Printed in Great Britain. All rights reserved

J. Mech. Phys. Solids, Vol. 45, No. 6, pp. 923-947, 1997
Pergamon © 1997 Elsevier Science Ltd
0022-5096/97 $17.00+0.00

PIL: S0022-5096(96)00123-8

PHASE TRANSITIONS IN ELASTOPLASTIC MATERIALS:
CONTINUUM THERMOMECHANICAL THEORY AND
EXAMPLES OF CONTROL—PART If

VALERY 1. LEVITAS

Institute of Structural and Computational Mechanics, University of Hannover, AppelstraBie 9A,
30167 Hannover, Germany

(Received 1 May 1996 ; in revised form 7 October 1996)

ABSTRACT

A general thermomechanical theory of phase transitions (PT) in elastoplastic materials is presented. The
PT criterion and extremum principle for the determination of all unknown parameters are derived. We
obtain the result that the dissipative threshold in the PT criterion is proportional to yield stress. Two
boundary-value problems are solved analytically: PT in a thin layer (horizontally and optimally inclined)
in a rigid-plastic half-space under the action of applied pressure and shear stresses and PT under com-
pression and shear of materials in Bridgman anvils. The solutions illustrate the fundamental difference in
PT conditions for the homogeneously distributed pressure and shear stresses in the first problem and
strongly nonhomogeneous pressure distribution in the second problem. In particular, in the first problem
additional shearing significantly improves the condition of appearance of soft materials and does not affect
the appearance of strong materials. In the second problem, rotation of an anvil works much more effectively
for the synthesis of strong phases than weak ones. A number of experimental results are explained, and
some of the interpretations are completely unexpected. It is found that an improvement in PT condition
due to a rotation of an anvil is attributed not to the plastic strain, but to the possibility of an additional
displacement, compensating a volume decrease because of PT. It is connected with a reduction of frictional
shear stress in a radial direction. © 1997 Elsevier Science Ltd

Keywords: A. phase transformation, A. thermomechanical processes, B. elastic-plastic material, C. ana-
lytical solution.

1. INTRODUCTION

Phase transitions (PT) in elastoplastic materials are phenomena that are very wide-
spread in nature, physical experiments and modern technologies. Practically all PT
with volumetric transformation strain exceeding 0.5% are accompanied by plastic
strains, ¢.g. by heat treatment of steels. Thermomechanical treatment of materials
involves consecutively or simultaneously occurring PT and plastic straining, which
results in the required microstructure and the physical-mechanical properties. Strain-
induced PT and transformation-induced plasticity (TRIP) are other important exam-
ples. Known experiments exhibit a very strong influence of large shear plastic strains
on PT, e.g. a significant reduction in PT pressure and the obtaining of fundamentally
new materials which are impossible to produce without additional plastic strains
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924 V. 1. LEVITAS

(Bridgman, 1952 ; Alexandrova er al., 1987, 1988 ; Blank ef al., 1994 ; Serebryanaya
et al., 1995 ; Batsanov et al., 1995).

Most of the above phenomena have purely qualitative explanations and their
applications in technologies are based on purely empirical observations. The deeper
understanding of the fundamental principles of temperature, stress and strain induced
PT in inelastic materials and their quantitative description can yield fundamentally
new results in the development of new technologies and materials, as well as the
optimization of existing ones.

In order to describe PT in an elastic solid, the principle of a minimum of free energy
is usually used. Very impressive physical, mechanical and mathematical results related
to the formulation and solution of various problems (e.g. problems of formation of
the heterophase structure and elastic domains) are considered in various papers and
books [see, e.g. Khachaturyan (1983), Grinfeld (1991), Hornbogen (1991), Ball and
James (1992), Gurtin (1993), Roitburd (1993), Wollants es al. (1993) and Olson
(1996)].

For inelastic materials the corresponding principle was lacking and the theory of
PT in inelastic solids is only in its early stages. The first results were related to the
solution of some simple problems, e.g. the appearance of the spherical (Lifshitz
and Gulida, 1952; Roitburd and Temkin, 1986; Kaganova and Roitburd, 1987),
ellipsoidal (Kaganova and Roitburd, 1989) and the plate-like nucleus (Bar’yachtar et
al., 1986) and growth of the spherical nucleus (Roitburd and Temkin, 1986 ; Kaganova
and Roitburd, 1987). In most of these papers the PT criterion and extremum principle
for the definition of some unknown parameters are the same as for PT in elastic
materials, i.e. some thermodynamic potential (Gibbs free energy of the whole system)
is minimized. It is known that, in contrast to elastic materials, for elastoplastic ones
such an extremum principle could not be proved. It is related to the necessity of
considering the plastic dissipation and path-dependency. Consequently, all the above
solutions have a preliminary character and should be checked based on more recent
approaches. Only in a paper by Roitburd and Temkin (1986) is an alternative descrip-
tion of the appearance of the spherical nucleus used. It is assumed that some mech-
anical work (not energy!) should be less than the change in chemical free energy, which
in some particular cases can be derived from recent considerations. Unfortunately this
idea did not receive any further development : the appearance of the ellipsoidal nucleus
(Kaganova and Roitburd, 1989) is based on the principle of the minimum of free
energy. Numerous investigations of PT in elastoplastic materials (Fischer ef al., 1994
Marketz and Fischer, 1994, 1995) are related to the comparison of Gibbs free energy
before and after PT. In a paper by Kondaurov and Nikitin (1986) the PT criterion is
obtained for the points of a moving interface in viscoplastic material, when the plastic
strain increment is equal to zero in the course of PT. An interface propagation
condition which takes into account the plastic strain increment is derived by Levitas
(1992a, 1995a-c).

