
A Model Checking Intermediate Language

Initial Proposal

The NSF:CCRI Team

January 16, 2023

1 / 36



Intermediate Language (IL) goals

The IL has been designed so that it

• is a general enough intermediate target language for MC

• can support a variety of user-facing modeling languages

• can be directly supported by tools or compiled to lower level
languages

• can leverage SAT/SMT technology

2 / 36



General design principles

IL models are meant to be produced and processed mostly
by tools

So the IL was designed to have

• simple, easily parsable syntax
• a rich set of data types
• little syntactic sugar, at least initially
• well-understood semantics
• a small but comprehensive set of commands
• simple translations to lower level languages

such as Btor2 and Aiger

3 / 36



General design principles

IL models are meant to be produced and processed mostly
by tools

So the IL was designed to have

• simple, easily parsable syntax
• a rich set of data types
• little syntactic sugar, at least initially
• well-understood semantics
• a small but comprehensive set of commands
• simple translations to lower level languages

such as Btor2 and Aiger

3 / 36



General design principles

IL models are meant to be produced and processed mostly
by tools

So the IL was designed to have

• simple, easily parsable syntax
• a rich set of data types
• little syntactic sugar, at least initially
• well-understood semantics
• a small but comprehensive set of commands
• simple translations to lower level languages

such as Btor2 and Aiger

3 / 36



General design principles

IL models are meant to be produced and processed mostly
by tools

So the IL was designed to have

• simple, easily parsable syntax
• a rich set of data types
• little syntactic sugar, at least initially
• well-understood semantics
• a small but comprehensive set of commands
• simple translations to lower level languages

such as Btor2 and Aiger

3 / 36



General design principles

IL models are meant to be produced and processed mostly
by tools

So the IL was designed to have

• simple, easily parsable syntax
• a rich set of data types
• little syntactic sugar, at least initially
• well-understood semantics
• a small but comprehensive set of commands
• simple translations to lower level languages

such as Btor2 and Aiger

3 / 36



General design principles

IL models are meant to be produced and processed mostly
by tools

So the IL was designed to have

• simple, easily parsable syntax
• a rich set of data types
• little syntactic sugar, at least initially
• well-understood semantics
• a small but comprehensive set of commands
• simple translations to lower level languages

such as Btor2 and Aiger

3 / 36



General design principles

IL models are meant to be produced and processed mostly
by tools

So the IL was designed to have

• simple, easily parsable syntax
• a rich set of data types
• little syntactic sugar, at least initially
• well-understood semantics
• a small but comprehensive set of commands
• simple translations to lower level languages

such as Btor2 and Aiger

3 / 36



General design principles

IL models are meant to be produced and processed mostly
by tools

So the IL was designed to have

• simple, easily parsable syntax
• a rich set of data types
• little syntactic sugar, at least initially
• well-understood semantics
• a small but comprehensive set of commands
• simple translations to lower level languages

such as Btor2 and Aiger

3 / 36



Design principles — implications

1. Little direct support for many of the features offered by
• hardware modeling languages such as VHDL and Verilog or

• system modeling languages such as SMV, TLA+, PROMELA, UNITY, Lustre

2. However, enough capability to reduce problems
in those languages to problems in the IL

4 / 36



Design principles — implications

1. Little direct support for many of the features offered by
• hardware modeling languages such as VHDL and Verilog or

• system modeling languages such as SMV, TLA+, PROMELA, UNITY, Lustre

2. However, enough capability to reduce problems
in those languages to problems in the IL

4 / 36



Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

• defines a transition system via the use of SMT formulas

• generally imposes minimal syntactic restrictions on those formulas

• is parametrized by a state signature, a sequence of typed variables

• partitions state variables into input, output and local variables

• is hierarchical, i.e., may include (instances of) previously defined systems as
subsystems

• can encode both synchronous and asynchronous system composition

5 / 36



Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

• defines a transition system via the use of SMT formulas

• generally imposes minimal syntactic restrictions on those formulas

• is parametrized by a state signature, a sequence of typed variables

• partitions state variables into input, output and local variables

• is hierarchical, i.e., may include (instances of) previously defined systems as
subsystems

• can encode both synchronous and asynchronous system composition

5 / 36



Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

• defines a transition system via the use of SMT formulas

• generally imposes minimal syntactic restrictions on those formulas

• is parametrized by a state signature, a sequence of typed variables

• partitions state variables into input, output and local variables

• is hierarchical, i.e., may include (instances of) previously defined systems as
subsystems

• can encode both synchronous and asynchronous system composition

5 / 36



Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

• defines a transition system via the use of SMT formulas

• generally imposes minimal syntactic restrictions on those formulas

• is parametrized by a state signature, a sequence of typed variables

• partitions state variables into input, output and local variables

• is hierarchical, i.e., may include (instances of) previously defined systems as
subsystems

• can encode both synchronous and asynchronous system composition

5 / 36



Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

• defines a transition system via the use of SMT formulas

• generally imposes minimal syntactic restrictions on those formulas

• is parametrized by a state signature, a sequence of typed variables

• partitions state variables into input, output and local variables

• is hierarchical, i.e., may include (instances of) previously defined systems as
subsystems

• can encode both synchronous and asynchronous system composition

5 / 36



Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

• defines a transition system via the use of SMT formulas

• generally imposes minimal syntactic restrictions on those formulas

• is parametrized by a state signature, a sequence of typed variables

• partitions state variables into input, output and local variables

• is hierarchical, i.e., may include (instances of) previously defined systems as
subsystems

