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Abstract

A new quasistatic problem formulation and finite element (FE) algorithm for martensitic phase transition (PT) and twinning in
elastoplastic materials at large strains, based on a recently proposed thermomechanical approach [1,2] are presented. The instantaneous
occurrence of PT in some region based on thermodynamics, without introduction of volume fraction and prescribing the kinetic equations
for it, is considered. Stress history dependence during the transformation process is a characteristic feature of the PT criterion. The
deformation model is based on the multiplicative decomposition of the total deformation gradient into elastic, transformation and plastic
parts and the generalization of Prandtl-Reuss equations to the case of large strains and PT. The case of small elastic, but large plastic and
transformation strains is assumed. For numerical simulation of PT the ‘inverse’ problem is considered, i.e. the position and size of the PT
region (nucleus) are prescribed in advance, and then the condition for PT is defined from the PT criterion. Such an approach includes a finite
element solution of the elastoplastic problem with the prescribed transformation deformation gradient and the changing elastoplastic
properties in the transforming region during PT. The usage of the current configuration and the true Cauchy stresses along with assumptions
of small elastic strains and zero modified plastic spin allows us to use—with small modifications—the radial return algorithm and the
consistent elastoplastic moduli for the case of small strains. Some modifications of the iterative algorithm related to the numerical integration
of constitutive equations along with the radial return algorithm are suggested in order to improve the accuracy of solutions for large
increments of external load (such modifications can be used for any elastoplastic problem without phase transition as well). The model
problems of nucleation at shear—band intersection and appearance of a single martensitic plate and a single twin are solved and analyzed.
© 1999 Elsevier Science BV. All rights reserved.

1. Introduction

Many modern technologies include PT in elastoplastic materials. Thermomechanical treatment of materials
involves consecutively or simultaneously occurring PT and plastic straining, which result in the required
microstructure and the physical-mechanical properties. Strain induced PT and transformation induced plasticity
(TRIP) are other important examples.

Martensitic PT in elastoplastic materials is a complex thermomechanical process accompanied by the change
of mechanical properties, transformation strain and a complicated distribution of local stresses and strains. The
difficulties of a thermomechanical description of PT are related to definition of the PT condition, the formulation
of boundary—value problems and their numerical solution. We consider the instantaneous occurrence of PT in
some region based on thermodynamics, without introducing volume fraction and prescribing the kinetic
equations for it. This allows us to study fundamental problems of martensite and twin nucleation and its
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subsequent growth in a grain as well as microstructure formation. There are only a few known numerical
approaches for such type of PT in elastoplastic materials for small strains (see [3-7]).

Usually, transformation and plastic strains are finite and a corresponding general theory for PT and twinning
(as a particular case of PT) was developed by Levitas [1,2]. The condition of nucleation includes—in contrast to
known approaches—the history of local stress variation in nucleus during the transformation process. Therefore,
knowledge of stresses and strains before and after PT does not give sufficient information for calculating the PT
condition. For determination of some unknown parameters during PT, the corresponding extremum principle for
PT is used.

The aim of the paper is to present algorithmic and computational aspects of implementation of a simple
isotropic deformation model for description of PT and twinning in elastoplastic materials at finite strains. The
model is based on the multiplicative decomposition of the total deformation gradient into elastic, transformation
and plastic parts and the generalization of Prandtl-Reuss equations to the case of large strains and PT. The
modified plastic deformation rate considered is conjugate to the Cauchy stress. The structure of constitutive
equations is similar for the cases of small and large strains. It is necessary to say that the generalization of
Prandtl-Reuss equations to the case of large strains even without PT is not unique. It depends on the choice of a
measure for the plastic deformation rate and some assumptions with respect to the calculation of the plastic spin.
For example, the approaches presented in [8,9] and [10,11] give different generalizations for the case of finite
strains. As the available experimental data for large elastoplastic strains are confined, a possible reason for
choosing one or other approach can be the simplicity of its numerical treatment. So, in this paper we have
modified the measure of plastic deformation rate (Eq. (17)) in comparison with our first papers on PT
simulations at finite strains [12,13] from computational point of view. We should note that an alternative
possibility for description of PT in elastoplastic materials is to use single crystal plasticity. But we do not
consider it here because such an approach would be far more complicated for numerical implementation.

