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Abstract—The extremum principles for the interface are derived using the postulate of realizability.
They are used to derive a number of equations for the description of phase transitions (PTs): for
jumps of the deformation gradient and the tensors characterizing the mutual orientation of the phases;
for the deformation gradient history in the course of PT; for the normal velocity of the interface and
the velocity of the relative sliding along the interface; the local criteria for the martensitic PT. The
governing extremum principle for the description of a stable post-bifurcation process for a volume of
elastoplastic materials with PT is derived. The local PT criteria represent the equations for some
parameters across the interface. But even when they can be met, two solutions are possible: first, the
solution with fixed interface, second, the solution with the moving one. The more stable solution can
be chosen using the extremum principle for the whole volume, which is the global PT criterion and
gives the final solution. Some examples are considered. It is shown that in the course of PT, the
traction continuity condition is violated across the interface. To remove this contradiction the concept
of fluctuating stresses is introduced. These stresses overcome the energy barrier and restore the
traction continuity condition.

1. INTRODUCTION

In this part of the paper the postulate of realizability is applied to describe PT in elastoplastic
materials at finite strains. We consider coherent PT (when the position vector is continuous, but
the velocity vector and deformation gradient have jumps across the interface) and noncoherent
ones (when the position vector has a jump too). In Section 2 the martensitic PT in elastic
materials is considered. In Section 3 necessary conditions for coherent PT in elastoplastic media
at simple shearing and in a general case are derived. They result in generalization of Maxwell
convention. Using the postulate of realizability in Section 4 the extremum principle describing
PT is derived. This principle determines jumps across the interface of the deformation gradient
and the tensors characterizing the mutual orientation of the phases, deformation gradient
history in the course of PT as well as local PT criterion. Then extremum principles for a finite
volume of elastoplastic material with PT are derived. In the particular case, these principles
result in global PT criteria (based on consideration of whole volume rather than interface only),
which can differ from the local one. In Section 5 PT a simple shearing is examined and an
example of noncoincidence of the local and global criteria is shown. In Section 6 the
noncoherent PTs are briefly described. The Appendix contains some relations for points of the
interface.

2. MARTENSITIC PT IN ELASTIC MATERIALS

Consider the simple shearing of an infinite slab (Fig. 1) of nonlinear elastic material with a
diagram 7 = f(y), shown in Fig. 2, where 7 and y are shear stress and strain, respectively. At

y = h velocity v is prescribed. At y =0 the velocity is equal to zero. The diagram shown in Fig.
947
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Fig. 1. Simple shearing of a slab of nonlinear elastic material.

2 is typical for materials with martensitic PT. We will not consider physical processes like
crystal lattice variation, but instead we will formally describe instability in the nonlinear elastic
continuum. We will label the phases corresponding to the branches ABC and EFG ( —) and
(+) respectively; branch CDE exhibits an unstable intermediate state. The free energy for a
given material has a concave part (Fig. 3). Note that this diagram is obtained at homogeneous
stress and strain distribution and all small but macroscopic volumes have to behave in
accordance with this diagram [1].

Homogeneous straining along the line ABCDEFG for materials with the concave free energy
is unstable. From the free energy minimum principle it follows that the equilibrium PT occurs
at constant shear stress 7, the free energy ¢ is nonconcave and the strain is nonhomogeneous
(Fig. 3). At some stress 7,, a macroscopic portion of the material is deformed from y~ to y*
along line ABCDEF (Fig. 2). At the next total shear strain increment Ay, the next portion of
material undergoes PT. During the whole process of PT, the strains in the phases (—) and
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Fig. 2. Diagram of the simple shearing of nonlinear elastic material.
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Fig. 3. Free energy vs shear strain for the diagram shown in Fig. 2.

(+) are fixed and equal to vy~ and y*, the stress is constant 7= 7, and Ay is related to the
increment Ac of the volume fraction of a new phase.
Across the interface T the rate of dissipation takes the form (see Appendix)

Dy=[t(y" =y )= pW(y") — ¥(y Nva=0 (2.1)

where v, is the normal velocity of the interface and p the mass density in the reference
configuration V. For the thermodynamical equilibrium processes %> =0 and we find the
equilibrium stress

=pW(y") ¥y DIy = 7). (2.2)

This is well known Maxwell convention. Geometrically speaking, it means that the areas
(BCD) and (DEF) are the same (Fig. 1) [(BCD) denotes the area enclosed by the straight line
BC and the curve BCD, and similarly for (BCD)]. In reality, terms 7(y" —y ) and
p(W(y") — ¢(y7)) are equal to area (BFNM) and (BCDEFNM), respectively, and their
equality results in the equality of areas (BCD) and (DEF). The volume fraction c of the phase
(+) is determined from expression y =cy* + (1 —c¢)y ", i.e.c=(y —y )/ (y" —y"). Thus, all
points of the materials are deformed along the line ABCDEFG. This deformation does not
proceed simultaneously in all points, but heterogeneously, at each y-increment at the different
points in the volume. Macroscopically, this behaviour results in curve ABDFG and corresponds
to the free energy minimum principle, ie. it is thermodynamically more profitable than
homogeneous deformation.

Note two important details. Firstly, in the course of PT, the violation of the traction
continuity across the interface T takes place. In the ( — )-phase 7 = t,, but at the ( + )-phase the
shear stress varies according to line BCDEF and there is continuity at the points B, D and F
only (Fig. 2).

Secondly, the fluctuations are needed in order to overcome the energy barrier (BCD) at
macroscopic stress T and move along the curve BCDEF. The material borrows energy (BCD)
from the system and at the next instant returns the same energy (DEF) to it. The fluctuations
could be both the thermoactivated and caused by stress concentrations on different types of
defects. Necessity of perturbations was mentioned in the similar problem by Ericksen [2].

Let us introduce fluctuating shear stress 7;=f(y)— 17, ye [y, y"] [1]. This fluctuating
stress acts for a very short time in a small, but macroscopic volume, undergoing PT and does
not contribute to the macroscopic stress. For the equilibrium processes the time average value
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of 7; is equal to zero. Consequently, after these assumptions we restore shear stress continuity
across XZ: macroscopic shear stress 7° =1 Vy e [y", v"] and the fluctuating shear stress
overcomes the energy barrier (BCD).

3. SOME NECESSARY CONDITIONS FOR COHERENT PHASE
TRANSITIONS IN ELASTOPLASTIC MATERIALS

In this section some necessary conditions for the coherent PT in elastoplastic materials will
be derived. Some relations for the points of the interface are given in the Appendix. Sufficient
conditions will be determined in the next section, using the postulate of realizability.