An averaged description of PT in terms of the volume fraction of martensite is
presented by Levitas (1990, 1992b, 1995b), Raniecki and Bruhns (1991), Bhat-
tacharyya and Weng (1994) at small strain and by Levitas (1992b, 1996¢) at large
strain. Numerical averaging using the thermodynamic description is presented by
Marketz and Fischer (1994, 1995) and Levitas et al. (1995, 1996); Leblond er al.
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(1989) considered PT without regard for thermodynamics. A self-consistent approach
to TRIP (without any thermodynamic criterion) is developed by Diani ez al. (1995).
Phase transitions from the point of view of instability and post-bifurcation phenomena
were investigated by Levitas (1992a, 1995a). It was shown that the fulfilment of the
local PT criterion (e.g. for propagation of an interface) is not sufficient for the
occurrence of PT. Only the choice of the stable post-bifurcation solution for the whole
body gives a final result and represents the global PT criterion. The statistical model
(Olson and Cohen, 1975) is based on the observation that strain-induced nucleation
occurs predominantly at intersections of shear-bands. The development of the model
and its numerical implementation is presented in Stringfellow et al. (1992).

In this paper we will use a general thermomechanical approach for the description
of coherent and noncoherent PT in dissipative materials developed by Levitas (1992a,
1995a-d, 1996a, d). We consider not the whole body, but material points only in
which the PT occurs at the current time, e.g. the point of the new nucleus or a moving
interface. Phase transitions are considered as a thermomechanical process of growth
of transformation (Bain) strain from the initial to the final value, which is
accompanied by a change in all the material’s properties. Using the second law of
thermodynamics we determine a dissipation increment during the PT X, related to the
PT only (excluding plastic dissipation and dissipation due to other processes). For
X < 0 PT is thermodynamically impossible, for X = 0 PT is possible but without
dissipation. Consequently the criterion of PT without dissipation due to PT is obtained
without any additional assumptions, using the second law of thermodynamics only.
For PT with dissipation it is accepted that X = k, where k is an experimentally
determined value of dissipation due to PT. After the integration over the transforming
volume the nucleation and interface propagation criteria are derived both for coherent
and noncoherent PT. For points without PT evidently X = 0; that is why it is senseless
to study them. They affect the PT through the stress field, because the stress variation
in the transforming region in the course of PT is determined by the solution of the
boundary-value problem for the whole body.

The PT criterion is only one scalar equation which is not sufficient for the deter-
mination of all unknown parameters such as position, shape and orientation of
nuclei, transformation strain and so on. For these purposes a new thermomechanical
postulate, named the postulate of realizability, is formulated (Levitas, 1992a, 1995a).
It is shown (Levitas, 1992a, 1995a, ¢) that the postulate of realizability gives some
known and some completely new results for various dissipative systems. Using it, the
extremum principle for the determination of all unknown parameters is derived.

The advantages of the proposed approach are the following. The PT criterion is
derived practically using the second law of thermodynamics only. It is valid for an
arbitrary dissipative material, because the material’s constitutive equations are not
used in the derivation. Derivation of the extremum principle is based on the postulate
of realizability, which is checked for various thermodynamic systems. It is easy to
extend the approach to new situations, using the second law of thermodynamics. For
example in papers by Levitas (1995¢, 1996a, d) the results are generalized with a
consistent account of the temperature variation in transforming particles in the course
of PT and for media with internal variables. The aims of the present paper are:

e Using the theory developed to formulate and solve analytically a number of
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model problems which can be applied to the interpretation of typical experimental
results.

e To show that in the first approximation plastic strains affect a stress variation in
transforming particles in the course of PT and a value k only. But this is sufficient
for the description of the majority of experimental results, without additional
physical mechanisms and hypotheses, using a suggested thermomechanical theory
and classical elastoplasticity.

o To analyze and classify the various useful examples of stress field variation during
PT.

e To suggest the methods of control of PT by the purposeful control of stress—
strain fields.

In Section 2 the PT criterion and extremum principle for the determination of all
unknown parameters are derived. Two boundary-value problems are formulated and
solved analytically in Sections 3 and 4: PT in a thin layer (horizontal and optimally
inclined) in a rigid-plastic half-space under the action of applied pressure and shear
stresses; PT under compression and shear of materials in Bridgman anvils. The
solutions illustrate the fundamental difference in PT conditions for the homogeneously
distributed pressure and shear stresses in the first problem and strongly non-
homogeneous pressure distribution in the second problem. In particular, in the first
problem additional shearing significantly improves the condition of appearance of
soft materials and does not affect the appearance of strong materials. In the second
problem, rotation of an anvil works much more effectively for the synthesis of strong
phases than weak ones. A number of experimental results are explained, and some of
the interpretations are completely unexpected. It is found that an improvement in PT
condition due to a rotation of an anvil is attributed not to the plastic strain, but to
the possibility of an additional displacement, compensating a volume decrease because
of PT. It is connected with a reduction of frictional shear stress in a radial direction
due to the rotation of an anvil. A new explanation of the pressure self-multiplication
effect is obtained based on the higher yield stress of the new phase.

These solutions together with the solutions obtained in Part II of this paper are
used for the formulation of methods of control of PT by means of the purposeful
control of stress—strain fields.

2. THERMOMECHANICAL THEORY

2.1. Phase transition criterion

Consider a volume ¥ of a multiphase material with prescribed boundary data on a
surface S. Assume that in small volume V, € ¥ with the boundary X, a PT occurs in
time Az. We will consider simple materials only, i.e. material’s behaviour at the given
point is independent of thermomechanical processes at other points. We admit the
second law of thermodynamics for each point of a volume ¥V, in the form of the
Planck inequality

D=0:8—pY—psh=0. )
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Here 2 is the rate of dissipation per unit volume, p is the mass density, s is the
entropy, ¥ is the specific Helmholtz free energy, ¢ and & are the stress and strain
tensors, @ is the temperature. PT is considered as a thermomechanical process of
growth of transformation (Bain) strain from the initial to the final value, which is
accompanied by change in all the material’s properties. The total dissipation increment
during the PT at each transforming material point is defined as follows

1+ At e, 0,
N:=j 9dt=J‘ a:ds—An//—J psdb, 2)

2, 0,

where Ay = p(,— ;). Assume that during PT three dissipative processes occur : PT
itself, plastic flow and the process of variation of a certain unspecified internal variable
a. As an example of an internal variable a dislocation density tensor or tensor of
internal stresses can be considered. The dissipation increment in the course of PT due
to plastic flow and variation of the internal variable can be given as

1+ At . . al// aw
Npg=[ X, 22+ X,:g)dt, Xp:=a—pé—8;, X,:= —p—ag, 3)

where X, and X, are the generalized dissipative forces, conjugated with plastic strain
rates & and g, respectively. The expression for X, and X, is defined using the standard
thermodynamic procedure for materials without a PT (Levitas, 1992b, 1996a). The
dissipation increment X due to a PT itself (the driving force for the PT) is the difference
between N and the N, i.e.