For numerical solution of PT we consider the ‘inverse’ problem, i.e. the position and size of the PT region
(nucleus) are prescribed in advance, and then the condition for PT is defined from the PT criterion. Such an
approach includes the solution of elastoplastic problems with the prescribed transformation deformation gradient
and the changing elastoplastic properties in transforming region during PT. Formally it is similar to solution of
thermoelastoplastic problems where the transformation deformation gradient can be treated as the thermal
deformation gradient with volumetric and shear components. The proposed numerical technique has some
common features with known ones for the case without PT [10,11]. The usage of the current configuration and
the true Cauchy stresses along with assumptions of small elastic strains and zero modified plastic spin allow us
to use—with small modifications—the radial return algorithm and the consistent elastoplastic moduli for the
case of small strains [8,14].

When an elastoplastic problem with the radial return algorithm is incrementally solved, usually one
integration point (with implicit or explicit scheme) is used for calculation of stresses at the end of a load step,
i.e. when the increment of the deformation gradient is known then the stresses are directly calculated through
elastoplastic constitutive equations. As the plastic flow rule is formulated in rate form (in contrast to elastic law),
then at a large load step (correspondingly a large increment of the deformation gradient) the one point
integration can give large deviation from the actual solution. Direct decrease of a load step increases
considerably the calculation time. Therefore, we suggest subdividing a known increment of the deformation
gradient into a finite number of subincrements and to use the radial return algorithm for subsequent calculations
of stresses for all the intermediate values of the deformation gradient up to the final value at the end of a load
step. It can be simply implemented and does not essentially increase calculation time because we do not
additionally solve the global system of FE equations. Another multipoint integration scheme for small
elastoplastic strains was proposed in [15].

In Section 2 the formulation of martensitic PT in elastoplastic materials is described. It includes a concise
derivation of PT and twinning criteria from the second law of thermodynamics for material points and
transforming volume (nucleus) and description of the complete set of equations. In Section 3 the numerical
method with a derivation of the sequence of stress calculation, radial return algorithm (with use of multi
integration points within a load increment), finite element scheme and calculation of the consistent tangent
moduli are presented. The similarity for the cases of small and large strains are shown. At the end, some
numerical examples are solved and analyzed. Appendix A contains the derivation of the rate form of the
principle of virtual work for the actual configuration with the Cauchy stress tensor.

Symbolic tensor notations are used throughout this paper. Vectors and tenscrs are denoted in boldface type;
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A-B and A:B are the contraction of tensors over one and two indices. Let a superscripts t and — 1 denote
transposed and inverse operation; subscripts s and a designate symmetrical and antisymmetrical tensor parts; I is
the unit tensor: dev A is a deviatoric part of A: JA]:== (A:A)""* is the modulus of tensor A: A is the material time
derivative of A.

2. Problem formulation at finite strains

Here the martensitic PT will be considered as a special type of deformation of a crystal lattice of parent phase
(austenite) into a crystal lattice of product phase (martensite) without diffusion, Figs. 1 and 2(a), which is
accompanied by a jump of all the thermomechanical properties. This deformation is called the transformation
strain. The transformation deformation gradient cannot be arbitrary (as elastic or plastic strain). For each PT the
right stretch transformation tensor is a fixed tensor to within symmetry operations. All intermediate values of the
transformation right stretch tensor are unstable and cannot exist in an equilibrium. Due to symmetry there is a
flintte number te.g. 12 Tfor PT trom a cubic to a monochiiic Yatticet of crystaltogravhically equivatent variants of
martensite with the same (to within symmetry operations) transformation right stretch tensor.