• can encode both synchronous and asynchronous system composition

5 / 36



Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

• defines a transition system via the use of SMT formulas

• generally imposes minimal syntactic restrictions on those formulas

• is parametrized by a state signature, a sequence of typed variables

• partitions state variables into input, output and local variables

• is hierarchical, i.e., may include (instances of) previously defined systems as
subsystems

• can encode both synchronous and asynchronous system composition

5 / 36



Current proposal

Extension the SMT-LIB language with new commands to define and check systems

Each system definition

• defines a transition system via the use of SMT formulas

• generally imposes minimal syntactic restrictions on those formulas

• is parametrized by a state signature, a sequence of typed variables

• partitions state variables into input, output and local variables

• is hierarchical, i.e., may include (instances of) previously defined systems as
subsystems

• can encode both synchronous and asynchronous system composition

5 / 36



Current focus

Finite-state systems

but with an eye to infinite-state systems too

6 / 36



Current focus

Finite-state systems

but with an eye to infinite-state systems too

6 / 36



Technical preliminaries

Formally, a transition system is a pair S of predicates of the form

S = ( IS[i, o, s], TS[i, o, s, i′, o′, s′] )

where
• i and i′ are two tuples of input variables with the same length and type
• o and o′ are two tuples of output variables with the same length and type
• s and s′ are two tuples of local variables with the same length and type
• IS, the initial state condition is a formula with free vars from [i, o, s]
• TS, the transition condition is a formula with free vars from [i, o, s, i′, o′, s′]

Note: A (full) state of S is a valuation of (i, o, s)

7 / 36



Technical preliminaries

Formally, a transition system is a pair S of predicates of the form

S = ( IS[i, o, s], TS[i, o, s, i′, o′, s′] )

where
• i and i′ are two tuples of input variables with the same length and type
• o and o′ are two tuples of output variables with the same length and type
• s and s′ are two tuples of local variables with the same length and type
• IS, the initial state condition is a formula with free vars from [i, o, s]
• TS, the transition condition is a formula with free vars from [i, o, s, i′, o′, s′]

Note: A (full) state of S is a valuation of (i, o, s)

7 / 36



Technical preliminaries

Formally, a transition system is a pair S of predicates of the form

S = ( IS[i, o, s], TS[i, o, s, i′, o′, s′] )

where
• i and i′ are two tuples of input variables with the same length and type
• o and o′ are two tuples of output variables with the same length and type
• s and s′ are two tuples of local variables with the same length and type
• IS, the initial state condition is a formula with free vars from [i, o, s]
• TS, the transition condition is a formula with free vars from [i, o, s, i′, o′, s′]

Note: A (full) state of S is a valuation of (i, o, s)

7 / 36



SMT-LIB commands

As in SMT-LIB

(set-logic L)

(declare-sort s n)

(define-sort s (u1 · · · un) τ)

(declare-fun f ((x1 σ1) · · · (xn σn)) σ)

(define-fun f ((x1 σ1) · · · (xn σn)) σ t)

(declare-datatype d ( · · · ))

(assert F)

(perhaps a few more)

8 / 36



SMT-LIB commands

New

(define-system S · · · )

(check-system S · · · )

(declare-enum-sort s (c1 · · · cn))

8 / 36



Logical semantics

A define-system command implicitly defines a model (i.e., a Kripke structure) of
First-Order Linear Temporal Logic (FO-LTL)

An FO-LTL formula F[f , x, x′] with

• free (immutable) constants/functions (aka, uninterpreted symbols) from f
• free (mutable) variables from x, x′

is satisfiable in an SMT theory T if there is

1. a T -interpretation I of f and
2. an infinite trace π over x in I

that satisfy F

9 / 36



Logical semantics

A define-system command implicitly defines a model (i.e., a Kripke structure) of
First-Order Linear Temporal Logic (FO-LTL)

An FO-LTL formula F[f , x, x′] with

• free (immutable) constants/functions (aka, uninterpreted symbols) from f
• free (mutable) variables from x, x′

is satisfiable in an SMT theory T if there is

1. a T -interpretation I of f and
2. an infinite trace π over x in I

that satisfy F

9 / 36



Logical semantics

A define-system command implicitly defines a model (i.e., a Kripke structure) of
First-Order Linear Temporal Logic (FO-LTL)

An FO-LTL formula F[f , x, x′] with

• free (immutable) constants/functions (aka, uninterpreted symbols) from f
• free (mutable) variables from x, x′

is satisfiable in an SMT theory T if there is

1. a T -interpretation I of f and
2. an infinite trace π over x in I

that satisfy F

9 / 36



Trace semantics
Fix

• an FOL-LTL formula F[f , x, x′] over a theory T
• a T -interpretation I of f
• an infinite trace π = s0, s1, . . . where si is an assignment of x into I for all i ≥ 0

Let πi = si, si+1, . . . for all i ≥ 0

(I, π) satisfies F , written (I, π) |= F, iff

1. I[x 7→ s0(x), x′ 7→ s1(x)] satisfies F when F is atomic
2. (I, π) ̸|= G when F is ¬G
3. (I, π) |= Gj for j = 1, 2 when F is G1 ∧ G2

4. (I, π1) |= G when F is next G
5. (I, πi) |= G for all i = 0, . . . , when F is always G
6. (I, πi) |= G for some i = 0, . . . , when F is eventually G
7. . . .

10 / 36



Trace semantics
Fix

• an FOL-LTL formula F[f , x, x′] over a theory T
• a T -interpretation I of f
• an infinite trace π = s0, s1, . . . where si is an assignment of x into I for all i ≥ 0

Let πi = si, si+1, . . . for all i ≥ 0

(I, π) satisfies F , written (I, π) |= F, iff

1. I[x 7→ s0(x), x′ 7→ s1(x)] satisfies F when F is atomic
2. (I, π) ̸|= G when F is ¬G
3. (I, π) |= Gj for j = 1, 2 when F is G1 ∧ G2

4. (I, π1) |= G when F is next G
5. (I, πi) |= G for all i = 0, . . . , when F is always G
6. (I, πi) |= G for some i = 0, . . . , when F is eventually G
7. . . .