3.1 Simple shearing

Rigid-plastic materials. Let us start with the rigid-plastic material having a deformation
diagram at the simple shearing, shown in Fig. 4. Assume that at some stress 7 we have onset of
PT and jump of shear strain y from y~ until y* in some portion of the material. The rate of
dissipation, related to the interface movement, will be (see equation (A8) in the Appendix)

@2: T(7+ - ‘YA)UnZXZUn' (31)

But material in a PT region deforms in accordance with diagram 7 = f(7y), and this deformation
must give the dissipation work W =(W(y*)— W(y ))Av, where W(y)=[Y7dy is the
dissipated work per unit volume at the deformation from zero until shear strain y; Av = v, ZAt
is a volume covered by surface X during time At (Fig. 5). The expression W(y*)— W(y~) is
equal to the area below the curve 7= f(7y) on the interval (y~, y*). The rate of dissipation per
unit area is

Dz =WI/EA) = (W(y") = W(y )va = X3v,. (3:2)

We have two expressions for the rate of dissipation. Equation (3.2) shows the value of the
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Fig. 4. Diagram of the simple shearing for rigid-plastic material with phase transition:
1—homogeneous straining; 2—phase equilibrium line at k = 0; 3—phase equilibrium line at & >0,
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Fig. 5. Volume Av=wv,Z As, covered by the Z-surface during the time increment Ar at simple
shearing.

power which have to be dissipated at the X-surface movement. Equation (3.1) exhibits the
power of the external stress 7, if the Z-surface with strain jump (y" — y~) moves with rate v,;
for rigid-plastic materials all of this power will be dissipated. Evidently, if

X:<Xz, ie. t(y'—y)<(W(H)-W(H)), (3.3)

then the Z-surface movement is impossible, if a Z-surface exists, or the first jump of strain is
impossible in the opposite case. To prove this, consider the energy balance equation for the
volume Av = v, d= Ar (Fig. 5):

f TAu dT - W = AK, (3.4)
X

Ay

where Au = (y" — vy v, At is the displacement increment on the surface X, (surface Z fixed),
K =0is the kinetic energy of the volume Av; AK = K(t + Ar) — K(¢) = K(¢t + At) =0 due to the
assumption of K(¢)=0. From equation (3.4) it follows

[ty =y )= (W(y") = W(y D]v.dZ At = K(t + At) = 0. (3.5)
Consequently, for PT which has actually occurred quasistatically (K = 0)

Wy =y ) =(W(y") - W) (3.6)

Thus, equation (3.6) is a necessary condition for the jump of the shear strain (instability, PT),
and inequality (3.3) is a sufficient condition for the absence of strain jump. To prove the
sufficient condition for PT and the necessary condition for stability, we need a principle
describing post-bifurcation behaviour. Consequently, we have the Maxwell rule as a candidate
for the determination of the bifurcation point and the phase equilibrium diagram (Fig. 1).
Note that superscript T in equation (3.2) denotes “threshold”, i.e. &3 and X3 are the
threshold value of the rate of dissipation and dissipation force which it is necessary to reach for
the Z-surface movement. Note that the concept of threshold-type dissipation force which resists
the interface movement at the martensitic PT was considered in [3-5]. For the elastic materials
this force is related with intersections of the interface  with different types of defects—point
defects, dislocations and especially with grain and subgrain boundaries. Only under the
presence of this force we do succeed in describing stable two-phase thermodynamic equilibrium
for elastic materials with PT [3, 4]. For elastoplastic materials when both sources of force X

ES 33:6-C
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appear (the jump of the plastic strain and the intersections of the Z-surface with defects) they
have to be summed up. In this case XT= W(y*) — W(y) + k(c) and condition Xy = X3 results
(Fig. 4) in

Wy =y ) =Wy - W(y) +k(o), (3.7

where k is the threshold value of the dissipation force, which resists the interface movement
and is not related to plastic strain; it may depend on the interface displacement u, and its
history, but for simple shear (and at the averaged description) it is more convenient to consider
k as a function of the volume fraction ¢ and its history. Some analytical approximations of k for
polycrystals are given in [6] and for monocrystals in [7]. Note that equation (3.7) could be
obtained by making use of the energy balance equation [as in equation (3.4)}.

Elastoplastic materials. For the simple shear problem the total, elastic and plastic deformation
gradients are equal, respectively, to F=1+ ymn, F. =1+ y.mm, F, =1+ y,mn, where m and n
are the shear directions and normal to the shear plane, respectively. From the multiplicative
decomposition F=F,-F,, taking into account for n-m=0, it follows that F=1+ ymn=
I+ (ye + yp)mn; y =y, + 7y,. Assuming that ¢ = ¢(y., v,), let us determine the rate of plastic
dissipation % =7y — pyy and dissipation work in a volume Av W =(f7' 2 dr+k(c)) Av,
whence

XT= 2= [T f)dy = p(rs 7) — B2, 7)) + K, (38)
v v

Expression (A8) in the Appendix results in Xz = 7(y" — y7) ~ p(#(y") — (v ")) and from the
necessary condition for PT Xz = X1 we get

+

=)= Fdy+ k), (39

Y

i.e. the generalized Maxwell convention. The same result may be obtained using energy balance
considerations. The results of this section are new ones.

3.2 General case

The second law of thermodynamics for a finite volume of the elastoplastic multiphase
materials with moving interface = has the form

d
[ pevas -2 [ oy F)a
N dt v

=f B(F,, F,) dﬁ+j PUF*,F,F(s), X, u,, v,) dZ=0, (3.10)
v X

where F* and F~ are the deformation gradients from the side of positive and negative direction
of normal n to the interface, respectively, F(s) is the deformation gradient path between F~ and
F~; tensor (or a set of tensors) x characterizes the mutual orientation of the new and the
partent phases; @5 is a threshold value of dissipated power due to the interface motion;
v=v — X means the volume v without interfaces; 9% depends on the whole history of u,,
and & depend on history of F. The first two terms in equation (3.10) represent, according to the
second law of thermodynamics, the rate of dissipation in a volume v. Equation (3.10) shows
only that this rate of dissipation consists of two parts: one of them is concentrated across = and
the second term is distributed in the points of .
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Fig. 6. Volume dv = v, dX At, covered by the Z-surface during the time increment At in the general
case.

Consider an infinitesimal volume dv = v, Ar dZ (Fig. 6), covered by the Z-surface during the
time Ar. Calculating the dissipated work W in a volume Av and X3 = W/Av we have

XT:ff P'(F(s), x):dF — p(¢(FS, Fy, x) — ¢(F, Fy)) + k(un). (3.11)

The integral in equation (3.11) is calculated along the deformation path F(s). We shall assume
the tensor x is varied (has jump) only as the interface sweeps by; in the points of the volume v
it is fixed (this variation was taken into account in [4]).

From equations (3.10) and (3.11) and the results of the Appendix it follows

f (P:F— pj — @(F,,F,)) dv + f (Xz— XIw,dz2=0 (3.12)

where
X5 =P [F] = p[y] =n- P+ [F]-n - p(4(F., F;,x) ~ $(F:, F;)). (3.13)

At Fp # 0 and v, #0 equation (3.12) gives the same definition of & in the points of the volume
v, as equation (2.32) from Part I [8] for media without PT and

Xs=X% or P[F]= fw P'(F(s), X):dF + k(u,). (3.14)

Equation (3.14) represents the generalized Maxwell rule for inelastic materials. It contains the
stress work independently of the fact of whether work is dissipated or not. Equation (3.14) can
also be obtained from the energy balance principles for the volume dv.