In the approach considered below, martensitic PT will be described as z growth of the prescribed
transformation deformation gradient in some transforming region V, from the unit tensor to final value which is
accompanied by the change of all thermomechanical properties in this region, Fig. 3. Twinning will be described
a5 b PEERUE UER f TIRERIEHR BT i Aanging Walkiitl SHAnRtins g QWi ampkasnest. TR
transformation strain at twinning has only shear components [16], Fig 2(b).

2.1. Kinematics

Let the motion of the uniformly deformed infinitesimal neighborhood of a material point in a process of
martensitic PT be described by the function r =r(r , 1), t, <t =1, where r €V, and r_ €V are the positions of
points in the actual V, and the reference V] (at + = 0) configurations, # is the current time, ¢, and 1, are the start
and Roisk tme of PT in a matenal poist. We neglect thermal strains {they are small with respect o
transformation strains} and assume a multiplicative decomposition of the total deformation gradient F = dr/ar,
tato etastic £, transtoomationat ¥, and ptastic £, parts {1,2§, te.

F=F  F-F, =V R F F, (1)
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Fig. 1. Scheme of initial crystal lattice (a) and two martensitic Fig. 2. Deformation due to transformation with invariant plane
variants (b.c). AB for phase transformation (a) and twinning (b).
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Fig. 3. A sample of volume V with a transforming region V, and the prescribed traction ¢ and nonzero displacement # at the part of boundary
S and zero traction or displacement at the remaining part of S.

where F,=V_R_; V, is the elastic left stretch (symmetric) tensor, R, is the elastic rotation tensor. Let us
introduce the internal dimensionless time (the order parameter) ¢ (0=¢&=1) which is related to F, and has the
following properties: PT starts at £=0 and finishes at {=1; when ¢ varies between 0 and 1, the transformation
deformation gradient grows from I to final maximum value F, determined by crystallography. It is possible to
define the order parameter ¢ e.g. as £:=|F,—I|/|F,—1|. Using Eq. (1) the velocity gradient I and deformation
rate d are described as follows:

w . . ey oy
i:=a—'r’:F-F“:FC-Fe‘+FE-F,F,‘-F ‘+F,-F-F,-F'-F'-F' (2)

di=(),=(F, F ") +d +d, 3)

where v=F is the velocity vector, d, and d, are the rates of the transformational and plastic (due to plastic
strain) deformations, respectively (see Box 1). For description of elastic strain we use the elastic strain tensor B,

B, =05F, F,~1)=05(V,V,—1). @

We assume that the elastic strains are small, ie. V. =I+¢,, & <1, then V '=I—-¢, B ,~¢,. In the approach
presented the transformation deformation gradient F, should be prescribed as input data. For the solution of the
PT problem we vary it as

F=I+¢(F -1 £€[01], (3)

where Fl is the final value of the transformation deformation gradient at £=1.
For a material point without PT we must prescribe in the above presented equations that F, =I=const at time
t=t or F =F =const at time r=1,.

REMARK 1. To prescribe the final value of the transformation deformation gradient F, we use in this paper the
simplest variant of crystallographic theory when the transformation strain results in deformation with invariant
(nondeformable and nonrotating) plane, which is called a habit plane [17]. Such a deformation of martensite is
compatible with austenite along the habit plane in stress-free state which leads to elastic energy minimization at
fine microstructure [18]. In the first approximation the following formula [17] is used

F,=I+kn, (6)

where n is the outward unit normal vector to the habit plane and k is the displacement vector due to
transformation. The tensor F, represents a simple shear along some direction in habit plane and an extension
(compression) in orthogonal to habit plane direction. The tensor F| is determined nonuniquely because there are
a finite number of possible crystallographic directions of vector n and the corresponding vector k [17] (e.g. there
are 24 habit-plane variants for a Fe—30%Ni alloy predicted by crystallographic theory). We consider the
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nucleation in some volume where the transformation deformation gradients have the same value in every point
of the nucleus (i.e. only one variant from the possible crystallographic ones is realized). Then in order to define
a real variant of F, we can check all the possible crystallographic variants of the transformation deformation
gradient F| for the transforming region and choose the more favorable one according to the corresponding
extremum principle (see below numerical example 4.3). Of course, if we know the directions for the vectors n
and k from some other considerations, then we can prescribe the transformation deformation gradient F,
uniquely.