10 / 36



Finite-Trace semantics
Fix

• an FOL-LTL formula F[f , x, x′] over a theory T
• a T -interpretation I of f
• an infinite trace π = s0, s1, . . . where si is an assignment of x into I for all i ≥ 0

Let πi = si, si+1, . . . for all i ≥ 0

(I, π) n-satisfies F for some n > 0, written (I, π) |=n F, iff

1. I[x 7→ s0(x), x′ 7→ s1(x)] satisfies F when F is atomic
2. (I, π) ̸|=n G when F is ¬G
3. (I, π) |=n Gj for j = 1, 2 when F is G1 ∧ G2

4. (I, π1) |=n−1 G and n − 1 > 0 when F is next G
5. (I, πi) |=n−i G for all i = 0, . . . , n − 1 when F is always G
6. (I, πi) |=n−i G for some i = 0, . . . , n − 1 when F is eventually G
7. . . .

10 / 36



System definition command (Base case)
(define-system S
:input ((i1 δ1) · · · (im δm)) ; input vars
:output ((o1 τ1) · · · (on τn)) ; output vars
:local ((s1 σ1) · · · (sp δp)) ; local vars
:init I ; initial state formula
:trans T ; transition formula
:inv P ; invariant formula

)

11 / 36



System definition command (Base case)
(define-system S
:input ((i1 δ1) · · · (im δm)) ; input vars
:output ((o1 τ1) · · · (on τn)) ; output vars
:local ((s1 σ1) · · · (sp δp)) ; local vars
:init I ; initial state formula
:trans T ; transition formula
:inv P ; invariant formula

)

where
• each var gets a primed copy: i′1, . . . , o′

1, . . . , s′1, . . .
• I and P are one-state formulas (over unprimed vars only)
• T is a two-state formula (over unprimed and primed vars)
• all attributes are optional and their order is immaterial

▶ however, :input, :output, :local must occur before :init, :trans, :inv

11 / 36



System definition command (Base case)
(define-system S
:input ((i1 δ1) · · · (im δm)) ; input vars
:output ((o1 τ1) · · · (on τn)) ; output vars
:local ((s1 σ1) · · · (sp δp)) ; local vars
:init I ; initial state formula
:trans T ; transition formula
:inv P ; invariant formula

)

Semantics
S = (IS, TS) = (I[i, o, s], P[i, o, s] ∧ T[i, o, s, i′, o′, s′])

where i = (i1, . . . , im), o = (o1, . . . , on), s = (s1, . . . , sn)

S denotes the set of all infinite traces that satisfy the FO-LTL formula

IS ∧ always TS

11 / 36



System definition command (Base case)
(define-system S
:input ((i1 δ1) · · · (im δm)) ; input vars
:output ((o1 τ1) · · · (on τn)) ; output vars
:local ((s1 σ1) · · · (sp δp)) ; local vars
:init I ; initial state formula
:trans T ; transition formula
:inv P ; invariant formula

)

Note:
Systems are meant to be progressive: every reachable state has a successor wrt TS

However, they may not be because of the generality of T and P
(It is possible to define deadlocking systems)

11 / 36



Default values for missing attributes

attribute default
:input ()
:output ()
:local ()
:init true
:trans true
:inv true

12 / 36



Examples
; The output of Delay is initially in [0,10] and
; then is the previous input
(define-system Delay

:input ((in Int))
:output ((out Int))
:init (<= 0 out 10) ; more than one possible initial output
:trans (= out’ in) ; the new output is the old input

)

; A clocked lossless channel, stuttering when clock is false
(define-system StutteringClockedCopy

:input ((clock Bool) (in Int))
:output ((out Int))
:init (=> clock (= out in)) ; out is arbitrary when clock is false
:trans (ite clock (= out’ in’) (= out’ out))

)

13 / 36



Examples
(declare-datatype Event (par (X) (Absent) (Present (val X))))

; An event-triggered channel that arbitrarily loses its input data
(define-system LossyIntChannel

:input ((in (Event Int)))
:output ((out (Event Int)))
:inv (or (= out in) (= out Absent))

)

; Equivalent formulation using unconstrained local state
(define-system LossyIntChannel

:input ((in (Event Int)))
:output ((out (Event Int)))
:local ((s Bool))
; at all times, whether the input event is transmitted
; or not depends on value of s
:inv (= out (ite s in Absent))

)

14 / 36



Examples
(declare-datatype Event (par (X) (Absent) (Present (val X))))

; An event-triggered channel that arbitrarily loses its input data
(define-system LossyIntChannel

:input ((in (Event Int)))
:output ((out (Event Int)))
:inv (or (= out in) (= out Absent))

)

; Equivalent formulation using unconstrained local state
(define-system LossyIntChannel

:input ((in (Event Int)))
:output ((out (Event Int)))
:local ((s Bool))
; at all times, whether the input event is transmitted
; or not depends on value of s
:inv (= out (ite s in Absent))

)

14 / 36



Example: timed light switch
TimedSwitch models a timed light switch where, once on, the light stays on for 10
steps unless it is switched off before

A Boolean input is provided as a toggle signal

15 / 36



Example: timed light switch
(define-enum-sort LightStatus (On Off))

; Guarded-transitions-style definition
(define-system TimedSwitch :input ((press Bool)) :output ((sig Bool))