Equation (3.14) is one of the necessary conditions of the PT (v, #0). For actually occurring
PT, the analogous conditions has to be met at time ¢ + At across the surface X,

Fi
G FL = F) = [ (), ) dF + K. (3.15)
Fi
For an infinitesimal time increment Ar and the existence of all the derivatives which are

necessary, equation (3.15) transforms into

. ok
(P +n-VPvy):(F"~F )= PR (3.16)
un
We have taken into account that A,=A + (A +n-VAv,)Ar for A=P, F* and F,
respectively, and
Fi F* Fi F3
P'.dF = P':dF + P’:dF—f P':dF
F3 F- F* F-
=| P:dF+P:(F +n-VF'v)Ar—P:(F +n-VF v,) At (3.17)

F
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The term VA appears due to the fact that the tensor A, is determined on the 3, surface, i.e. at
point r, +v,nAt, where r, belong to . At a homogeneous stress field in equation (3.16)
VP =0. If 9k/éu,=0 then P':(F" — F)=0. Equations (3.14) and (3.16) are the necessary
conditions for the interface propagation. Equation (3.13) is well-known, but equations (3.11),
(3.14)-(3.16) are the new ones.

4. THE GOVERNING PRINCIPLE FOR THE DESCRIPTION OF THE
POST-BIFURCATION PROCESS FOR ELASTOPLASTIC
MATERIALS WITH PT

4.1 Application of the postulate of realizability to determine the parameters across the interface

It is evident that the parameters F', F~, x and the paths F(s) are not determined uniquely by
condition (3.15). Usually the several crystallographically equivalent variants of the PT with
various x tensors are possible, and each of them could give various F*, F~ and F(s); but even
for fixed x or for isotropic phases, when x is not a state parameter, tensors F*, F~ and F(s)
may be ambiguous due to, for example, nonuniqueness of the flow rule or complex geometry of
the yield surface and free energy. Let us use the postulate of realizability to determine these
parameters. It is evident that if

Xs(F7 F,x*) < X3(F ™+, F * F*(s), x*) VF'* F * F*s) and x*, 4.1)

then v, =0 and PT is impossible. The proof is trivial: for an actually occurring PT equation
(3.14) is valid, which is in contradiction with inequality (4.1).

According to the postulate of realizability, PT will occur the first time when equation (3.14)
is met. Consequently, for real values of the varied parameters equation (3.14) is valid, for all
possible ones—inequality (4.1) is true. We obtain the extremum principle

X):(F+*’ F*, X*) - X;(F+*7 F%, F*(S), X*) <0= XZ(F+9 F, X) - Xg(F+7 F-, F(S), X) (42)

Making use of equations (3.13) and (3.11) for X5 and X% we have

F+*
P:(F* - F *)— J P'(F*(s), x*):dF — k(u,) <0
P

=P (F —F)- f F P/(F(s), x):dF — k(u,). (4.3)

Principle (4.3) has to be considered jointly with the equations for the yield surface, the free
energy and the flow rule. At fixed F** =F* and F * =F  from principle (4.3) it follows

fli P'(F*(s), x*):dF — min, (4.4)

Le. the principle of the minimum of work. It is easy to take into account dependence of k on
F*, F, x and F(s). The counterparts of the principles (4.2)—(4.3) at time ¢ + Ar read

XZA(FX*7 FK*, XK) - XgA(FI*’ F;*’ F*(S), Xﬁ) < O
= Xza(Fi, Fs, Xa) — X2a(F3, F5, F(s), xa);  (4.5)

Fi*
PL:(Fi* —Fy*) - P'(F*(s), x%):dF — k(u,2) <0
Fi*
Fi

=Py:(F{ - Fy) - N P(F(s), Xa):dF = k(u,a). (4.6)
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4.2 Application of the postulate of realizability for a finite volume of elastoplastic
material with phase transition

For all admissible fields v*, F*, F";‘, F* and v} we have
d .
f p-v:dS — d_tf py* dv —f X:Frdi - f X:([F*], x*)v¥dZ =0, 4.7
S v v =
where

d )
— *(F,,F,) dv = * dv + *|yk d=
dtfvpt//( p) dv J;pt/f v Lp[d/ v

— [ o By av + [ (R, B, x) — w(E By as (49)
v =

y*(F,, F,) is determined by equation (4.10) from Part I [8]. We assume that P and X meet the
yield criteria and Xy =< Xi. Remember, that at PT tensors F**, FJ*, Fi* F.* F,* and x*
depend on the conditions of transition. The proof of equation (4.7) is simple:

Lp-v*dS—d%fupz/;*dv=LP’:F*dT1—Lp-[v*]dZ—J:’pJ/*dﬁ—Lp[c//*]v,";dZ
= [ @b gy an | @R - plusut dz

= f X:F*do+ f Xo(FT*, F*, x*)w# d=. (4.9)
v x

We used equations (2.32) from Part I and (3.13), the results of the Appendix and
[v¥] = —[F*] - mv}. As

X-F*<9(F%F,) VF:#F, F+~0, (4.10)
X(F*, F %, x%) < XLF**, F~*, F5(s), X*), (4.11)

for all parameters which are not equal to the real ones, then from equations (3.10), (4.7)~
(4.11) the extremum principle follows

d )
fp-vds —d—tfpw dv —f a(F,, Fp)dﬁ—f XI(F*,F,F(s), X, tn)v, d=
S v v z

d .
:0>J p-v*dS—d—tjp(//*dv—f D(F%,F,) dv
N v v
~f XYF > F * F*(s), x*, uvidz. (4.12)
=

This principle could be obtained also using the postulate of realizability directly for the finite
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volume v without implementation of the consequence from this postulate for points of volume
v and the surface £. An equivalent expression for principle (4.12) has the form

L p-vds— f (pis + B(F,, F,)) dv — L L F (P(F(s), x):dF + k(u,))v, d=
=0>Lp~v*dS —L(plz,* + B(F%, F,)) dv

B f f F (P(F*(s), x*):dF + k(u,))v*dE.  (4.13)

We used the same manipulation as at the transition from principle (4.2) to (4.3) and equation
(4.8). At time ¢ + A¢ the counterparts of principles (4.12) and (4.13) read

d . _
f Pa“Va ds - a‘ f pdl(FeAa FpA’ FX» FZ’ XA) dv - J @(FPA, FpA) dv
A v v

- X;(FZ9 FZ’ F(S), Xas unA)vnA dZA

Z5

d R
=0>J' PA'VXdS _ade/*(FeAs FpA7 FA7FA7 XA) d‘U
S v

- 9 F*A’ F A dﬁ - X% (Fx*s FZ*’ F*(S)) XX» unA)v;l:A dzAa (4'14)
_ P! P

Za

[ s v 05 = [ (pi(Fu Fo) + D0l Fr))