REMARK 2. The tensor R can be represented not always by Eq. (6). For example, for pure dilatational
transformation we get

F =adl, (7)

where a is a known scalar parameter. In general case from crystallography we can define only components of
the transformation right stretch tensor (symmetric) U, (F,=R-U,). But problem solution does not depend on the
transformation rotation tensor R, because we can combine the rotation tensors R, and R, in the total gradient
decomposition (1) into one rotation tensor R, =R, R . Therefore, for the sake of convenience, we can also
prescribe the transformation deformation gradient with arbitrary rotation tensor R,. There ex1sts a finite number
k of variants for admissible transformation right stretch tensors Ul at £€=1 where i=1, . k and i
corresponds to the ith martensitic variant. All U, are symmetry- related Some examples of U for tetragonal
trlgonal orthorhombic and monoclinic martensite are given in [19] Tensors U for i>1 may be obtained from
U by permutating the basis. To choose the actual variant U from all the pOSS]ble ones we have to use the
correspondmg extremum principle (the same as for the choice of the actual variant of F with a habit plane, see
Remark 1).

REMARK 3. As an idealization we can consider not a finite but an infinite number of variants for the tensor F,
which differ one from another by an arbitrary rotation tensor R, i.e. any variant / of F, reads as follows
F/=R'F:R, (8)
where Fl is fixed and prescribed by Eq. (6). To find the actual variant of F i or the tensor R, the extremum
principle (the same as for choosing a favorable variant from a finite number of variants) should be used.

2.2. Thermodynamical aspects of PT for material point

Here, we briefly present the approach for description of PT suggested in [1,2]. All equations will be written in
the actual configuration. We consider simple materials only, i.e. the response of material in a given point is
independent of thermomechanical parameters in other points.

We use the second law of thermodynamics in the form of the local Planck inequality

pPD =T:d — pi— ps6 =0. (9)

Here, & is the rate of dissipation per unit mass, T is the Cauchy stress tensor, s is the specific entropy, 6 is the
temperature, ¢ is the specific (per unit mass) Helmholtz free energy, p is the mass density. We assume that

Y =yB. 0, &) (10)
Then, differentiating Eq. (10) and inserting the result in expression (9) along with Egs. (3), (5) and (18), we get

B

I G o

.@~(pT.(FC F_ "), ) B)+ Td, ( +s)6
+(1T'(F .f.p“‘.p l//) 0.

p * € 1 t s f f (1])

Using direct calculations it is possible to show [20] that

1 oy 1 A
(pT.(FC'F T B) (pve TV, —E).BL_, (12)