:local ((s LightStatus) (n Int))
:inv (= sig (= s On))
:init (and

(= n 0)
(ite press (= s On) (= s Off))

)
:trans (and
(=> (and (= s Off) (not press’)) ; Off ->

(and (= s’ Off) (= n’ n))) ; Off
(=> (and (= s Off) press’) ; Off ->

(and (= s’ On) (= n’ n))) ; On
(=> (and (= s On) (not press’) (< 10 n)) ; On ->

(and (= s’ On) (= n’ (+ n 1)))) ; On
(=> (and (= s On) (or press’ (>= n 10)) ; On ->

(and (= s’ Off) (= n’ 0))) ; Off
)

)

15 / 36



Example: timed light switch
(define-enum-sort LightStatus (On Off))

; Set-of-transitions-style definition
(define-system TimedSwitch2 :input ((press Bool)) :output ((sig Bool))

:local ((s LightStatus) (n Int))
:inv (= sig (= s On))
:init (and

(= n 0)
(ite press (= s On) (= s Off))

)
:trans

(let (; Transitions
(stay-off (and (= s Off) (not press’) (= s’ Off) (= n’ n)))
(turn-on (and (= s Off) press’ (= s’ On) (= n’ n)))
(stay-on (and (= s On) (not press’) (< n 10) (= s’ On)

(= n’ (+ n 1))))
(turn-off (and (= s On) (or press’ (>= n 10))

(= s’ Off) (= n’ 0)))
)

(or stay-off turn-on turn-off stay-on)
)

)

15 / 36



Example: timed light switch
(define-enum-sort LightStatus (On Off))

; Equational-style definition
(define-system TimedSwitch3 :input ((press Bool)) :output ((sig Bool))

:local ((s LightStatus) (n Int))
:inv (= sig (= s On))
:init (and

(= n 0)
(= s (ite press On Off))

)
:trans (and
(= s’ (ite press’ (flip s)

(ite (or (= s Off) (>= n 10)) Off
On)))

(= n’ (ite (or (= s Off) (s’ Off)) 0
(+ n 1)))

)
)

(define-fun flip ((s LightStatus)) LightStatus (ite (= s Off) On Off))

15 / 36



Special predicate: OnlyChange

For every system S = ( IS[i, o, s], TS[i, o, s, i′, o′, s′] )

OnlyChange is a multi-arity predicate over o, s, o′, s′:

OnlyChange(x1, . . . , xn) ≡
∧

{y′ = y | y ∈ (o ∪ s ∪ o′ ∪ s′) \ {x1, . . . , xn}}

Fixes the value of all output and local variables not in (x1, . . . , xn)

It is a useful abbreviation in transition conditions to express transitions
that leave many state variables unchanged

Note: OnlyChange(x1, . . . , xn) does not actually constrain the xi’s in any way

16 / 36



Special predicate: OnlyChange

For every system S = ( IS[i, o, s], TS[i, o, s, i′, o′, s′] )

OnlyChange is a multi-arity predicate over o, s, o′, s′:

OnlyChange(x1, . . . , xn) ≡
∧

{y′ = y | y ∈ (o ∪ s ∪ o′ ∪ s′) \ {x1, . . . , xn}}

Fixes the value of all output and local variables not in (x1, . . . , xn)

It is a useful abbreviation in transition conditions to express transitions
that leave many state variables unchanged

Note: OnlyChange(x1, . . . , xn) does not actually constrain the xi’s in any way

16 / 36



Special predicate: OnlyChange

For every system S = ( IS[i, o, s], TS[i, o, s, i′, o′, s′] )

OnlyChange is a multi-arity predicate over o, s, o′, s′:

OnlyChange(x1, . . . , xn) ≡
∧

{y′ = y | y ∈ (o ∪ s ∪ o′ ∪ s′) \ {x1, . . . , xn}}

Fixes the value of all output and local variables not in (x1, . . . , xn)

It is a useful abbreviation in transition conditions to express transitions
that leave many state variables unchanged

Note: OnlyChange(x1, . . . , xn) does not actually constrain the xi’s in any way

16 / 36



Example
; increment ni iff n = i; ni is 0 initially if not incremented

(define-system Increment :input ((i Int))
:output ((inc Bool) (n1 Int) (n2 Int) · · · (n5 Int))
:inv (= inc (<= 1 i 5))
:init (and

(=> (= n 1) (and (= n1 1) (= n2 n3 n4 n5 0)))
...

(=> (= n 5) (and (= n5 1) (= n1 n2 n3 n4 0)))
(=> (not (<= 1 n 5)) (= n1 n2 n3 n4 n5 0))

)
:trans (and
(=> (= n’ 1) (and (= n1’ (+ n1 1)) (OnlyChange inc n1)))
...