[ [ w1, 008 + kpsyyvns iz,

2 “Fi

=05 [ pu-vidS = [ (pH(Fus, Fpa) + 93 F) d
A v

- f FK*(P’(F*(S), x*):dF + k(uqa))vi, d2,. (4.15)

F3*

If we have at time ¢ several possible solutions, then using the postulate of realizability we could
choose the unique one. For this solution principles (4.14) and (4.15) are valid, but for other
arbitrary solutions which we will label with 0 we have

. d
3v* for which fs p2-vdS +L Pa-vidS — o f pY*(Fla, Fiy) dv
— | D(Fr, Fpa)dv — | XT(FL* F3* F*(s), x&, unalvia dZ4>0; (4.16)
3 pa p y
3v* for which L pa-vdS + f pa-vidS - f (pd*(Fs, FOu) + (K%, FO,)) dv
v s, G

Fi
- J' f (P'(F*(s), x%):dF + k(uba)v¥) dZ2>0. (4.17)
):g 3 *

F,
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If we use vi =} in principles (4.14) and (4.15), and v¥ = v, in inequalities (4.16) and (4.17),
than we get the generalization of principles (98) form Part I [8] for media with PT:

d
j Pa-vadS + J- pa-vadS - a J pY(Fea, Fgm Fi,Fa,xa) dv
Sp S, v
- J @(FpAa FgA) dl_) - J X£(FZ5 F.Zs F(S), XA) u(r)lA)vnA dz% > 0
] 59
d + o
= J‘ Pa‘vadS + J Pa*VadS —— | pp(Fes, Foa Fi, Fa, Xa) dv
S, S, dr J,
- Jr @(FpAs FpA) dﬁ - f Xg(FX’ FZ’ F(S), XAJ unA)vnA dZA
& =
d _
= f Pa-vadS + f pa-vads — a f p°(Fls, Fgm F1%F,:°% x2) dv
Sp S v
- f gD(F(;A7 FgA) dﬁ - f X;(FZO’ FXO’ FO(S)’ Xg, u(l')lA)ng dEOA
v =
0 d 0 +0 Y 0
> Pa*Va ds + Pa‘Va ds - -CE Pl/’ (FeA’ FpAv FA ) FA ’ XA) dv
Sp S v

- J @(FgA, FpA) dv — Xg(ons FZ()s FO(S)1 x%) unA)ng dzA (418)
v Za

or

fs Pa-vadS + f B2 dS = [ (piH(Fls, Fi) + G(F,s, FO) dT
Fi
[ OG5, X002 dF + k(s 028 >0
= JFy
= f pA ° VA dS + f pA . VA dS - f (pdf(FeAy FPA) + @(FPA’ FPA)) dV
S s, v

- L f:g (P'(F(s), Xa) 1 dF + k(tpa))vna dZ4

g

P

pa- VR4S + [ pl-vuds = [ (o0 (L F) + B0, FA)) d
Sy v
FAHP
- [ @), x):aF + kudsnis 0z
= JFyY
> [ o v8aS + [ by vadS = [ (it (Fes Fou) + 9(F0, By 05
S S, v

FK()
[ [ ), xR + ki az (419)
Za

FS“

The method of application of principles (4.18) and (4.19) is similar to the case of the absence of
PT. If for volume v we use the principles of Section 4.3 instead of the ones of Section 4.2 at
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Part I [8] (i.e. we admit jumps of F,, and P, from the unstable solution to the stable one), then
we obtain instead of principles (4.19)

J Pa*Va ds + j pg " Va ds — J PTA(FPA’ FgA):FA dv
S s, G
Fi
- f f (P(F(s), Xa):dF + k(ua))v,s dE2>0
20 “Fx
:f Pa-° VAdS+f Pa’ VAdS _J’ PIA(FPA,FPA):FAC‘I_)
5, s 5
Fi
= | Pa0RG), 20):0F + k(ns)vns a2,
= IFs
:J Pa-vads +J pi-v,ydS _j PE\’(FSA,F(&A):F‘A dv
s, s, i
F&’U
- f f (P'(FOs), x2):dF + k(u2:))v2, d=3
Z“ F&()
>f Pa‘vadsS +J Ps-VadS —j PY (F04, Fou):FQ do
s, s, v

- f fﬁ (P'(F(s), X2):dF + k(t,2))004 dZ,. (4.20)

|

It is easy to receive equations (4.26)—(4.29), (4.32) and (4.33) of Part I [8], if in definitions of
stress vectors p2, Pa, pa and pa we include power, related with the interface motions, from the
corresponding lines of equation (4.20).

If the local criteria of the PT (3.14) and (3.16) are met at some points on the Z-surface, it
does not mean that the PT in fact will occur, because we have to satisfy the global criteria. At
least two different solutions at time ¢ are possible: with PT (v, # 0) and without it (v, = 0) and
using the principle (4.20) we can choose one “‘more profitable” variant. If we obtain v, # 0, it
means that not only local criteria, but also the global one for PT are met. In this case, PT will
really occur.

Let us designate the solution of the boundary value problem with PT by the superscript “ph”
and without PT by the superscript “w”. If the PT occurs, then

f py - vidS — f PL(Fys, FPA):FY du<0 (4.21)
LY v
and

F3
L ps-vRidS — f PRE(FRE Ry F2 do — f f (P'(F(s), X):dF + k(upa))vas dE,>0.  (4.22)
v A YF;

Principle (4.21) is a particular case of the last line in the principle (4.20) when we assume that
at time ¢ the solution with PT is realized and check a possible solution without PT. Note that
the Z-surface in principle (4.21) corresponds to time ¢ + Ar (i.e. it is shifted due to transition),
but it is fixed in the given case and therc is not a jump of v* across it. Principle (4.22)
Tepresents particular cases of the first line in the principle (4.20) when we assume that at time ¢
the solution without PT is realized and check the solution with PT. The position of the
2-surface in this case is determined at time ¢ (it is fixed in the given solution). The parameters
F;, F4, F(s), x and u,, are determined from principle (4.6) and equation (3.15). If the PT
does not occur, then

F3
Jpevras - [ et P ias - [ [ PORG) 008 + ks dBa <0 (423)
S b 2y 'F3
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and
f paevids — j Py(Fry, F22):F2 dv >0. (4.24)
N v