€, g, 1+ Ar
ij‘ a:de—At//—J psdH—J (X, 8"+ X, :g)dr. )

£ 6,

The simplest assumption that all the three dissipative processes are mutually inde-
pendent results in conditions that dissipation increments due to each dissipative
process should be nonnegative, in particular X > 0. Consequently, at X <0 PT is
impossible. The condition X = 0 is the criterion of PT without dissipation due to PT,
because PT is possible (no conflict with the second law of thermodynamics) and
dissipation increment due to PT is zero. Since practically all martensitic trans-
formations, even in elastic materials, are accompanied with dissipation and hysteresis,
the PT criterion has the form

X =k &)

Here k is an experimentally determined value of dissipation due to PT, which can
depend on parameters 0, €%, g, ... . At X < k PT is impossible.

It looks unusual that the PT criterion is formulated for the dissipation increment
and not for the generalized dissipative force like X, or X,. The strict thermomechanical
derivation of necessity to use the dissipation increment X is given by Levitas (1996a,
d).

For each point of nuclei V,, PT criterion (5) should be met. Integrating this criterion
over the volume ¥V, we obtain the necessary condition of nucleation
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j Xdv, = j kdv.. 6)
Vl’l Vn

or taking into account (4) for X we have

e, 1+Ar 6,
J J UidEan=J J p-vdant:.[ At//an+J j psdOd ¥V,
Vadey t z, Yy Vad 6

t+ At
+jf (Xp:ép+Xg:g)dthn+J kdv,, (7)
Vadt

vV,

n

where v is the velocity on £, from the side of the nucleus, p = ¢ * n is the stress vector,
n is the unit normal to X,. Note that Gauss’ theorem was used in this case. In the
given work we neglect the surface energy in comparison with other terms in (7).
Equation (5) is valid for the points of an interface; in this case some additional
transformations are useful (Levitas, 1995c, 1996a).

Temperature variation in the course of PT can be determined using the first law of
thermodynamics or entropy balance equation, in particular, under assumption that
the process is adiabatic (Levitas, 1996a, d). Here we assume the isothermal process
and X, = 0.

If we decompose

=+ +¢, (8)

where ¢ and &' are elastic and transformation strains, then terms ¢ : de? in the left and
right parts of (7) eliminate each other:

e, (’j
[ J- (a:d(ee+£‘)+p%:dsp)an—J‘ AWan—J kdv, = 0. 9)
5 JV, & v, v

1 n

At (0y)/(0¢®) = 0, (9) has the same form as for PT in elastic materials; plasticity
affects a variation of # in the course of PT and the value k. If

oY =058 E:&+py!, i=1,2 and E, =E,, (10)

where E, are the tensors of elastic moduli of i-phase, y¢ is the thermal part of the free
energy, then

J:a:dsezf:se:E:dee=O.5(8§:E:s§~a‘} :E:g}) and

¢
£ €

J Jza:ds‘an—J Al/ﬁan—J kdV, =0, (1
VoJe Ve v,

a

i.e. the elastic strains also disappear. In the quasi-static formulation the equilibrium
equations should be fulfilled for each intermediate value of transformation strain &'.
The constitutive equations should be given for each &' (i.e. for the whole trans-
formation process) as well.
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2.2.  The postulate of realizability

To determine all unknown parameters b (position, shape and orientation of nucleus,
&', & and &, and so on) let us use the postulate of realizability (Levitas, 1992a, 1995a).
If starting from the state with

j (X(b*) — k(b*))dV, < 0 (12)

for all possible PT parameters b* (i.e. PT does not occur) in the course of variation
of boundary data the condition (6) is fulfilled the first time for some of the parameters
b, then nucleation will occur with this b.

If, in the course of variation of boundary data the criterion (6) is met for one or
several b, then for other arbitrary b* inequality (12) should hold, as in the opposite
case for this b* condition (6) had to be met before it was satisfied for b. Consequently,
we obtain the extremum principle

j (X(b*) —k(b*))dV, <0 = J (X(b) —k(b))dV, (13)

V

n

for determination of all unknown parameters b. From principle (13) using (9) we
obtain

jJ a*:d(s’“"«i—s")an—j Al//*an—J k*dV, <0
st Jirx 124 v

n n

=FJ o':d(e°+s‘)an—f Al//an—j kdV,. (14)

£y v,

n n

Corresponding principles for points of coherent and noncoherent interfaces, based
on the principle (13), are given in detail in papers by Levitas (1992a, 1995a, b). The
main essence of the postulate of realizability is: if only some dissipative process
(plastic flow, PT) can occur, it will occur, i.e. the first fulfilment of the necessary
energetic condition is sufficient for the beginning of a dissipative process.

3. PHASE TRANSITION IN A THIN LAYER

3.1. Phase transition in a thin horizontal layer

Consider an infinite rigid-plastic half-space with prescribed normal ¢, and shear t
stresses on the whole surface (Fig. 1) under plane strain condition. Assume that a
coherent PT occurs in the layer along the whole surface and the solution does not
depend on the x coordinate. The same solution is valid, if PT occurs in a parallel layer
inside of the half-space. Material outside of the layer 1s rigid. Let

& 7
g =(0.5,i+y'(tn))¢ = O.Sé( ! >, (15)

1
7 &
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b

Fig. 1. Coherent PT in thin layer.

where ¢, and y* are the volumetric and shear transformation strains, i the two dimen-
sional unit tensor, £ is a parameter, growing from 0 to 1 during the PT ; the subscript
s means symmetrization. It assumed for convenience that compressive strains and
stresses are positive. The Tresca yield condition results in

flo) =(o,—0)’ +47° = 0} (16)

(Hill, 1950), where g, is the tangential stress and o, the yield limit in simple compression
(tension).