(=> (= n’ 5) (and (= n5’ (+ n5 1)) (OnlyChange inc n5)))
(=> (not (<= 1 n’ 5)) (OnlyChange inc))

)
)

17 / 36



System definition — Synchronous composition
(define-system S
:input ((i1 δ1) · · · (im δm)) ; input vars
:output ((o1 τ1) · · · (on τn)) ; output vars
:local ((s1 σ1) · · · (sp δp)) ; local vars
:subsys (N1 (S1 x1 y1)) ; component subsystem
· · ·

:subsys (Nq (Sq xq yq)) ; component subsystem
)

where

1. q > 0 and each Si is the name of a system other than S

2. S1, . . . , Sq need not be all distinct

3. each Ni is a local synonym for Si, with N1, . . . Nq distinct

4. each xi consists of S’s variables of the same type as Si’s input

5. each yi consists of S’s local/output variables of the same type as Si’s output

6. the directed subsystem graph rooted at S is acyclic

18 / 36



System definition — Synchronous composition
(define-system S
:input ((i1 δ1) · · · (im δm)) ; input vars
:output ((o1 τ1) · · · (on τn)) ; output vars
:local ((s1 σ1) · · · (sp δp)) ; local vars
:subsys (N1 (S1 x1 y1)) ; component subsystem
· · ·

:subsys (Nq (Sq xq yq)) ; component subsystem
)

Semantics

Let Sk = ( Ik[ik, ok, sk], Tk[ik, ok, sk, i′k, o
′
k, s

′
k] ) for k = 1, . . . , q, with s1, . . . , sq all distinct

Let i = (i1, . . . , im), o = (o1, . . . , on), s = s1, . . . , sq, s1, . . . , sq

S = (IS[i, o, s], TS[i, o, s, i′, o′, s′])

with IS =
∧q

k=1 Ik[xk, yk, sk] TS =
∧q

k=1 Tk[xk, yk, sk, x′k, y
′
k, s

′
k]

18 / 36



System definition — Synchr. composition extended
(define-system S
:input ((i1 δ1) · · · (im δm)) ; input vars
:output ((o1 τ1) · · · (on τn)) ; output vars
:local ((s1 σ1) · · · (sp δp)) ; local vars
:subsys (N1 (S1 x1 y1)) ; component subsystem
· · · · · · · · ·

:subsys (Nq (Sq xq yq)) ; component subsystem
:init I ; initial state formula
:trans T ; transition formula
:inv P ; invariant formula

)

Semantics

S = (IS[i, o, s], TS[i, o, s, i′, o′, s′])

with IS = I ∧
∧q

k=1 Ik[xk, yk, sk] TS = T ∧ P ∧
∧q

k=1 Tk[xk, yk, sk, x′k, y
′
k, s

′
k]

19 / 36



Examples
(define-system Latch :input ((s Bool) (r Bool)) :output ((o Bool))

:local ((b Bool))
:trans (= o’ (or (and s (or (not r) b))

(and (not s) (not r) o)))
)

(define-system OneBitCounter :input ((inc Bool) (start Bool))
:output ((out Bool) (carry Bool))
:local ((set Bool) (reset Bool))
:subsys (L (Latch set reset out))
:inv (and (= set (and inc (not reset)))

(= reset (or carry start))
(= carry (and inc out)))

)

(define-system ThreeBitCounter
:input ((inc Bool) (start Bool))
:output ((out0 Bool) (out1 Bool) (out2 Bool))
:local ((car0 Bool) (car1 Bool) (car2 Bool))
:subsys (C1 (OneBitCounter inc start out0 car0))
:subsys (C2 (OneBitCounter car0 start out1 car1))
:subsys (C3 (OneBitCounter car1 start out2 car2))

)
20 / 36



Expressiveness
define-system + SMT-LIB commands and types appear sufficient
to allow faithful reductions from (full or large fragment of)

• Moore and Mealy machines
• I/O automata
• SMV and nuXMV
• UNITY
• TLA+
• Reactive Modules
• Lustre
• SAL

21 / 36



System checking command
(check-system S
:input ((i1 δ1) · · · (im δm)) ; renaming of S’s input vars
:output ((o1 τ1) · · · (on τn)) ; renaming of S’s output vars
:local ((s1 σ1) · · · (sp δp)) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition
:current (c C) ; initiality condition
:query (q (g1 · · · gq)) ; trace query to be checked

)

22 / 36



System checking command
(check-system S
:input ((i1 δ1) · · · (im δm)) ; renaming of S’s input vars
:output ((o1 τ1) · · · (on τn)) ; renaming of S’s output vars
:local ((s1 σ1) · · · (sp δp)) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition
:current (c C) ; initiality condition
:query (q (g1 · · · gq)) ; trace query to be checked

)

where
• a, r, f , c, q are identifiers; each gi ranges over {a, r, f , c}
• C is a one-state (non-temporal) formula over the given vars
• A, R, F are one- or two-state (non-temporal) formulas over the given vars
• all attributes are optional and their order is immaterial
• all attributes but the first three are repeatable

22 / 36



System checking command
(check-system S
:input ((i1 δ1) · · · (im δm)) ; renaming of S’s input vars
:output ((o1 τ1) · · · (on τn)) ; renaming of S’s output vars
:local ((s1 σ1) · · · (sp δp)) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition
:current (c C) ; initiality condition
:query (q (g1 · · · gq)) ; trace query to be checked

)

22 / 36



System checking command semantics
(check-system S
:input ((i1 δ1) · · · (im δm)) ; renaming of S’s input vars
:output ((o1 τ1) · · · (on τn)) ; renaming of S’s output vars
:local ((s1 σ1) · · · (sp δp)) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition
:current (c C) ; initiality condition
:query (q (a r))

)

Query q succeeds iff the formula below is n-satisfiable in LTL for some n > 0

IS ∧ always TS ∧ always A ∧ eventually R ∧ always eventually F

where IS and TS are the initial state and transition predicate of S modulo the renamings
above

22 / 36



System checking command semantics
(check-system S
:input ((i1 δ1) · · · (im δm)) ; renaming of S’s input vars
:output ((o1 τ1) · · · (on τn)) ; renaming of S’s output vars
:local ((s1 σ1) · · · (sp δp)) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition
:current (c C) ; initiality condition
:query (q (a f r))

)

Query q succeeds iff the formula below is satisfiable in LTL

IS ∧ always TS ∧ always A ∧ eventually R ∧ always eventually F

where IS and TS are the initial state and transition predicate of S modulo the renamings
above