76 AV, Idesman et al. | Comput. Methods Appl. Mech. Engrg. 173 (1999) 71-98

where B,:=B,+B, 2+ "B, is called the R-derivative associated with the skew-symmetric spin tensor
02=R_R.
Box 1.
Problem formulation
1. Kinematics
Multiplicative decomposition of the total deformation gradient F
or
F=—=F F F,=V_-R -F F, (13)
or,
The elastic strain tensor B, and the internal dimensionless time &
1 —_ |Fl B Il
B =05F ., F .—D=05V,-V,~I)., §¢==—. (14)
F — 1|
The transformation gradient F,
F =1+&F I, ¢€[01] (15)
Decomposition of the total deformation rate d
( ) =(F,-F_ )s+d‘+dp, (16)
dp::(Fe-Fl-Fp-F;' -F '“F '), =F F-F,-F '-F '"'F_, (17)
=(F, F-F '-F"),=(F_F -F''F_)§& ¢=(/3d,d )" (18)
2. Constitutive equations
Elastic Hooke’s law T = E(&):B, = K(&E)I (B + 2G(§) dev B.,. (19)
Yield function (T, g, £) = 0, — 7,(¢q, §) = 0. (20)
Plastic flow rule  d, = As. 2n
The Kuhn-Tucker conditions f(T, g, £) =0, A=0, AAT, g, £)=0. (22)
3. Equilibrium equations (with body forces f) V-T +pf=0.
4. (@) PT criterion
dr o o
: ld_é‘df d‘/n _(11/,2 - wl)zk(" mn = pdvn' (23)
v, 0 Va
(b) Twinning criterion
)?==qp=k(,, (p——fdel dgdfdv (24)
v, 0
5. Extremum principle for PT with test function V,, , F [O
XVC FO)—k . <0=X(V,F)—k  or ¢V, F)— max. (25)
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The assumption that the rate of dissipation D is independent of loie and 6 results in the hyperelasticity law and
expression for entropy, as well as in a reduced dissipative inequality:

S o - _9
T=pVogg Ve 5= =% (26)
1 .
@=;T:dp+X§§20, 27)
where
1 — ey
X =T F o F PO, -5 (28)

is the dissipative force conjugated to dissipative rate & The simplest assumption that each rate depends on the
conjugate force only leads to evolution equations

d,=fT) £=£X,). (29)

Eq. (29), is the flow rule and Eq. (29), is the kinetic equation for PT. The allowance for mutual influence of all
thermomechanical processes can be made in a standard way.

We assume that the condition £=0 is valid at X, =0 only. Then it is possible to describe the equilibrium PT
(£—0) with the equation X, =0 (see Eq. (28)). ThlS is one scalar equation and it is always possible for each &
and 6(¢) to choose six components of stress tensor T(&, 6(£)) to satisfy this equation. If the actual stress
variation follows this dependence, then the phase equilibrium is possible for arbitrary ¢ But from the
experiments it follows that the phase equilibrium is impossible at 0<¢ <1, only at £=0 and £=1 do we have
the stable equilibrium. At 0<£<1 a nonequilibrium process takes place, which requires energy and stress
fluctuations.

In order to overcome this contradiction we will use average description over a PT duration L=t
suggested in [1,2]. We introduce the averaged dissipation rate due to PT

p 1

1 1 X
D=1 gfdt X, d§———X,\/, (30)
t 0 p 0 p
where
1
o1
X=X, dé&,  X= (1)
0 P
are the averaged dissipative force and rate. The definition of dissipative rate is logical, because a variation of the
parameter ¢ during the time ¢, is one. The dissipative force is defined as a conjugate variable in the expression
for the rate of dissipation. In order to describe PT with dissipation and hysteresis (i.e. direct and reverse PT

begin at different values X and between these values PT is impossible) the following criterion for a material
point was suggested in [1,2]

X =k, (32)

where k. is the threshold value of dissipation X due to PT which is experimentally determined and can depend
on some parameters, for example 6, F.
In this paper we will consider 1sothermal PT, ie. 6=0,V6=0. Then from Eqgs. (9) and (27) it follows that

1 :
Xf=—Td~d)- i (33)

Allowing for Egs. (30) and (32) we get

1

1
f Td—— f Td,,d—gdf W, =)=k, (34)
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where ¢,, ¢, are the specific Helmholtz free energies for the second (after PT) and the first (before PT) phase,
p=p(&)=det(F(£))p, is the mass density during PT, p, is the mass density at £=0, i.e. before PT.

REMARK. We use assumption that the temperature can be homogeneously changed in a sample before or after
PT in some volume, but is fixed during PT.

