formula
:trans T ; transition formula
rinv P ; invariant formula

)

Semantics

S = (Is[i, 0,s], Ts[i, 0,s,i’, 0", s'])

with Is = I AN Ie[Xe Vi i Ts = TAPANN_ Telx, Yie, Sk X Vies Sk
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Examples

(define-system Latch :input ((s Bool) (r Bool)) :output ((o Bool))
:local ((b Bool))
:trans (= o’ (or (and s (or (not r) b))
(and (not s) (not r) o)))
)

(define-system OneBitCounter :input ((inc Bool) (start Bool))
:output ((out Bool) (carry Bool))
:local ((set Bool) (reset Bool))
:subsys (L (Latch set reset out))
:inv (and (= set (and inc (not reset)))
(= reset (or carry start))
(= carry (and inc out)))
)

(define-system ThreeBitCounter
:input ((inc Bool) (start Bool))
:output ((out® Bool) (outl Bool) (out2 Bool))
:local ((car® Bool) (carl Bool) (car2 Bool))
:subsys (Cl (OneBitCounter inc start out® car0))
:subsys (C2 (OneBitCounter car® start outl carl))
:subsys (C3 (OneBitCounter carl start out2 car2))
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Expressiveness

define-system + SMT-LIB commands and types appear sufficient
to allow faithful reductions from (full or large fragment of)

Moore and Mealy machines
I/0 automata

SMV and nuXMV

UNITY

TLA+

Reactive Modules

Lustre

SAL
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System checking command

(check-system S

:input
:output
:local
:assumption
:reachable
:fairness
:current
rquery

(im 0m))
(on 1))
(sp 0p))

renaming of S’s input vars
renaming of S’'s output vars
renaming of S’'s local vars

; environmental assumption

reachability condition

; fairness condition
; initiality condition
; trace query to be checked
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System checking command

(check-system S

:input (
:output (
:local (
:assumption (
:reachable (
:fairness (
:current (
rquery (

)

(ip 01)
(01 71
(s1 0

a A)
r R)
f F)
c C)
q

(91

where

)

1)

© 9q))

renaming of S’s input vars
renaming of S’'s output vars
renaming of S’'s local vars
environmental assumption
reachability condition
fairness condition
initiality condition

trace query to be checked

a,r,f,c,q areidentifiers; each g; ranges over {a, r. f, c}

C is a one-state (non-temporal) formula over the given vars

A, R, F are one- or two-state (non-temporal) formulas over the given vars

all attributes are optional and their order is immaterial

all attributes but the first three are repeatable
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System checking command

(check-system S

:input
:output
:local
:assumption
:reachable
:fairness
:current
rquery

(im 0m))
(on 1))
(sp 0p))

renaming of S’s input vars
renaming of S’'s output vars
renaming of S’'s local vars
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; fairness condition
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; trace query to be checked
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System checking command semantics

(check-system S

:input ( (i1 61) -+ (im 6m)) ; renaming of S’s input vars
:output ((oy 1) -+ (on 1)) ; renaming of S’'s output vars
:local ((s1 01) -+ (sp ) ) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition

:current (c C) ; initiality condition

:query (g (ar))

)

Query g succeeds iff the formula below is n-satisfiable in LTL for some n > 0
Is A always Ts A always A A eventually R

where /s and Ts are the initial state and transition predicate of S modulo the renamings
above
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:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition

:current (c C) ; initiality condition

:query (g (a fr))

)

Query g succeeds iff the formula below is satisfiable in LTL
Is A always Ts A always A A eventually R A always eventually F

where /s and Ts are the initial state and transition predicate of S modulo the renamings
above
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System checking command semantics

(check-system S

:input ( (i1 61) -+ (im 6m)) ; renaming of S’s input vars
:output ((oy 1) -+ (on 1)) ; renaming of S’'s output vars
:local ((s1 01) -+ (sp ) ) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition

:current (c C) ; initiality condition

:query (g (acr))

)

Query g succeeds iff the formula below is n-satisfiable in LTL for some n > 0
C A always Ts A always A A eventually R

where /s and Ts are the initial state and transition predicate of S modulo the renamings
above
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System checking command semantics

(check-system S

:input ( (i1 61) -+ (im 6m)) ; renaming of S’s input vars
:output ((oy 1) -+ (on 1)) ; renaming of S’'s output vars
:local ((s1 01) -+ (sp ) ) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition

:current (c C) ; initiality condition

rquery (g (91 -+ 99)) ; trace query to be checked

)

For each successful query, the model checker is expected to produce
® a7 -interpretation 7 (of the free immutable symbols) and
® awitnessing tracein Z
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System checking command semantics

(check-system S

:input ( (i1 61) -+ (im 6m)) ; renaming of S’s input vars
:output ((oy 1) -+ (on 1)) ; renaming of S’'s output vars
:local ((s1 01) -+ (sp ) ) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition

:current (c C) ; initiality condition

rquery (g (91 -+ 99)) ; trace query to be checked

)

For each successful query, the model checker is expected to produce
® a7 -interpretation 7 (of the free immutable symbols) and
® awitnessing tracein Z

Different queries may be given different interpretations and traces
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Example 1

(check-system NonDetArbiter
:input ((regl Bool) (req2 Bool))
:output ((grl Bool) (gr2 Bool))

; There are never concurrent requests
:assumption (al (not (and reql reg2)))

; The same request is never issued twice in a row
:assumption (a2 (and (=> reql (not reql’))
(=> regq2 (not req2’))))

; Neg of: Every request is immediately granted
:reachable (r (not (and (=> reql grl) (=> req2 gr2))))

; check the reachability of r under assumptions al and a2

:query (q (al a2 r))
)
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Example 2 — Temporal queries

(define-system Historically :input ((b Bool)) :output ((hb Bool))
:init (= hb b) :trans (= hb’ (and b’ hb)))

(define-system Before :input ((b Bool)) :output ((bb Bool))
:init (= bb’ false) :trans (= bb’ b))

(define-system Count :input ((b Bool)) :output ((c Int))
:init (= ¢ (ite b 1 0)) :trans (= c’ (+ ¢ (ite b 0 1))))

(define-system Monitor :input ((rl Bool) (r2 Bool)) :output ((gl Bool) (g2 Bool))
:local ((al Bool) (a2 Bool) (b® Bool) (bl Bool) (b2 Bool)
(h1 Bool) (h2 Bool) (c Int) (bf Bool))

:subsys (A (NonDetArbiter rl r2 gl g2))

:subsys (H1 (Historically al hl))

:subsys (H2 (Historically a2 h2))

:subsys (C (Count gl c))

:subsys (B (Before b0 bf))

:inv (and
(= al (and (not rl) (not r2))) (= a2 (and (not gl) (not g2))) (= b0 (= c 4))
(= bl (== hl h2)) ; bl = if there have been no requests, there have been no grants
(= b2 (== bf (not gl))))) ; b2 = a request is granted at most 4 times

(check-system Monitor :input ((rl Bool) (r2 Bool))
:output ((gl Bool) (g2 Bool))
:local (- _ _ (bl Bool) (b2 Bool) _ _ _ _)
:assumption (A (not (and rl r2))) :reachable (P (not (and bl b2)))
:query (Q (A P))
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Example 3 — Multiple queries

(check-system NonDetArbiter :input ((rl Bool) (r2 Bool))
routput ((gl Bool) (g2 Bool))
:assumption (a (not (and rl r2)))

; Neg of: Every request is (immediately) granted
:reachable (pl (not (and (=> rl gl) (=> r2 g2))))

; Neg of: In the absence of other requests, every request is granted
:reachable (p2 (not (=> (!=rl r2) (and (=> rl gl) (=> r2 g2)))))

; Neg of: A request is granted only if present

:reachable (p3 (not (and (=> gl rl) (=> g2 r2))))

; Neg of: At most one request is granted at any one time
:reachable (p4 (not (not (and gl g2))))

; Neg of: In case of concurrent requests, one of them is always granted
:reachable (p5 (not (=> (and rl r2) (or gl g2))))

:query (ql (a pl)) :query (g2 (a p2)) :query (g3 (a p3))
:query (g4 (a p4)) :query (g5 (a p5))
)

Each query can be witnessed by a different 7-interpretation and trace in it
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Output format for check-system

(define-system A :input ((i o4)) :output ((o 74)) :local ((s 64)) ... )
(define-system B :input ((i og)) :output ((o 7)) :local ((s 6g))
isubsys ( -+ (S (A ---)) --+) ... )
(check-system B -.- :fairness (f ---) :reachable (r ---)
iquery (g (r f---)) -+ )
Output:
(response
:result ((q sat) ---) ; result is sat or unsat for each query
:model (---) ; SMT-LIB interpretation of free symbols

:trail (p (; state sequence

((i i) (0 00) (s so) (S::iiso) (S::0 0s0) (S:i:s sso) (rro) (f fo) ---

(i i) (0 ox) (s sk) (Siwiisy) (S::0 05y) (Siis ssy) (rrg) (F fi) -

)
)
strail ([ ( -+ )
:trace (g :prefix p :lasso [) ; witness trace for query g is pl¥

)
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Special predicate: Deadlock

For every system S = (/s[i,0,s], Ts[i,0,s,i", 0", s'])

Deadlock is a predicate (implicitly) overi.o,s
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Special predicate: Deadlock

For every system S = (/s[i,0,s], Ts[i,0,s,i", 0", s'])

Deadlock is a predicate (implicitly) overi.o,s

Astate {i — iy, 0+ 09, s > S} satisfies Deadlock, or
is deadlocked,

iff
it satisfies the formula 5i" Vo’ Vs’ —Ts[i.0.s,i’, 0’ 5]
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Uses of Deadlock