For the complete solution of a problem it is necessary to know how the yield stress
in the transforming particle varies during the PT, i.e. a function ¢,({) with 6,(0) = o,
and o,(1) = gy,. For simplicity we assume that at the beginning of the PT the yield
stress makes an instantaneous jump to the value in the new phase. Various alternative
assumptions are possible, €.g. 0,(&) = (1 —&)o,, + oy,

In Fig. 1(a) a transformed particle is shown after transformation strain, but to
satisfy displacement continuity across the interface AB and independence of solution
of x, additional plastic strain is needed [Fig. 1(b)]. We assume that transformation
and plastic strains are homogeneous in a layer and that the stress field is homogeneous
and time independent. The nucleation criterion (11) gives

X =0.5(0,6, +0.8,) + 1y —AY® =k, .5, (17)

with 7y > 0. The yield condition (16) gives 6, = g, —+/05, —41°, because plastic
compression in direction n is possible for ¢, > g, only. Substituting ¢, in (17) we

obtain the PT pressure
0,7 = Ay FEGEE RN ”522“412 _* (18)
80 80 80

For reverse PT we have
X=—0.5(0,8—0&)— 1 +AY =k, >0. (19)

It follows from the yield condition in this case that o, = 6,+./6}, —41°, because
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plastic compression in direction t is possible for g, > o, only. Substituting ¢, in the
expression for X we obtain the reverse PT pressure

gt LAV ke Jop 4 0)

" & & 2 Eo

The pressure hysteresis is

H: = gl=2_g2~1 — \/032"472 _ \/0'31_41'2 +k1->2+k2_.1
* n n 2 2 .

21
. @
Att =0,
AV k., AV ks
ol=? =i+ 12 +0.50,,, 0. =~w——z—l—0.56y1,
80 (¢} BO (o]
ki.,+ks,
H=0.5(c, +0,)+ b Ml (22)

o

At ki, =k, =0, =0,=1=0 we will get the result of equilibrium ther-
modynamics

0
12 21 Aw

ol =i = H=0, @3)

which neglects all the types of dissipation. Equation (23) defines the pressure of
thermodynamic equilibrium. Let us analyze the result. At y* = 0, despite the fact that
7 does not contribute to X, due to appearance of 7 in the yield condition, it can
significantly reduce o} ~? and H, which is in agreement with experiments (Bokarev et
al., 1986; Alexandrova et al., 1987, 1988; Tang ef al., 1993). At T = Ty, = 0.50,,
(oy, > 0,,) the terms with o, disappear in the expressions for o}%. At y' #0 0,7
receives an additional reduction and at large 7 and y' it is possible that 67> < g,/ .
This result is in agreement with experiments by Alexandrova ez al. (1988), in which
applied 7 or shear plastic strain reduce the PT pressure, up to a value which is less
than thermodynamical equilibrium.

Let us consider the influence of plastic shear on PT. We assume that the plastic
strain tensor is proportional to the parameter ¢

P05y

&7 = (P (mn—tt) + 7" (tn),)¢ = ( >€, # = (¢ (nn—tt) +77(tn),)¢ = e°¢/E,

0.5y —¢°
(24)

where ¢ and y° are the normal (along n) and the shear plastic strain, and plastic
incompressibility is taken into account. Only in this case can the condition of the
displacement continuity across the interface be satisfied. The associated flow rule
(Hill, 1950) reads

. b, ) ; P 4
Pl =hD, @l = ho-0), PUE=d D= @9
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where £ is a scalar. The displacement continuity across the interface ABg, =t-g-t =0
(displacement and consequently normal strain in t direction are zero) leads to

t(e+e) t=0.5,—¢" =0 and &° =0.5¢,. (26)
Then from (25)

LA A 4z 21/0,

&

£t =0 o4 J1-(Qta,)}
€.a 2 P N
p = L=, =2 T e =2 )
J1-a o 2 P2 e+ 9P

g2 4P

After substitution of (27) in (18) we obtain

A kL, @ & g P
0111~2=_l//.+ -2 7y 92 7Y (28)

£ & 2 Je+7 2 ¢, /8(2)+},p—2-

Equation (28) exhibits the experimentally observed (Bokarev et al., 1986; Alex-
androva er al., 1987, 1988) decrease of PT pressure under the growing plastic shear;
at 2t = o,,, y* — oo and the third term in (28) disappears.

If on the surface S the horizontal displacement u instead of t is prescribed, then
y* = u/b—7', where b is the width of the transformed layer. The maximum value of
X—k at k = const. and consequently the minimal value o,~ will be at » — 0 and
y* — o0, i.e. (according the postulate of realizability) PT starts in infinitesimally
narrow layer (on the slip surface) which is in agreement with experiments (Bernshtein
et al., 1993).

Allowing for adiabatic heating leads to finite & and y* (Levitas, 1996d).

3.2.  Evaluation of the dissipative threshold k

For the evaluation of the dissipative threshold & let us use the experimental evidence
presented by Estrin (1993). The linear dependence between microhardness of materials
and pressure hysteresis during the PT was obtained for a number of materials. The
microhardness was measured after different types of plastic straining (hydroextrusion,
PT) or at various temperatures. Pressure hysteresis was determined as the difference
between points of the beginning of direct and reverse PT at compression in the
cylinder-piston chamber [Fig. 2(a)]. The conclusion was drawn that due to linear
dependence between the hysteresis and hardness (yield stress), hysteresis is completely
caused by resistance to plastic deformation and at the zero yield limit the hysteresis
would be absent. The additional dissipative threshold k is not considered by Estrin
(1993). The above experiments allow us to relate & and yield stress.

The relation between the yield stress and the hardness g, = 0.383 H,, follows from
the solution of the axisymmetric problem of the indentation of rigid punch in a
perfectly plastic half-space (Ishlinsky, 1944). This relation is in good agreement with
experiments for perfectly plastic materials (Levitas, 1987, 1996b), for hardening
materials ¢, =(0.32 + 0.37) H depending on the hardening modulus (Del, 1978).
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H, GPa

0,25 0,5 0,75 oy, GPa

b

Fig. 2. (a) PT in the piston-cylinder chamber : 1, piston; 2, cylinder; 3, compressed material; 4, transformed
region. (b) Relation between the pressure hysteresis and the yield stress for various materials (Estrin,
1993): 1, RbCl, KClI, KBr, KI; 2, CdS, CdSe; 3, Ce, InSb, Bi.