2.3. Constitutive equations

We use the generalization of the Prandtl-Reuss equations to the case of large strains for isotropic elastoplastic
materials with isotropic hardening. The relationships during PT are presented in Box 1. Here, ¢ is the
accumulated plastic strain; o, =(3/2s:5)'’? is the stress intensity; s =dev T is the deviatoric Cauchy stress
tensor; o,(q, &) is the yield stress, a function to be found experimentally; E(¢) is the elastic modulus tensor;
K(&), G(&) are the elastic coefficients which depend on &; I,(B,)=I:B, is the first invariant of B,. It is
necessary to make some remarks.

(1) From Eq. (26), for small elastic strains we get 7=p(d¢)/(dB,). We assume that

B B_E(£):B, o
w(Bc’ 9’ f) - 2p( 5) + ‘p (0’ f)s (35)

where 4 is the thermal part of the specific Helmholtz free energy (a function of temperature only). Then
we get Hooke’s law (19).

(2) To get a unique decomposition of the total deformation gradient into elastic and plastic parts we assume
that the modified plastic spin is zero, i.e.

(F,-F-F F '-F'-F "), =0 (36)

Similar assumption is accepted in many papers on large strains without PT, see for example [10,11]. It
allows us to determine the rate of plastic deformation gradient F , through the rate of plastic deformation
d, (see below).

(3) The plastic flow rule (21) is a particular case of Eq. (29),. In our first papers on PT simulations at finite
strains [12,13] we have used in Egs. (13) and (17) the symmetric plastic deformation gradient Up with 6
components instead of F, with 9 components as here. Therefore, we did not need additional equations
like Eq. (36) (3 equations in a component form). But the final equations in {12,13] are more complicated
for calculations as we have to use objective derivatives in numerical scheme.

2.4. Nucleation criterion

Assume that in some volume V, with the boundary S, fixed relative to the material’s points, due to PT during
the time Ar, the new nuclei appeared, i.e. some material mass m, undergoes the PT.

As shown in [1,2] we have to average PT criterion (32) over the transforming region, similar to averaging
over the transformation time. Condition of nucleation looks as [1,2]

[ xam, = & am, (37)

m, l71”

Using Eq. (34) we get

fxon=| [ firatescon] [ 2

where X is the local dissipation increment in the course of PT due to PT only (excluding plastic and other types
of dissipation, see Section 2.2), fv f(, (p, /p(ENT d d£ dV, is the total dissipation increment in the course of
PT due to plastic deformation only, V, is the volume of nucleus at £=0 (before PT). It is necessary to note that
we will not require fulfillment of the condition (32) in every point of nucleus.

p(£) pdgdde fp.(%—t/f.)dV,,:Vf k. dv,,  (38)

vV,

n ”n
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We use the following simplifications of Eq. (38):
(a) the phases have the same elastic properties E(£)=E, =FE,=const;
(b) p(£&)=p=const, i.e. volumetric transformation strain is small in comparison with the unit (elastic strains
are small, plastic strains due to incompressibility do not change mass density, see below Section 3.1);
(¢) 6 and k. are homogeneous in the nucleus.
Then, Eq. (38) can be transformed into Eq. (23), where X is the driving force for nucleation (averaged over
the nucleus value of X), m, is the nucleus mass. Here we take into account Egs. (12), (16), (26),, (35) and

j . f J' f . dt  BLEB! B!EB,
T«(F,-F' Sdfdg TBedfdg Bedfdf BoE:B, pdé=—"5—" - =5 (39)

0

where Bz and B e' are the elastic strain in a material point after and before PT respectively. Eq. (23) is a final
form of the PT criterion which is used in the present paper.
The explicit expressions for ¢ can be adopted in the following form [21]

6
,pf: 4, —s,0-6)— 16 <1n7" 1) -y,

(4]

P (40)
V2=t = 8,000~ 6,) = mo (ln 7 1) ~ nh,:

Here, »,>0 and »,>0 are specific heats, s,,, s,,, ,,, ¥,, are constants, 6, is a reference temperature.