Examples
® (check-system S ---

:assumption (a A) :current (d Deadlock) :query (a d))
checks the existence of deadlocked states under assumption A
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Uses of Deadlock

Examples

® (check-system S ---
:assumption (a A) :current (d Deadlock) :query (a d))
checks the existence of deadlocked states under assumption A

® (check-system S ---
:assumption (a A) :reachable (d Deadlock) :query (a d))
checks the reachability of deadlocked states under assumption A

® (check-system S ---
:fairness (f true) :reachable (r R) :query (f r))

checks the reachability of R on infinite (hence deadlock-free) traces
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What’s intentionally missing (and why)

® Restrictions to just bit vector types
® Stronger syntactic restrictions for :init and :trans formulas

® Direct support for LTL, or your favorite temporal logic, in check-system

Global (mutable) variables a la SAL

® Parametric components asin SMV or SAL

® Compositional reasoning features (i.e., assume-guarantee contracts)
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Discussion

What currently, intentionally or unintentionally,
missing features would be imperative to have?
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Possible Extensions
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Multiqueries

(check-system S
1nput ( (Il (Sl) (’m 5m))
:output ((oy 1) -+ (op ™))

tqueries ((g1 (911 -+ 91n)) -+ (qk (Gk1 - Gkn)))
)

® Each query g; can be witnessed by a different trace

® However, each free immutable symbol has the same interpretation
across all queries
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Executable system definitions

Local and output variables are defined exclusively equationally

(define-system TimedSwitch :input ((press Bool)) :output ((sig Bool))
:local ((s LightStatus) (n Int))
:inv-def (
(sig (= s 0On))
)
rinit-def (
(n 0)
(s (ite press On 0ff))
)
:next-def (
(s’ (ite press’ (ite (= s 0ff) On 0ff))
(ite (= s 0ff) Off (ite (< n 10) On 0ff))))
(ite (or (= s Off) (s’ Off)) @ (+ n 1)))

’

(n
))
Restrictions: (guaranteeing progressiveness and executability)

® Each local or output variable must be listed in : inv-def or
inboth :init-def and :next-def

® No definitional cycles

® No uninterpreted symbols
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Parametric definitions — Part |

(define-system Delay :param ((V Type) (d V) (n Int)) :input ((in V))
routput ((out V))
:local ((a (Array Int V)))
:inv (and
(= in (select a 0))
(= out (select a n))
)
:init (forall ((i Int)) (=> (<=1 1i n)
(= (select a i) d))
)
:trans (forall ((i Int)) (=> (<=1 1i n))
(= (select a’ i) (select a (- i 1))))
)
)

(check-system Delay :param ((V String) (d "") (n 4)) :input ((in String))
routput ((out String))
:local ((a (Array Int String)))

) S

Restrictions: parameters are immutable (rigid)
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Parametric definitions — Part Il

New binders:

(foreach ((iy L h1) -+ (in I hn)) F)
(forsome ((ix 1 h1) -+ (in I hy)) F)
where

® ji,..., I, are (integer) identifiers, the bound vars

® |, and hy are integer expressions that can eventually be evaluated statically

® [isaformulawith free occurrences of i1, ...,/

"/N
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Parametric definitions — Part Il

New binders:

(foreach ((ix i h1) --- (in ln hs)) F)
(forsome ((ih i h1) --- (in ln hp)) F)
where

® ji,..., I, are (integer) identifiers, the bound vars
® |, and hy are integer expressions that can eventually be evaluated statically

® [isaformula with free occurrences of iy, ..., i,

Semantics
(foreach ((i [ h)) F) = (and F[l/i] F[({+1)/]] --- F[l/i])
(forsome ((i [ h)) F) = (or F[l/i] F[(l+1)/i] --- F[l/i])
(foreach (by --- by,) F) = (foreach (by) (foreach (b, --- by) F))
(forsome (by --- by) F) = (forsome (by) (forsome (b, --- by) F))
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Parametric definitions — Part Il

New binders:

(foreach ((ix i h1) --- (in ln hs)) F)
(forsome ((i1 h h1) -+ (in Iy hn)) F)
where

® ji,..., I, are (integer) identifiers, the bound vars
® |, and hy are integer expressions that can eventually be evaluated statically

® [isaformula with free occurrences of iy, ..., i,

Note
® (foreach ((i [ h)) F) = true when/>h
® (forsome ((i [ h)) F) = false when!>h
® (foreach ((i [ h)) F) = F = (forsome ((i [ h)) F) whenl/=h
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Examples

(define-system A :input ((i 7)) :output ((o 7)) ...

; synchronous composition of A with itself n times

(define-system C :param ((n Int))

tinput ((i 7))

routput ((o 7))

:local ((s (Array Int 7))

:inv (and
(=i (select s 0))
(= o (select s n))
(foreach ((k 1 n))

(A (select s (- k 1)) (select s k)))
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