22 / 36



System checking command semantics
(check-system S
:input ((i1 δ1) · · · (im δm)) ; renaming of S’s input vars
:output ((o1 τ1) · · · (on τn)) ; renaming of S’s output vars
:local ((s1 σ1) · · · (sp δp)) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition
:current (c C) ; initiality condition
:query (q (a c r))

)

Query q succeeds iff the formula below is n-satisfiable in LTL for some n > 0

C ∧ always TS ∧ always A ∧ eventually R ∧ always eventually F

where IS and TS are the initial state and transition predicate of S modulo the renamings
above

22 / 36



System checking command semantics
(check-system S
:input ((i1 δ1) · · · (im δm)) ; renaming of S’s input vars
:output ((o1 τ1) · · · (on τn)) ; renaming of S’s output vars
:local ((s1 σ1) · · · (sp δp)) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition
:current (c C) ; initiality condition
:query (q (g1 · · · gq)) ; trace query to be checked

)

For each successful query, the model checker is expected to produce
• a T -interpretation I (of the free immutable symbols) and
• a witnessing trace in I

22 / 36



System checking command semantics
(check-system S
:input ((i1 δ1) · · · (im δm)) ; renaming of S’s input vars
:output ((o1 τ1) · · · (on τn)) ; renaming of S’s output vars
:local ((s1 σ1) · · · (sp δp)) ; renaming of S’s local vars
:assumption (a A) ; environmental assumption
:reachable (r R) ; reachability condition
:fairness (f F) ; fairness condition
:current (c C) ; initiality condition
:query (q (g1 · · · gq)) ; trace query to be checked

)

For each successful query, the model checker is expected to produce
• a T -interpretation I (of the free immutable symbols) and
• a witnessing trace in I

Different queries may be given different interpretations and traces

22 / 36



Example 1

(check-system NonDetArbiter
:input ((req1 Bool) (req2 Bool))
:output ((gr1 Bool) (gr2 Bool))

; There are never concurrent requests
:assumption (a1 (not (and req1 req2)))

; The same request is never issued twice in a row
:assumption (a2 (and (=> req1 (not req1’))

(=> req2 (not req2’))))

; Neg of: Every request is immediately granted
:reachable (r (not (and (=> req1 gr1) (=> req2 gr2))))

; check the reachability of r under assumptions a1 and a2
:query (q (a1 a2 r))

)

23 / 36



Example 2 — Temporal queries
(define-system Historically :input ((b Bool)) :output ((hb Bool))
:init (= hb b) :trans (= hb’ (and b’ hb)))

(define-system Before :input ((b Bool)) :output ((bb Bool))
:init (= bb’ false) :trans (= bb’ b))

(define-system Count :input ((b Bool)) :output ((c Int))
:init (= c (ite b 1 0)) :trans (= c’ (+ c (ite b 0 1))))

(define-system Monitor :input ((r1 Bool) (r2 Bool)) :output ((g1 Bool) (g2 Bool))
:local ((a1 Bool) (a2 Bool) (b0 Bool) (b1 Bool) (b2 Bool)

(h1 Bool) (h2 Bool) (c Int) (bf Bool))
:subsys (A (NonDetArbiter r1 r2 g1 g2))
:subsys (H1 (Historically a1 h1))
:subsys (H2 (Historically a2 h2))
:subsys (C (Count g1 c))
:subsys (B (Before b0 bf))
:inv (and
(= a1 (and (not r1) (not r2))) (= a2 (and (not g1) (not g2))) (= b0 (= c 4))
(= b1 (=> h1 h2)) ; b1 = if there have been no requests, there have been no grants
(= b2 (=> bf (not g1))))) ; b2 = a request is granted at most 4 times

(check-system Monitor :input ((r1 Bool) (r2 Bool))
:output ((g1 Bool) (g2 Bool))
:local (_ _ _ (b1 Bool) (b2 Bool) _ _ _ _)
:assumption (A (not (and r1 r2))) :reachable (P (not (and b1 b2)))
:query (Q (A P))

)

24 / 36



Example 3 — Multiple queries
(check-system NonDetArbiter :input ((r1 Bool) (r2 Bool))

:output ((g1 Bool) (g2 Bool))

:assumption (a (not (and r1 r2)))

; Neg of: Every request is (immediately) granted
:reachable (p1 (not (and (=> r1 g1) (=> r2 g2))))

; Neg of: In the absence of other requests, every request is granted
:reachable (p2 (not (=> (!= r1 r2) (and (=> r1 g1) (=> r2 g2)))))

; Neg of: A request is granted only if present
:reachable (p3 (not (and (=> g1 r1) (=> g2 r2))))

; Neg of: At most one request is granted at any one time
:reachable (p4 (not (not (and g1 g2))))

; Neg of: In case of concurrent requests, one of them is always granted
:reachable (p5 (not (=> (and r1 r2) (or g1 g2))))

:query (q1 (a p1)) :query (q2 (a p2)) :query (q3 (a p3))
:query (q4 (a p4)) :query (q5 (a p5))

)

Each query can be witnessed by a different T -interpretation and trace in it

25 / 36



Output format for check-system
(define-system A :input ((i σA)) :output ((o τA)) :local ((s θA)) . . . )

(define-system B :input ((i σB)) :output ((o τB)) :local ((s θB))
:subsys ( · · · (S (A · · · )) · · · ) . . . )

(check-system B · · · :fairness (f · · · ) :reachable (r · · · ) · · ·
:query (q (r f · · · )) · · · )

Output:

(response
:result ((q sat) · · · ) ; result is sat or unsat for each query
:model ( · · · ) ; SMT-LIB interpretation of free symbols
:trail (p (; state sequence

((i i0) (o o0) (s s0) (S::i iS,0) (S::o oS,0) (S::s sS,0) (r r0) (f f0) · · · )
· · ·

((i ik) (o ok) (s sk) (S::i iS,k) (S::o oS,k) (S::s sS,k) (r rk) (f fk) · · · )
)

)
:trail (l ( · · · ))

· · ·
:trace (q :prefix p :lasso l) ; witness trace for query q is plω
· · ·
)

26 / 36



Special predicate: Deadlock

For every system S = ( IS[i, o, s], TS[i, o, s, i′, o′, s′] )

Deadlock is a predicate (implicitly) over i, o, s

A state {i 7→ i0, o 7→ o0, s 7→ s0} satisfies Deadlock, or
is deadlocked,

iff
it satisfies the formula ∃i′ ∀o′ ∀s′ ¬TS[i, o, s, i′, o′, s′]

27 / 36



Special predicate: Deadlock

For every system S = ( IS[i, o, s], TS[i, o, s, i′, o′, s′] )

Deadlock is a predicate (implicitly) over i, o, s

A state {i 7→ i0, o 7→ o0, s 7→ s0} satisfies Deadlock, or
is deadlocked,

iff
it satisfies the formula ∃i′ ∀o′ ∀s′ ¬TS[i, o, s, i′, o′, s′]

27 / 36



Uses of Deadlock

Examples

• (check-system S · · ·
:assumption (a A) :current (d Deadlock) :query (a d))

checks the existence of deadlocked states under assumption A

• (check-system S · · ·
:assumption (a A) :reachable (d Deadlock) :query (a d))

checks the reachability of deadlocked states under assumption A

• (check-system S · · ·
:fairness (f true) :reachable (r R) :query (f r))

checks the reachability of R on infinite (hence deadlock-free) traces

28 / 36



Uses of Deadlock

Examples

• (check-system S · · ·
:assumption (a A) :current (d Deadlock) :query (a d))

checks the existence of deadlocked states under assumption A

• (check-system S · · ·
:assumption (a A) :reachable (d Deadlock) :query (a d))

checks the reachability of deadlocked states under assumption A

• (check-system S · · ·
:fairness (f true) :reachable (r R) :query (f r))

checks the reachability of R on infinite (hence deadlock-free) traces

28 / 36



Uses of Deadlock

Examples

• (check-system S · · ·
:assumption (a A) :current (d Deadlock) :query (a d))

checks the existence of deadlocked states under assumption A

• (check-system S · · ·
:assumption (a A) :reachable (d Deadlock) :query (a d))

checks the reachability of deadlocked states under assumption A

• (check-system S · · ·
:fairness (f true) :reachable (r R) :query (f r))

checks the reachability of R on infinite (hence deadlock-free) traces

28 / 36



What’s intentionally missing (and why)

• Restrictions to just bit vector types
Other types are useful!

• Stronger syntactic restrictions for :init and :trans formulas
Should be enforced in the user-facing language

• Direct support for LTL, or your favorite temporal logic, in check-system
Generality, mostly

• Global (mutable) variables a la SAL
Tricky to get right

• Parametric components as in SMV or SAL
Some support. The rest is better provided in the user-facing language

• Compositional reasoning features (i.e., assume-guarantee contracts)
Too many different approaches out there

29 / 36



What’s intentionally missing (and why)

• Restrictions to just bit vector types
Other types are useful!

• Stronger syntactic restrictions for :init and :trans formulas
Should be enforced in the user-facing language

• Direct support for LTL, or your favorite temporal logic, in check-system
Generality, mostly

• Global (mutable) variables a la SAL
Tricky to get right

• Parametric components as in SMV or SAL
Some support. The rest is better provided in the user-facing language

• Compositional reasoning features (i.e., assume-guarantee contracts)
Too many different approaches out there

29 / 36



What’s intentionally missing (and why)

• Restrictions to just bit vector types
Other types are useful!

• Stronger syntactic restrictions for :init and :trans formulas
Should be enforced in the user-facing language

• Direct support for LTL, or your favorite temporal logic, in check-system
Generality, mostly

• Global (mutable) variables a la SAL
Tricky to get right

• Parametric components as in SMV or SAL
Some support. The rest is better provided in the user-facing language

• Compositional reasoning features (i.e., assume-guarantee contracts)
Too many different approaches out there

29 / 36



What’s intentionally missing (and why)

• Restrictions to just bit vector types
Other types are useful!

• Stronger syntactic restrictions for :init and :trans formulas
Should be enforced in the user-facing language

• Direct support for LTL, or your favorite temporal logic, in check-system
Generality, mostly

• Global (mutable) variables a la SAL
Tricky to get right

• Parametric components as in SMV or SAL
Some support. The rest is better provided in the user-facing language

• Compositional reasoning features (i.e., assume-guarantee contracts)
Too many different approaches out there

29 / 36



What’s intentionally missing (and why)

• Restrictions to just bit vector types
Other types are useful!

• Stronger syntactic restrictions for :init and :trans formulas
Should be enforced in the user-facing language

• Direct support for LTL, or your favorite temporal logic, in check-system
Generality, mostly

• Global (mutable) variables a la SAL
Tricky to get right

• Parametric components as in SMV or SAL
Some support. The rest is better provided in the user-facing language

• Compositional reasoning features (i.e., assume-guarantee contracts)
Too many different approaches out there

29 / 36



What’s intentionally missing (and why)

• Restrictions to just bit vector types
Other types are useful!