4.3 Alternative variant of the description of the phase transitions

In most cases, for inelastic materials especially, the total diagram (Fig. 4) is unknown even
for the one-dimensional case. Usually, the elasticity and plasticity laws and the Helmholtz free
energy for both phases are known, but with respect to the natural (stress and strain free) state
of each phase, which are distinguished. The deformation gradient Fy, which transforms the
natural state of the parent phase into the natural state of the second phase, describes both
volumetric and shearing components. The volumetric strain in determined uniquely by the ratio
of the mass densities of these phases, but the shear strain depends on the applied stress tensor
and its history. Consider a simple example for the PT in the monocrystal. Assume that only two
variants of Fy are possible F;. =1+ yimn; F; =1+ y3mn; y} = —¥%, which corresponds to the
simple shear in two opposite directions (Fig. 7). But during PT, both of these strains can be
realized in different subvolumes of the macroscopic volume under consideration and Fy=
c\Fy + c,F%, ¢, + ¢, =1, where ¢, is the volume fraction of the ith variant of PT. In the general
case there are much more than two crystallographically equivalent variants of PT for
monocrystals. For polycrystals we have an additional degrees of freedom. Consider two types
of description. In the first one, we assume that it is possible to represent

Fr= 2 CiF!]‘y E c;=1 or Fr=Fc, X;), (4.25)

where x; e x characterize the orientations. In the second possibility, we have an infinite number
of variants. In this case we assume that all possible Fy tensors belong to some region @(F) < 0.
For F* we can establish the formula [4] F* =F; - F, - Fr+ F,, where F; and F, are the plastic
deformation gradients in the (+) and ( — )-phase respectively. The expressions for X5 (3.13)
and X% (3.11) are valid in the given case as well. But due to the fact that we know the plastic
properties at Fy =1 (( — )-phase) and at the final value of F; (( + )-phase), we can take the
integral in the equation (3.11) at F, = const and use the flow rule of the (+)-phase or of the
mixture of both phases [4].

All the remaining principles and equations of this Chapter are valid with one peculiarity: it is
necessary to use constraints (4.25) of ¢ =0. The usage of a constraint ¢ <0 is more convenient
in two stages:

(1) To use the extremum principles without accounting for constraint ¢ =<0, and then
check if the result satisfies it or not;
(2) If not, we have to use the constraint ¢(Fy) = 0.

'W/Q._‘y% 1r/2—‘7%
7’/2_7’}‘ /2 —vr
oYy
2-vL ¢ d
a b "= /2 =T

Fig. 7. Deformation gradient of the transformation shear strain vy, for two possible variants of phase
transition: (a) initial state; (b) ¢, = 1; (¢) ¢; = ¢, =0.5; (d) ¢, > 5.
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4.4 Comparison with some extremum principles

For discrete systems, BaZant [9] suggested criteria for the choice of the stable post-
bifurcation path based on second-order work. He gave a thermodynamical substantiation of
these criteria, but it is very difficult to understand it. The hypothesis adopted (see Appendix 5
in [9]), that the actual inelastic structure (irreversible) can be replaced by the tangentially
equivalent elastic (reversible) structure, excludes the thermodynamic consideration, because
these two systems are thermodynamically nonequivalent. That is the reason why the final
formulas [(7)-(11), (13)]

—~Q AS,, = 8W, (4.26)

where AS,, is the internally produced entropy increment (i.e. the rate of dissipation is
B = 0(AS,,/At)), 6°W is the second-order work, are incorrect. Indeed, 6 AS;, could not be less
than zero (according to the second law of thermodynamics), but A*W is positive for hardening
materials (we recall that instability is possible at 8°W >0, see Fig. 4). To explore equation
(4.26), BaZant uses the second law of the thermodynamics in the following form: “the structure
will approach the equilibrium state, which maximizes AS;,”, consequently AS;,— max,
8’W — min. But from the second law of thermodynamics it follows only that AS;,>0 for
irreversible processes and AS;, =0 for reversible (equilibrium) ones. BaZant notes that “the
present use of S, does not represent an application of the principle of maximum entropy
production”. Nevertheless, if we do not consider the thermodynamic background, BaZzant’s
criterion can be classified as a new postulate, which gives reasonable results for a number of
examples considered in his paper. As was shown in [8], our extremum principle for continuous
media (equation (4.23) in [8] and equation (4.20)) after some simplifying assumptions could be
transformed (at least in the case considered in [8]) to the principle *W — min.

Petryk [10] suggested the energy criteria for the definition of instability for materials with a
potential dependence between the stress and the strain rates. He has also shown that a solution
which is unstable in the energetic sense is also physically unstable, i.e. finite deviations from the
fundamental velocity field can be caused by vanishing small perturbations. Based on these
criteria, Petryk and Thermann [11] suggested a new numerical algorithm for the stable
post-bifurcational branch switching of spatially discretized systems with a symmetric tangent
stiffness matrix.

The approach suggested in the present paper has some features:

(1) We introduced the postulate of realizability and showed that it is a quite powerful and
flexible assumption which can be considered as an essential property of dissipative systems (see
below).

(2) Using the postulate of realizability, we derived the governing extremum principle for the
description of stable post-bifurcation behaviour. The concept of stability, which follows from
the postulate of realizability, means the following: if, under a given increment of prescribed
forces and displacements, the stable solution for the velocity field is realized in the time interval
[1, £ + Ar], then at time ¢ + At the power of the external forces is less than the power of the
internal stresses (or the power of the external and nondissipative forces is less than the power
of the dissipative forces) for all other possible solutions (velocity fields), i.e. other solutions are
energetically impossible. If the unstable solution is realized in the time interval [z, t + At], then
at time r + At for the stable solution the power of the external forces exceeds the power of the
internal stresses, i.e. due to some perturbations the jump from the unstable solution to the
stable one is possible with a positive increment of kinetic energy. This concept of stability
seems to us physically reasonable.

(3) The governing principles derived in the paper are applicable to systems with non-
associated and associated flow rules and with the nonpotential dependence between the stress
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and the strain rates. They can also be applied, when a unique solution cannot be found for
infinitesimal At.

(4) For inelastic materials with PT, we do not know the existing extremum principles and we
are not even aware of any literature which considers PT from the viewpoint of choosing the
stable post-bifurcation process. That is why the existence of the difference between local and
global PT criteria, the expressions for the local criteria and the extremum principle describing
the global criteria, as well as the relations for all the parameters (F*,F, x, F(s), v,, [v2]) seem
new to us.