Using the coefficient 0.383 we present schematically experimental results by Estrin
(1993) in the coordinates hysteresis H-yield stress ¢, [Fig. 2(b)].

For the interpretation of these results we assume that PT in the piston-cylinder
chamber can be described by the axisymmetric problem of PT in a horizontal layer
under prescribed pressure o, in a chamber {Fig. 2(a)], similar to that solved above for
plane strain. Taking into account the complete plasticity condition 6, = 6, (Hill, 1950)
and yield condition g,—0, = o, we obtain for hydrostatic pressure g, =(0,+20,)/
3 =0,—2/30, (it is assumed for simplicity o,, = 6,,). The nucleation criterion (11)
gives



934 V. 1. LEVITAS

X =(0.—2/30,)e, — AY® =k, (29)
Ay k2 Ay k2 2k 4
1-2_2¥ &~ 21 _ 2t < ==
0, = ‘. + . + 3ay, o ‘. . 30'y, H o + 3o‘,. (30)

Equation (30); in comparison with Fig. 2(b) leads to the conclusion that
k= Los, and H =o0,(4/3+2L). (31)

The value L is equal to 5.89 for materials of group | [Fig. 2(b)], 1.39 for materials of
group 2 and 0.11 for materials of group 3. The coefficient L is a function of the volume
fraction of a new phase. Note that the pressure dependence of yield stress should be
taken into account.

It follows from the obtained results that plastic work can explain only 8%
(= gay/H ), see (30); of hysteresis for materials of group 1, 32% for materials of group
2 and 86% for materials of group 3 ; the remaining part in isothermal approximation
is related to k. Consequently the dissipative threshold k is a very important parameter
for the control of the PT condition and knowledge about its dependence on various
parameters is very important. If we assume the validity of (31), in the general case,
then the dependence of k on temperature, plastic strain, plastic strain rate and history,
volume fraction of martensite, grain size and so on are determined in terms of yield
stress. It is known that the smaller the grain size or size of a single crystal, the worse
the PT condition is, and in very small crystals temperature induced martensitic PT
does not occur (Hornbogen, 1984). The usual explanation of these results is based on
the decrease in the probability of stress concentrators, ¢.g. dislocations which improve
the PT condition, with the reduction of grain size. We can give an additional reason
based on the above equation. According to the Hall-Petch effect o, = a+bd %7,
where a and b are constants and d is some characteristic size (size of grain, subgrain,
width of martensitic plate and so on) (Bernshtein ez al., 1993). Consequently, decrease
in d results in increase in ¢, and especially k, which makes the PT condition worse.

3.3.  Phase transition in a thin inclined layer

Let us consider an infinite rigid-plastic half-space with prescribed normal P and
shear T stresses on the whole surface (Fig. 3). Assume that a coherent PT transforms
the thin infinite layer A’ B C D in A B C D, which is, in contrast to the previous
problem, inclined at an angle « to surface S. Here we will define an “optimal” angle
o and find a limitation related to fulfilment of the yield conditions outside the layer.
In the local x—y coordinate system we assume &' = (0.5 g,i+ y'(tn),)¢. In this case, the
PT criterion (11) results in

X =0.56,(00m +0,) + 7.7 — AP’ = k(a), (32)

where function k() characterizes the anisotropy of a dissipative threshold; o,,, o,
and 7, are the normal, tangential and shear stresses in the layer, and subscript o
denotes that the stresses are defined in the local coordinate system x—y, inclined at an
angle a.

Let a slip line in the layer be inclined at an angle  with respect to the surface S
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Fig. 3. Coherent PT layer in thin layer ABCD.

(Fig. 3). By definition, for a slip line the condition t; = 0.5 g, is valid. We will use
known relations based on Mohr’s circle (Hill, 1950).

0 = 061050, sin2(f—a), o0, =0 F 0.50,sin2(f—2), (33)
17, = 0.50,cos2(f—a) and ¢:=0.5(0,,+0,) = 0.5(c, +03), (34)

where ¢, and o, are the main stresses. The sign + or — in (33) should be chosen,
reasoning from the knowledge, which of the two inequalities (6,, > 04 OF G4y < Oy)
is valid for the problem under consideration. The stresses (33), (34) meet automatically
the Tresca yield condition

(Gan _aut)z +4Iazz = G)Z/a (35)

as well as the condition 1, = 0.50,, when « = f. The line BC remains horizontal for a
small displacement approximation. According to the boundary conditions in the line
BC,

fora =0 ¢,, = P >0, and 1,= Tarevalid. (36)
Consequently, 0.5 g, cos 28 = T; 6+0.5 o, sin 2f = P, whence it follows that
cos2f =2Tjo, and ¢ = P—0.50,\/1—4T"/c. (37)

Equation (37), determines an orientation of two orthogonal slip lines. Substitution
of (34), into (32) gives

X = o, + 1.7 — AV = k(). (38)
From the postulate of realizability it follows that
k/

t
oyY

X(o) —k(x) > max, whence sin2(f—a) = 39)
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is valid with k": = 0k/da. Equation (39) allows us to define the function z = ¢ (f).
Substitution of ¢ from (37), and « = ¢ (f) into (38) yields the PT criterion

X = Pe,—0.5¢,, /052 —477 +0.50,,7 cos 2(f—q(B)) — Ay = k(g(B)), (40)

or
(P—A)+ T =0250%, P> A,

where

A= [AY’ +k(g(B)) —0.50,,y" cos 2(B—q(B))]/z. (41)

which represents in the P-T plane of a semicircle of 0.5 o,, radius, shifted to the
vector A along the axis P (Fig. 4). When &’ = 0, « = f (the layer coincides with a slip
line) and

A=A +k—050,,7"c,. 42)
We should also take into account the inequality
P 44T <o), (43)

which denotes that the applied stresses cannot violate the yield condition for the first
phase, and material outside the layer is rigid. In the P-T plane (43) represents an
ellipse with semiaxis o, and 0.5 a,,. Consequently, the PT criterion represents in the
P-T plane the part of a semicircle (41) lying inside the ellipse (43) (Fig. 4).