• Stronger syntactic restrictions for :init and :trans formulas
Should be enforced in the user-facing language

• Direct support for LTL, or your favorite temporal logic, in check-system
Generality, mostly

• Global (mutable) variables a la SAL
Tricky to get right

• Parametric components as in SMV or SAL
Some support. The rest is better provided in the user-facing language

• Compositional reasoning features (i.e., assume-guarantee contracts)
Too many different approaches out there

29 / 36



What’s intentionally missing (and why)

• Restrictions to just bit vector types
Other types are useful!

• Stronger syntactic restrictions for :init and :trans formulas
Should be enforced in the user-facing language

• Direct support for LTL, or your favorite temporal logic, in check-system
Generality, mostly

• Global (mutable) variables a la SAL
Tricky to get right

• Parametric components as in SMV or SAL
Some support. The rest is better provided in the user-facing language

• Compositional reasoning features (i.e., assume-guarantee contracts)
Too many different approaches out there

29 / 36



What’s intentionally missing (and why)

• Restrictions to just bit vector types
Other types are useful!

• Stronger syntactic restrictions for :init and :trans formulas
Should be enforced in the user-facing language

• Direct support for LTL, or your favorite temporal logic, in check-system
Generality, mostly

• Global (mutable) variables a la SAL
Tricky to get right

• Parametric components as in SMV or SAL
Some support. The rest is better provided in the user-facing language

• Compositional reasoning features (i.e., assume-guarantee contracts)
Too many different approaches out there

29 / 36



Discussion

What currently, intentionally or unintentionally,
missing features would be imperative to have?

30 / 36



Possible Extensions

31 / 36



Multiqueries
(check-system S
:input ((i1 δ1) · · · (im δm))
:output ((o1 τ1) · · · (on τn))
...
:queries ((q1 (g1,1 · · · g1,n1)) · · · (qk (gk,1 · · · gk,nk)))

)

• Each query qi can be witnessed by a different trace
• However, each free immutable symbol has the same interpretation

across all queries

32 / 36



Executable system definitions
Local and output variables are defined exclusively equationally
(define-system TimedSwitch :input ((press Bool)) :output ((sig Bool))

:local ((s LightStatus) (n Int))
:inv-def (

(sig (= s On))
)
:init-def (
(n 0)
(s (ite press On Off))

)
:next-def (
(s’ (ite press’ (ite (= s Off) On Off))

(ite (= s Off) Off (ite (< n 10) On Off))))
(n’ (ite (or (= s Off) (s’ Off)) 0 (+ n 1)))

))

Restrictions: (guaranteeing progressiveness and executability)
• Each local or output variable must be listed in :inv-def or

in both :init-def and :next-def
• No definitional cycles
• No uninterpreted symbols

33 / 36



Parametric definitions — Part I
(define-system Delay :param ((V Type) (d V) (n Int)) :input ((in V))

:output ((out V))
:local ((a (Array Int V)))
:inv (and

(= in (select a 0))
(= out (select a n))

)
:init (forall ((i Int)) (=> (<= 1 i n)

(= (select a i) d))
)

:trans (forall ((i Int)) (=> (<= 1 i n))
(= (select a’ i) (select a (- i 1))))

)
)

(check-system Delay :param ((V String) (d "") (n 4)) :input ((in String))
:output ((out String))
:local ((a (Array Int String)))
...

)

Restrictions: parameters are immutable (rigid)

34 / 36



Parametric definitions — Part II
New binders:

(foreach ((i1 l1 h1) · · · (in ln hn)) F)

(forsome ((i1 l1 h1) · · · (in ln hn)) F)

where
• i1, . . . , in are (integer) identifiers, the bound vars
• lk and hk are integer expressions that can eventually be evaluated statically
• F is a formula with free occurrences of i1, . . . , in

35 / 36



Parametric definitions — Part II
New binders:

(foreach ((i1 l1 h1) · · · (in ln hn)) F)

(forsome ((i1 l1 h1) · · · (in ln hn)) F)

where
• i1, . . . , in are (integer) identifiers, the bound vars
• lk and hk are integer expressions that can eventually be evaluated statically
• F is a formula with free occurrences of i1, . . . , in

Semantics

(foreach ((i l h)) F) ≡ (and F[l/i] F[(l + 1)/i] · · · F[l/i])
(forsome ((i l h)) F) ≡ (or F[l/i] F[(l + 1)/i] · · · F[l/i])

(foreach (b1 · · · bn) F) ≡ (foreach (b1) (foreach (b2 · · · bn) F))
(forsome (b1 · · · bn) F) ≡ (forsome (b1) (forsome (b2 · · · bn) F))

35 / 36



Parametric definitions — Part II
New binders:

(foreach ((i1 l1 h1) · · · (in ln hn)) F)

(forsome ((i1 l1 h1) · · · (in ln hn)) F)

where
• i1, . . . , in are (integer) identifiers, the bound vars
• lk and hk are integer expressions that can eventually be evaluated statically
• F is a formula with free occurrences of i1, . . . , in

Note
• (foreach ((i l h)) F) ≡ true when l > h
• (forsome ((i l h)) F) ≡ false when l > h
• (foreach ((i l h)) F) ≡ F ≡ (forsome ((i l h)) F) when l = h

35 / 36



Examples

(define-system A :input ((i τ)) :output ((o τ)) . . . )

; synchronous composition of A with itself n times
(define-system C :param ((n Int))
:input ((i τ))
:output ((o τ))
:local ((s (Array Int τ))
:inv (and
(= i (select s 0))
(= o (select s n))
(foreach ((k 1 n))

(A (select s (- k 1)) (select s k)))
)

)

36 / 36