5. EXAMPLE

Phase transition at simple shearing. We now apply the results obtained in the previous sections
to the simple shear problem. Let an elastoplastic material have the diagram t = f(y) shown in
Fig. 8. Moreover we assume that there exists an expression () for the free energy. The local
criteria of PT (3.14)-(3.16) in this special case read

w0 -y =[ fav k@, ni-v =] fedyrke). 6D

Ya

tHy' -y )=k'¢, k’:=£ (5.2)
dac
(the term V7 is equal to zero due to the homogeneity of 7). Assuming k&' >0, for ¢ >0 we
obtain from equation (5.2) #(y* — y7) >0, i.e. the stress has to be increased. For prescribed y
we will obtain curve 3 in Fig. 4. Using equation (5.2) and y=(1—c)y +cy +é(y" —v ),
the following designations for compliances A* := (8f/dy*) "', A~ :=(8f /dy~)~' we can get the
differential equation for this curve

1
v = [C/\+ +{(1—c)r™ +P(y+ - 'y*)z}fz At

’

eyt oyl (5.3)

=[(c,\*+(1—c)r)——;k—
v -y

B
~

Fig. 8. Diagram of simple shearing with phase transition at & >0 and different k": (a) Ak’ +(y" +
YR >0 (b) Ak’ + (¥ +y P =0;(c) Ak’ + (y" + ) <0.
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where A, is the overall compliance for deformation with PT. For a deformation without
PT A =cA" + (1 —c)A™. The tangential shear modulus is
(,y+ _ ,y—)Z)—l B kl

k/ )\k1+(,y+_,y~)2'

6.1+

At k' = = (it corresponds to a fixed interface) G, = 1/A = G. At finite k' (positive or negative)
and Ak’ +(y" — v )*>0 we have G,<G, i.e. PT makes the tangential modulus softer. At
Ak’ +(y* — y7)* <0 (k' <0) we obtain G, > G, but this inequality does not mean an increasing
tangential stiffness due to PT. An equilbrium PT is possible only at decreasing y (Fig. 8). At a
high value of k(c) and k' >0, when the equilibrium stress in equation (5.1) reaches its
maximum value 7= 7, in the ( — )-phase, condition (5.2) is violated (because =0, but k' >0)
and the interface becomes fixed. In this case, the homogeneous strain takes place in both
phases at decreasing 7 (Figs 9, 10). For elastic materials, the ( — )-phase deforms according to
line CD, the (+ )-phase according to line ED and at point D both phases have the same strain.
At increasing y the homogeneous strain in the whole volume will correspond to line DE.

For rigid-plastic materials in this situation, the strain in the ( + )-phase is fixed at decreasing
stress (line EL) and equal to the strain at point E. The ( — )-phase deforms in accordance with
line CDE and homogeneous strain in the whole volume will occur at y > yg.

For elastoplastic materials, the (+ )-phase at decreasing and then increasing 7 will be
deformed in accordance with the unloading curve EL. The strain in the whole volume will also
be totally homogeneous at y > y,.

Let the slab of material have a variable cross-section S(y) and assume that 7(y) = P/S(y),
where P denotes the shear force. The criterion (5.1) is met the first time in the section with
S = Spin- Criterion (3.16) reads

(F+T'e)y" —y)=k'¢ (5.4)
where on the interface
0T d 1
e=Zop2( L)
ay  ay\S(y)

because according to equation (5.1), the interface will move in the direction of increasing S(y)
and decreasing 7(y). From equation (5.4) we have

==k -y e 1=(i T Jemae 65
’ k' =t (y"=v7)
Due to t' <0 even at k(c)=k'(c)=0, from equation (5.5), it follows t>0 at ¢>0. The
conclusion that the PT decreases the stiffness is retained.

After the consideration of the local PT criteria, let us check now if the global consideration
will give the same result. We will apply principles (4.21)—(4.24).

Consider the time ¢ and some c(f). Assume that at prescribed v, straining with fixed interface
takes place in time [t, ¢ + Ar]. Consider its stability under an imposed velocity field at time
t + At, corresponding to the moving interface.

The first, second and third integral in inequality (4.22) read

i =foams =ty merl+ A=t ([ fody+ked)ies (56)

In equation (5.6), 7y, is the equilibrium stress 7., at the PT which is determined from equation
(5.1) (if we assume that PT occurs, then the local criteria have to be met). According to
equation (5.1), expression (5.6); is equal to Toa(ys — v )I¢s. Expression (4.22) is equal to

Tava— Toaleva + (1 —¢)ya + (ya — Ya)eal = Tava — Teala. (5.7)
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c Y

Fig. 9. Diagram of simple shearing with phase transition: (a) elastic material—ABDEF; (b)
rigid-plastic material—ABKEF; (¢) elastoplastic material—ABKEF; (d) at homogeneous straining—
ACDEF.
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D E

+

/ * / / +/
Fig. 10. Specimen geometry at different points of the 7—y-diagram (Fig. 9) for elastic and rigid-plastic
material.

If 75> 104, i.e. the applied stress, or the stress obtained for prescribed v at a fixed interface
exceeds the equilibrium value, then, according to equation (4.22), PT will occur, otherwise,
according to equation (4.23), it will not occur.

To meet the criterion 7, > 7o, for a prescribed velocity, it is enough to satisfy equation (5.1)
at ¢ =0, because the overall tangential stiffness G, < G. For prescribed increasing stress, it is
also enough to satisfy equation (5.1) if k’>0; if k' <0, a quasi-statical stress-controiled
experiment is impossible.

Consider now the situation when straining with a moving interface takes place in time
[t,t + At] and estimate its stability under a superposed velocity field at time ¢+ A
corresponding to a fixed interface. Expression (4.21) reads now

Teals — T(YR)VAl <0 or T4 — 7(y2) <O, (5.8)

where 7(y¥%) is the stress for straining with a fixed interface. Consequently, if at straining with a
fixed interface the stress exceeds the equilibrium value 7,,, then PT will occur, otherwise—
according to equation (4.24)—will not. We obtain the same result from the local and global
criteria and, in the given case, these criteria coincide.

Noncoincidence of the local and global criteria of PT. Consider the situation shown in Figs 11, 12.

\S1 A4

Va

Fig. 11. Simple shearing of two specimens.
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Fig. 12. (a) Diagram of simple shearing t,(¢;) of each slab at homogeneous strain (ABCDLEF) and at
phase transition (ABCEF); diagram 7(u,) under symmetrical straining with phase transition
(ABCEFY); (b) diagram 7{u,) under nonsymmetrical straining (ABCDLMF).

Two equivalent slabs, made from material with the diagram z(u), u = v/, according to Fig. 11,
are loaded under the following conditions: T = 7, = 1,, v, + v, = 2v,, where v, is the prescribed
velocity at point A, v, and v, are the velocities prescribed for slabs 1 and 2, respectively, and 7,
are the stresses at each of them. Let £(0) >0, k' <0 and the diagram of straining of each slab
during PT corresponds to line CDE. Two variants are possible: the symmetrical situation, when
all parameters in both slabs are the same and the nonsymmetrical situation, when PT occurs
only in one of the slabs. Under a symmetrical straining (v, = v, = v,1), the diagram 7(u,,) will be
the same as for each slab.

Let at u, = v,/ stress 7 = 7. in both slabs and the local PT criterion is met. But due to some
perturbations, PT started at slab 1 only. Due to the stress decreasing, PT criterion in the slab 2
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is violated and it will behave in accordance with the unloading diagram CK [Fig. 12(b)]. The
displacement u, at each 7 can be drawn as the semisum of coordinates of the lines CK and
CDE.

When PT is the first slab is finished, 7, = 7 and under increasing u, stress 7, will increase
along the line EF, t,—along line KC. At 7, =1, PT will start in the second slab, 7, will vary
along the line CDE, t, along the unloading line FP. At 7, = 7z PT is finished in slab 2 and the
stress will increase along line EF in slab 2 and along PF in slab 1.