Let us analyze the results obtained. When the restriction (43) is not taken into
account, the increase of T decreases the PT pressure, and maximal decrease is equal
to 0.5 gy, at T = 0.5 a,,. Inequality (43) results in several important limitations (sce
Fig. 4).

(1) The PT is possible when —o,, < A4+0.56,, < 0y,.

(2) The increase of T decreases the PT pressure when the circle (41) lies inside the
ellipse (43). An additional increase of 7"makes the PT impossible. In particular
wheno, > 6, and 4 = 6,,—0.50,,0r 4 = —a,,—0.5 6, the PT is possible at
T = 0 only (points P = +ay).

(3) The higher (o,,)/(g,,), the more significant is the contribution of 7. For
6,1 < 0.5 gy, T has little or no effect on the P.

A comparison between equations for the “optimal” angle @ and the results obtained
for o = 0 shows that

(1) The term \/0'_5 —4T*? in (40) is independent of «;
(2) The term (77")/(e,) (for a = 0) reaches its maximal value (0.5 0,7")/(¢,) (42) for
the “optimal” angle .

The term 0.5 o,y' is a rather large positive contribution to the driving force of
PT. At ' =0.2 and &, = 0.01 = 0.04 (typical value for steels), the coefficient (0.5
1)/(e,) = 2.5 = 10 is of the same order as, or significantly exceeds the coefficient L in
(31),, and parameter 4 in (42) can be less than (Ay’)/(c,). This contribution is
independent of 7 and it is impossible to control it (in contrast with the case of a
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(@ T
0.50y,

(b)

———/

Fig. 4. PT criterion (semicircle of 0.5 6, radius and a center at point A) and yield condition (an ellipse) :
(@) o, = 0, (b) 0, = 20,; (¢) 6,y = 0.5 0.
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horizontal layer). Consequently, applied shear stresses T contributes to the yield
condition and PT criterion (41) in a way equivalent to the decrease of the yield limit
and this is the main mechanism of an increase in the driving force of PT.

At T =0 (41) and (42) result in

AP +k 1 7
P= w; +anz<1—’—>. (44)

when y' > ¢, mechanical work reduces the PT pressure.

Evidently, if we allow the rotation of the transformation strain tensor independent
of the rotation of the layer, it is always possible at y* > 0.5)¢,| to find the orientation,
when a normal component of transformation strain along the lines 48 and CD is
zero (AB and CD are the invariant lines) and plastic strain at 6., > 6, will not occur.
Usually the transformation strain tensor is not plane and in this case it is impossible
to find invariant lines and planes and plastic flow will occur in the layer obligatorily.
To avoid the complicated analysis of three-dimensional problems and to find the
main features of PT under complex loading we have considered a simplified two-
dimensional problem with obligatory plastic flow in the transforming layer. The three-
dimensional problem will be considered elsewhere.

4. PHASE TRANSITIONS UNDER COMPRESSION AND SHEAR
OF MATERIALS IN BRIDGMAN ANVILS

4.1. Phenomenon

After compression of materials in Bridgman anvils (Fig. 5), especially in diamond
anvils, a very high pressure in the center can be reached. A number of PT can occur
under such conditions. It is known that:

(1) additional rotation of an anvil and consequently plastic strain lead to significant
reduction of PT pressure and to fundamentally new materials, which cannot
be produced without additional plastic strains (Bokarev et al., 1986; Alex-

42
w \J
Q
1
2 r
1
to

Fig. 5. Compression and shear of materials in Bridgman anvils: 1, anvils; 2, compressed material.
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androva et al., 1987, 1988 ; Blank et al., 1994 ; Serebryanaya et al., 1995;
Batsanov et al., 1995).

(2) volume fraction of the new phase is an increasing function of the rotation angle
and consequently plastic shear strain (Bokarev et al., 1986 ; Aleksandrova et
al., 1987).

That is why plastic strain is considered as a factor, producing new physical mechanisms
of PT. There is, for example, a quantum mechanical theory based on the assumption
that large plastic shears produce a so-called atom-ion state, which allows qualitative
interpretation of material behaviour under such conditions (Panin e? a/., 1985).

It seems to us a little bit unrealistic. During the compression of materials in
Bridgman nonrotating anvils, the mean value of plastic strain reaches 1000%,
additional plastic shear strains near surfaces of anvils due to a contact friction exceed
several thousand percent and have completely the same character, as a shear strain
in rotating Bridgman anvils. Why is it that no one of the physical mechanisms of
effect of plastic strains on PT manifests itself at such large plastic shear strain, but
appears at rotation of an anvil, giving additional 10-100% plastic strain only?

In the paper, a simple theory is developed, which gives a new look on the above
phenomena. We will use the PT criterion (11) for the case of equal elastic properties
of phases. Let

g =(1/3¢, I+7'(tn),)¢ and o = pl+ 21(tn),, (45)

where I is the unit tensor, n and t = /7 are the unit vectors in the directions z and
shear stress 7, T = |7, and p is the hydrostatic pressure. In this case

o:de' =(pe, +1y)de, 7' > 0. (46)

Assuming that transformation strain and & are homogeneous in the nucleus, (11) can
be transformed into the form

| 1 1 1
6°J ﬁdé+y"[ tdé—AYl =k, p= ?jpdV, T = I—/J;d v, 47)

0 0

where p and 7 are averaged over the nucleus pressure and modulus of shear stresses.

4.2. Stress state of a thin cylindrical disk under compression and shear in anvils at
t
y=0

The solution of this problem without PT is known (Ogibalov and Kiyko, 1962);
we will generalize it to the case of PT. We will neglect the elastic deformations of
anvils and deformed disk, pressure nonhomogeneity in the z-direction and use the
simplified equilibrium equation well-known in the metal forming theory (Ogibalov
and Kiyko, 1962 ; Levitas, 1987, 1996b)

@ﬁ__zrfr
or h’

(48)

where r is the radial coordinate, / is the current thickness of the disk, 7 is the radial
component of the shear frictional stress t; on the boundary S between anvils and a
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3
| | -]

AF 1 A

Fig. 6. Pressure distribution: (a) 1, before PT, 2, after PT at g,, = 0,5, 3, after PT at 0,, <0y, (b) 1,
Gy = Gy3 2, Gy > Gy, 3, 0y < Gy

disk. Shear frictional stresses t; are directed opposite to the velocity v of relative
sliding of a compressed material on the boundary S. For a thin disk, the modulus
7; usually reaches its possible maximum value equal to half of yield limit o,, i.c.
7 = (v)/|v|(0,)/2. In the case without rotation of the anvil, 7, = 0.5 ¢, and (48) yields
[Fig. 6(a)]

0 oy R—r
w_ % = 49
o a P ao+ay<l+ p ) 49)
where the boundary condition p = ¢,+ o, at the external radius of anvil r = Ris taken
into account, o, being the pressure at r = R due to the external support of material
outside the working region of anvils r > R. The applied load is determined by inte-

gration of p(r) over S

R
Q=nR\g,+o, {1+ }) (50)

3h
Radial velocity v, is defined from the incompressibility condition and condition v, = 0
at r = 0 by the equation v, = —hr/h. During rotation of an anvil with an angular

velocity w, this expression for v, is still valid, but the circumferential velocity v, = wr
appears. Then, velocity vector v and shear stress t; = 0.5 o,v/|v| are inclined at an
angle « to the radius with
v, 1
, = - (51)
VUit SV (whih)?

COs o =

and consequently
7, = 0.50,cos . (52)
Application of (48), taking into account (52), leads to

p=0,+0a,(1+(R—r)/H), Q =nR*(o,+0,(1+ R/(3H)), (53)
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h .
H=——=h/1 h/h)?, 54
coss = W1+ (hih) (54)
i.e. it is equivalent to the substitution of H for 4. Let rotation occur at the fixed axial
load Q. Then condition Q = const. at g, = const. results in H = const. = A,, where
h, is the thickness of the disk at the beginning of rotation, and [together with (54)] in
differential equation of reduction of thickness

dh |(h,\*
d(p.=(udl=—7 (;)-1 (55)

Equation (54) shows that at Q = const. due to H = const., pressure distribution is
independent of rotation, which corresponds to experiments by Blank et al. (1984).

Consequently, rotation is equivalent to reduction of friction in the radial direction
and results in a decrease of the disk thickness and this decrease is uniquely related to
the rotation angle ¢.

Let us consider PT in the central part of the disk (Fig. 6). We let ¢ be the volume
fraction of a new phase in the transforming region A. In the case without rotation of
the anvil one part of the disk material moves to the center of the anvil. A neutral
circle EF with zero velocity of relative sliding can be easily found using a volume
balance. Equation (48) is valid, but shear stress in the region EF changes sign and in
the region A the yield stress oy, of a new material, which depends on ¢, should be
used. We assume that the pressure is continuous across the interface.

A complete analytical solution looks rather complicated, but its properties can be
easily analyzed without explicit formulas. This is sufficient for the explanation of the
above experiments.

Results of an analytical solution are shown schematically in Fig. 6. It is important
that under a fixed axial force Q, pressure in the transforming region and the work
integral in (47) decrease significantly, which makes PT condition worse. The higher
0, the larger pressure the reduction in the transforming region.

Rotation decreasing the thickness reduces the negative pressure variation in the
transforming particle, increases the work integral and the driving force for PT. This
explains why the rotation (and not plastic strain) improves the PT condition.

We will show that the actual pressure variation which satisfies the postulate of
realizability will be when infinitesimal radial flow from the disk center occurs. In this
case, shear stress does not change sign, pressure grows monotonically with decreasing
radius and volume decrease due to PT is completely compensated by the thickness
reduction. The last condition results in the equation

dh

dCSo = — .;’

(56)

and taking into account (55) at ¢,; = g, in the differential equation

dh h 2 -0.5
y = — — = -2 — 7
dee, 7 d(p((h> 1> , (57)
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which relates uniquely the variation of the volume fraction of a new phase in the
transformed region and the rotation angle, as is observed in experiments by Alex-
androva et al. (1987) and Bokarev er al. (1986).

Equation (56) is valid only when PT criterion (47) is fulfilled. For oy, # g, the
equation similar to (57) looks more complicated, but it also relates uniquely the
variation of the volume fraction of a new phase in the transformed region and the
rotation angle.

According to (48) if both phases have the same yield limit, the pressure distribution
after PT is the same as before PT [Fig. 6(b)]. If the new phase is weaker, pressure
decreases in the center; if the new phase is harder, pressure increases in the center.
Consequently, despite the volume decrease due to PT, pressure increases due to
appearance of the harder phase and additional plastic flow, which agrees with exper-
iments [effects of pressure self-multiplication (Blank ef al., 1984)].

The above solution allows us easily to explain why rotation of an anvil gives us a way
to obtain fundamentally new materials which cannot be produced under compression
without rotation. If two materials can appear as a result of PT which differ by the
yield stress only, then the material with the smaller yield strength appears under
compression without rotation [as pressure is higher at o,, > o,,, see Fig. 6(a)], and
the stronger phase will be obtained under compression with rotation [as pressure is
higher at g,; > o), see Fig. 6(b)]. Consequently, the method based on the compression
of materials with rotation of an anvil is especially important for the production of
high strength materials.

Let us prove that (56) follows from the postulate of realizability, i.e. maximizes the
driving force for PT in criterion (47). When dcg, > — (dh)/h, i.e. the volume decrease
due to PT is not completely compensated by the thickness reduction, part of the disk
material moves to the center of the anvil, pressure in the transforming particle [Fig.
6(a)] and the driving force for PT in criterion (47) decreases in comparison with the
case shown in Fig. 6(b), which contradicts the postulate of realizability.