Let us choose a variant—symmetrical or nonsymmetrical—which is stable. The analysis is
trivial. Assume that in time [¢, ¢ + Atr] the symmetrical variant is realized, and at time ¢ + As the
nonsymmetrical velocity field, consistent with v,,, is realized. The power of the external
stresses is T,aVqa, the power of the internal stresses is T,,v4a, Where 7., and 7, are the shear
stresses after the symmetrical process in time [¢, 1 + At] and corresponding to the nonsymmetri-
cal process, respectively. As (T, — Toa)va >0 [line CB is below the line CD, Fig. 12(b)], then
the symmetrical process is unstable and the nonsymmetrical one will be realized. Note that this
result will be valid for slabs with diagram ABCDE, independently of the mechanics, leading to
the decreasing branch CDE (e.g. PT, strain softening). Consequently, despite the fact that the
local PT criterion was met in slab 2 at point C, the global consideration results in a stable
process without PT.

6. NONCOHERENT PHASE TRANSITION

For noncoherent PT, not only the velocity vector v, but also the position vector r has jumps
across the interface . Assuming small jump [r] we could use equation (A6) from the Appendix

Ze=—p-[v] - p[¢]v.=0. (6.1)

It is convenient to decompose [v] = [v,] + [v,], where [v,] is the jump of v when [r] = 0, i.e. for
coherent PT; [v\jn= —[FJv,; [v,] =[v] —[v,] is the jump of v, when the surface I is fixed
(va =0, [vi] =0 and [v] = [v,]), i.e. it represents the relative sliding along the interface (Fig. 13).

Consequently, p-[v]=~P":[Flv,+p-[vs]= —n-P' - [F]-n+p-:[v,]. Then the rate of dis-
sipation across the interface %s= (P':[F] — p[¢])v, —p * [v2] is distinguished from the corres-
ponding expression for coherent PT by the term —p - [v,]. We get the same distinction for the
threshold value %%

‘ EZ (L P/(F(s), X):dF — P[d’] + k(un)>vn — p([vz], Upyorn ) * [Vz]. (6.2)

For a PT, which actually occurs it follows from the energy balance % = @s. If we introduce the
generalized dissipative force Xz ={P":[F] - p[¢/]; —p} and the generalized rates § = {v,; [v,]},
Xz, § € %, then %y =X;+q=0 and Xz = Xx(q, F*,F ", x). For time-independent martensitic

[ L S
//72
N
\
(us]

Fig. 13. Relative sliding [u,] along interface at noncoherent phase transition.
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PT Xs is a homogeneous function of degree zero in q [1,4], and we can use the postulate of
realizability. If
Xy (F7 %, F %, x*) - * — DL F 5, F 5, x5, FRs) <0 V@  #0,F % F %, x*, FX(s),
(6.3)

then §=0 and PT will not occur, because if §#0 then X5 -q= 1. Using the postulate of
realizability, we obtain the extremum principle:

X(F* F*, x*) - ¢* — D(q*, F*, F %, x*, F*(s)) <0
=X:(q,F".F,X)-q— 234, F".F,x.F(s)), (64)
whence

(P:(F* —F %) — p(p(Fo*, Fy*, x*) — ¢(F % F *)wi —p - [Vi]
- ( L  P(F*(s), x*)dF - p(WES T x*) — ¢(F. %, F %)) + k(un, V5, [v;]))v;f

—@2([";], vr’llga F+*a F_*’ X*’ F*(S)) <0
=(P':(F" —F) — p(¢(F, Fy, x) — ¢(Fe, Fy)va — p - [val

([ P69, 3008~ pEE 730~ WO )+ it v 33D

_@Z([VZ]s Uny F+v F, X F(S)) (65)
or
P(Fs — F oot~ pe V]
([ PO X + ki 181~ G 2 5 )

<P(F = F v, p-[v)
~ ([ PR, 30208+ et i [D) Jo ~ Tl 0 BB XD, (66)

where @, = p([V2], Vn, . - . ) * [V2] is @ homogeneous function of degree one in v, and [v2], e.g.
[VZ] U, )
[vall "Il

Function k is homogeneous of degree zero in v, and [v,], kK = k([v2)/v,, . .. ). From principles
(6.3)-(6.6) it follows in particular

@, = [va)l %

_9% TR .- U, 3
X;s = P or P(F —F)—ply]= P p—a[vzl. (6.7)
-
[ ), x*): B, + B v B F(5), X)— min. (68)
-

When k& does not depend on [v,] (and, consequently, on v,) and %, does not depend on v,
then from equations (6.7) and (6.8) we obtain equations (3.14) and (4.5), as well as
0%,

Pyt P ELFFG), ) - min (6

From equation (6.7), the existence of the “yield surface” ¢(Xg,...)=0 follows (for

ES 33:6-D
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¢(Xs,...)<0, 4=0), as well as the associated “flow rule” q = hs (0¢/dXs), where the scalar
hs is determined from the consistency condition ¢ = 0. The counterpart of the principle (6.4) at
time t + At reads

XZA(FZ*a FZ*7 XX) * qz - @;(q.§’ FZ*, FZ*’ Xﬁ’ F*(S)) < 0
= XZA(qA» FK? F;a XA) : qA - @’)llq((.IAv FX’ F;~ Xas F(S)) (610)

It is not difficult to take into account the terms with p - [v,] in the extremum principles for the
finite volume in Section 4. For time-dependent behaviour (23 is an arbitrary function of q,
diffusive PT [4]) using the postulate of realizability (see Appendix to Part I) we obtain the
principle (6.4) with the additional condition

DG F F * x* F*(5)) = (4. F ", F . x, F(s)) (6.11)
and, in particular,
DL agT 7!
Xz=A ; A= T< = ) . 6.12
>3 s a4 b3 b5 a9 q ( )

At v, =0 the above formulas describe the stationary discontinuity surface with jumps in F, v
and r.

7. ANALYSIS OF THE POSTULATE OF REALIZABILITY

The essence of the postulate of realizability is very simple: as soon as some dissipative
process (plastic flow, PT) could occur from the viewpoint of thermodynamics, it will occur (or
be realized), i.e. the first fulfillment of the necessary energetic condition is sufficient for the
beginning of the dissipative process. This postulate was proposed by Levitas [1] and seems to us
rather general and flexible. We do not postulate any extremum principles, we prove that some
energetic condition is necessary for the beginning of the dissipative process and assume, that as
soon as this condition is satisfied the first time for some parameters (fields), then a dissipative
process will occur with these parameters. For the time-independent system this postulate is less
restrictive than Drucker’s postulate (as it is applicable to softening materials) and II’yushin’s
one (it is applicable to rigid-plastic materials). Moreover, for more complex models, e.g. with
structural changes (or with kinematical constraints) it gives a nonassociated flow rule and
admits a concave yield surface; II'yushin’s and Drucker’s postulate for this model cannot be
applied [12, 13]. The postulate of realizability allows us to prove Ziegler’s extremum principle
and relations for system with arbitrary dissipation function, but some more general expressions
are possible [4, 8]. In PTs theory the counterparts of the obtained extremum principles for the
points of the interface are unknown for us. For PTs not only fluxes, but a number of various
parameters (F',F ,x,F(s)) are varied and generalized forces Xy, depending on these
parameters, are not fixed in extremum principles [e.g. equation (6.4)], in contrast to Ziegler’s
extremum principles (e.g. equations (A3), (A4) in [8]). That is why even when generalized
forces and fluxes are scalars, the extremum principles [e.g. equation (4.2)] give nontrivial
results. Moreover, equation (4.2) gives nontrivial result even at Xt =0, i.e. for media without
dissipation. In the number of theories of inelastic strain the flow rule is accepted independently
of dissipation function or yield surface (e.g. nonassociated flow rules), because the existence of
additional postulates (Drucker’s II'yushin’s, Hill’s, Ziegler’s) is not obligatory in the framework
of continuum thermodynamics. But it is difficult to imagine that in PTs theory it is possible to
formulate the constitutive equations for all of parameters (F*,F~, F(s), X, v,, [v2]) of different
nature without any unique principle. This fact can serve as serious argument for the existence
of some general principle for dissipative processes and the postulate of realizability can be
considered as one of the candidates. The next argument is that using the postulate of
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realizability we have derived the governing extremum principle for the description of the stable
post-bifurcation deformation process for a finite volume of material with and without PTs. The
concept of stability, which follows from the postulate of realizability seems to us physically
reasonable.

Due to formal analogy, it is not a problem to apply the postulate of realizability to discrete
and continual system with friction [12-15], systems with the cracks and damage [16}], as well as
to coupled above phenomena. Application can be made both on the level of derivation of
constitutive equation and description of stable post-bifurcation processes.

Application of the postulate of realizability for the description of nucleation in elasto-plastic
materials is given in [17], for averaging description of PTs—in [17, 18].

8. CONCLUSIONS

In this paper the extremum principles for the interface and the whole volume are derived
using the postulate of realizability. They are used to derive a number of equations for the
description of PT: for jumps of the deformation gradient and the tensors characterizing the
mutual orientation of the phases; for the deformation gradient history in the course of PT; for
the normal velocity of the interface and the velocity of the relative sliding along the interface:
the local and global criteria for the martensitic PT. The local criteria represent the equations
for some parameters across the interface. But even when they can be met, two solutions are
possible; first, the solution with fixed interface, second, the solution with moving one. The
stable solution can be chosen using the extremum principle for the whole volume. This means
that the fulfilment of the local criteria is not enough for the occurrence of PT and only the
global criterion will give the final solution. It seems to us that the same situation takes place for
the motion of other defects with singular fields, e.g. crack tips, dislocations and point defects.
Some examples are considered. It is shown that in the course of PT, the traction continuity
condition is violated across the interface. To remove this contradiction the concept of
fluctuating stresses is introduced. These stresses overcome the energy barrier and restore the
traction continuity condition. In the future it is necessary to combine these results for PT with
previously obtained ones (Levitas [4]): averaging procedure, finite strain kinematics, simplified
models. The mutual influence of large plastic strain and PT is of primary importance for
numerous practical applications [4].

Most of the instability problems could be solved numerically only. The enormous
mesh-dependence of the numerical FEM solution is well-known (e.g. [19]) and adaptive
remeshing is necessary [20]. The following method of mesh optimization at each time increment
is possible. For the various meshes we obtain the various FE solutions, each of which met all
the FEM equations, i.e. we have an infinite number of solutions, parameterized by nodes
positions, and it is necessary to choose the best one. The best solution is the most stable one. If
we consider the coordinates of the nodes of the mesh as independent variables, the discrete
form of the governing extremum principle for choosing the stable deformation process will give
the increment of the coordinates for each node at each time increment. From the physical point
of view, this strategy seems to be very natural: if, for instance, a system with one controlled
displacement at different meshes has different load—displacement curves, the most stable
solution will correspond to the minimum load increment at each time step. If this approach is
realized, it will be based on a natural stability criterion of mesh adaption.

The generalization of the obtained extremum principles for thermoplastic and viscoplastic
materials is very important.
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APPENDIX

Some Relations for Interfaces

For coherent interfaces, the function r(r_, ) is continuous, but the velocity vector v(r,, t) and the deformation
gradient F(r_, ) have jumps across the interface Z. In this case, the compatibility condition

Fl-—“fvm [v)=~[F]-m,;  [F]=n-[F]n=[F]-mn (A1)

are valid [21]. Contraction of equation (A1), with the normal vector n gives equation (Al),, the substitution of
equation (Al), into equation (A1), results in equation (Al);. From the equilibrium condition follows the traction
continuity

[pl=[P]-n=0. (A2)

According to the second law of thermodynamics, at fixed temperature the rate of dissipation

Lp vdS - % f pu(F,, F,) dv =0. (A3)

v

To pass from the integral form of equation (A3) to the local one it is necessary to use the Gauss theorem for a volume
with discontinuity surfaces.

The general scheme 1o apply the Gauss theorem is the following one. The volume v is divided by surfaces T and §
into a finite number of volumes, in each of them all functions are continuous and, using the Gauss theorem, we obtain
some equations. After summing up all of these equations we obtain an integral over the volume ¥ = v — X at one side
and on the other side an integral on S and an integral on = of the jumps of the functions (because the integration on =
is fulfilled two times for two volumes, divided by ). Thus we derive

Lp-vds=LP’:Fdﬁ—Lp-[v]dE. (A4)



The postulate of realizability—II

(Equation (A2) was applied.) Using the formulas for differentiating on a variable volume we have

9 pau= f pidv+ [ plutu, az.
dr J, 5 =

From equations (A3)—(AS) it follows [, (P*:F — ptj) dv + f5 9 d= =0, where
Zs=—p- V- pl¥lv,
is the rate of dissipation per unit area of the interface. Using equations (A1), and (A1), we get
—p-[vl=n-P . [F] nv,=P:([F]-mm)v, =P :[Flv,.
Substituting equation (A7) into equation (A6) we obtain %5 = Xsv, where
Xp=P:[Fl-p[¢]=n-P-[F]-n—p(ypF Fy,x) — u(F. . F)).

971

(A3)

(A6)

(A7)

(A8)

For noncoherent interfaces the position vector r has also a jump. We will consider a small [r] and neglect the difference
in geometry of points r* and r~ (like the difference between r and r, is neglected at the small displacements
approximation). In this case equation (A2) is valid. At finite [r] the traction continuity condition is valid in the actual
configuration. But the points which are in the contact in the actual configuration are not in the contact in the reference
one. That is why we assume the small [r]. Equation (A6) is also valid for the noncoherent PT; all other equations in

Appendix could not be used.