In the case dcgy < —(dh)/h, material moves from the disk center and the pressure
distribution is shown in Fig. 6(b). For o,, < g,, additional growth of ¢ increases or
does not change the pressure in the transforming particle after PT and consequently
the driving force for PT. According to the postulate of realizability, as only PT can
occur it will occur, i.e. the volume fraction increment dc should be increased. This
increase is possible up to the value dce, = —(dh)/h, because then we come to the
previous case and the decrease in the driving force. In the case o, > 6,,, additional
growth of ¢ decreases g,,, the pressure in the transforming particle and the driving
force. If, for dc determined from the (56), the PT criterion is fulfilled, then this
increment dc will occur (according to the postulate of realizability). When the PT
criterion is violated and PT does not occur, the pressure distribution is independent of
additional anvil rotation and thickening of the disk. Consequently the last infinitesimal
increment dc proceeds at constant (independent of ¢,) averaged pressure p*, which is
determined by (47)

pre,— Ay’ = k. (58)

Knowledge of p*, g, 6,,(c), Q and the radius of the transforming region 4 determines



Phase transitions in elastoplastic materials—I 943

the unique stress distribution and the maximum volume fraction of a new phase c*,
which is independent of the kinetic equation for ¢ and in particular valid for (56).
Consequently at ¢ < c* the value dc¢ determined from (56) will not violate the PT
criterion and this increment dc¢ (according to the postulate of realizability) will occur.
Atc> c*, dc=0.

We have proved that (56) follows from the postulate of realizability. It follows
from the above results that experimentally observed relations between the volume
fraction of the new phase and rotation angle (but not plastic strain) do not represent
a new physical law, but the consequence of the volume balance equation (56) (which
follows from the postulate of realizability) and (55), which relates thickness of disk
and rotation angle.

Note that the explanation of the pressure self-multiplication effect based on increas-
ing of elastic moduli after PT (Blank er al., 1984) is not correct, because it does not
take into account the plasticity. Even at infinite moduli (as in our model), the pressure
is limited by solution of the problem of plastic equilibrium, as presented here. If
6,1 > 0y, or material flows to the center of the disk, the pressure in the new phase
cannot be increased irrespective of the increase in elastic moduli.

4.3.  Estimation of the effect of y* # 0

As the solution to the problem in this case is unknown, we will make the simplest
estimations. Assume that y* = const in the transforming region and the stress state is
independent of y'. Let the shear stress be independent of r. In the case without rotation
of the anvil it is usually accepted that

T =0,z/h andconsequently ¥ = 0.250,,. (59)

During rotation of the anvil only the radial component of shear stress varies linearly,
T, = 0y, €0s a z/h, a circumferential shear stress 1., = 0.5 6, sin « is coastant (similar
to the case of plastic torsion of a rod) and t = ./t +12. That is why the value

2 0.5h 2 0.5h ., s ZZ
f=;.[) ©dz anzL 0.25sin "o+ cos anz

I+cosa

= 0.25¢,, (1 +cosatan’ aln o

) (60)

during rotation exceeds the corresponding value without rotation and the driving
force for the PT in (47) increases. For large enough ' PT can proceed under pressure
which is less than thermodynamic equilibrium pressure (as in the problem of PT in the
layer), which corresponds to the results obtained in some experiments (Alexandrova et
al., 1988). In the case g, < g, this situation can be achieved more easily due to the
growth of p.

Let us summarize the results. Improvement of the PT conditions due to rotation of
the anvil is related to the possibility of additional displacement, compensating a
volume decrease. It is connected with a decrease of friction stress in a radial direction.
But when we understand that the reason lies in additional displacement (and notin a
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plastic straining), it is possible to find other ways to obtain additional displacement
without rotation.

One possibility is to decrease the yield stress at constant external force, e.g. due to
heating of the external part of the disk or of the whole disk. Equation (50) determines
the variation of disk thickness (56) defines the volume fraction of a new phase. As in
the case with the rotating anvil, if a new phase is harder, pressure increases in the
center of the disk. Such a situation is observed in experiments by Blank et al. (1989):
the increase in pressure caused by PT Bl — B2 in KC! during heating from 300 up to
600 K and initial pressure 6 GPa at the center was 30%.

Another possibility may be based on the use of transformation induced plasticity
(TRIP) (Mitter, 1987 ; Padmanabhan and Dabies, 1980). Let us consider a two-phase
material consisting of inclusions in a plastic matrix. If, under cyclic temperature
variation, inclusions undergo the cyclic direct—reverse PT with large enough volu-
metric transformation strain, then the matrix will be deformed plastically even without
external stresses. External stress produces plastic strain in the direction of its action,
which is proportional to the value of applied stress and number of thermal cycles, i.e.
is practically unlimited. If we introduce the transforming particles into the disk
compressed in anvils, then it is possible to use the thermal cycles instead of rotation
of the anvil to get additional displacement and to improve the PT condition in the
center of the disk.

It is necessary to note that the above problem shows a good example of stress
(pressure) concentration due to external friction during plastic loading. At large R/A
(in experiments R/h = 10 + 100) pressure in the disk center exceeds the yield stress
by a factor of 10 + 100 and the specific applied force Q/(nR?) by a factor of 3. For
materials with pressure dependent yield stress these values can be several times higher
(Levitas, 1987, 1996b).

The pressure dependence of the yield stress and elastic strain will be taken into
account elsewhere. The problem of compression of a rigid-plastic disk for pressure-
sensitive materials is solved numerically by Levitas (1987, 1996b).

5. CONCLUDING REMARKS

It follows from the solution of the above problems that the generally accepted
statement concerning the improvement of the PT condition by large plastic shear is
not always correct. Under homogeneously distributed pressure and shear stress this
is indeed the case. According to the plastic flow rule, shear stresses and shear plastic
strain (or plastic strain increment) are related uniquely and are in monotone relation
with each other (27),, i.e. they produce equivalent contribution to the driving force of
PT. In the problem of the compression of materials in Bridgman anvils, all impressive
experimental results are described (at least qualitatively) without the appearance of
plastic strain in any equation. Consequently each experimental situation should be
simulated carefully before any conclusion is made.

The phenomena enumerated in Section 4.1 take place not only for martensitic PT,
but for various chemical reactions in polymers (Zharov, 1984, 1989) and for oxide
decomposition (Vereschagin et al., 1971). In these cases plastic shear accelerates the
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kinetics of reactions by several orders, making it practically “‘instantaneous” (like for
martensitic PT), because the volume fraction of product depends not on the time, but
on the value of shear. This means of course the appearance of new physical (or
chemical) mechanisms. For martensitic PT this is not the case, because the “‘instan-
taneous” time-independent kinetics is typical for them without plastic strain as well.
The existence of a physical effect of plastic shear on martensitic PT can be proved
only in the case of disagreement of experiment with the solution to the same problem,
when all the material parameters and boundary conditions are determined inde-
pendently.
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