Using the presented thermomechanical approach twinning can be described as a particular case of martensitic
PT, i.e. material properties of a parent phase and a twin are the same, but during twin appearance the additional
transformation deformation gradient in a twin (like for martensitic PT) is induced [2]. Therefore criterion for
twin appearance looks like Eq (24) because the thermal parts of the specific Helmholtz free energy for both
phases are the same ¢/ = y/?.

2.5. Extremum principle for PT

In the general case, position, shape, volume V, of the new nucleus (transforming region) and the actual variant
of the transformation deformation gradient F, (in PT criterion (38) or (23) for each increment of boundary
conditions or temperature 6) are unknown. To determine them, we can use extremum principle (25), which
follows from the postulate of realizability [22], where the superscript <> designates the possible admitted
quantities (the actual values are designated without this superscript). The physical interpretation of principle
(25), is as follows: as soon as for some region V, and the variant F, of the transformation deformation gradient
the PT criterion (23) is fulfilled for the first time, PT occurs in V, with the F,. For all other V" and F ©
inequality (25), is valid, because in the opposite case PT criterion (23) will be met for this V? and f“o earlier
than for V, and F. As only the work integral ¢ in Eq. (25), depends on the volume V, and the transformation
deformation gradient F,, the extremum principle (25), follows from the principle (25),.

For more general case when PT criterion (38) is used the extremum principle has the following form [2]

fj—@Td—@dV ff(—f)poIfdng fpl((/,z—,/,l)dy’_fplkrdv‘lzo

ff o(g)TO"O*dde ff o T dgdfdv Jp?(zzf?—w,)dvn— fp?k?dv,,.

ve ve

(41)

The problem formulation presented in Box 1 must be completed by the standard boundary conditions.
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3. Numerical method

In this paper we consider the ‘inverse’ problem, i.e. at some variation of temperature or (and) boundary
conditions (we call it by variation of generalized external load P, Fig. 4(a)) a new nucleus appears in the body,
and we assume in advance the position and size of the transforming region (nucleus). The temperature during PT
is assumed to be fixed. Then, the condition for PT will be defined from the PT criterion (23). For example, when
stress—strain state and ¢ are computed we can determine the temperature of PT from Eq. (23). This is a scalar
equation with respect to temperature. Extremum principle in the form Eq. (25), is used to analyze the solutions
obtained. In order to calculate variation of stress—strain state during PT as a function of the growing
transformation deformation gradient we have to solve incrementally elastoplastic problem with the prescribed
transformation deformation gradient F, in the region where PT is assumed to occur. This formulation is
kinematically similar to the problem of thermoplasticity [23], i.e. the order parameter ¢ can be treated like the
temperature and the transformation deformation gradient like the thermal deformation gradient (anisotropic
thermal expansion). Below, we describe the solution algorithm for PT in the elastoplastic problem at finite
strains which has some common features with known ones for the case without PT [10,11]. The algorithm can

be modified from the case of small strains to finite ones.

PT in an PT in Vn2

Pl/ P, P/
0% R N S — lemax

|
{ i I 1 I L

P

(én Ftn) (5"“ F,"”

pL(or P;) \ / P2 (or P;)
1 l
(Os I) ( ) FI)
(ét Fl) >
b
(&, F, F})

(? Fn . (5" F F; )\\ m gml Fn+l F,"”)
e

A B

I

Fig. 4. Schematic description of change of generalized external load P (a), the order parameter £ and the transformation deformation
gradient F, (b), subdivision of the deformation gradient F, the transformation deformation gradient F_ and the order parameter £ within a
load increment at numerical integration (c).
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3.1. Stress calculation

The solution is realized in step-by-step form, i.e. with a known solution at time ¢, one should find a solution
at time ¢, , ,, where n is a load step number. It is necessary to note that PT in transforming region V, (Fig. 3) can
occur at fixed (e.g. at fixed generalized external load P,, Fig. 4(a)) or changing boundary conditions (e.g. at
changing generalized external load from P, to P,, Fig. 4(a)). A load increment for PT in some region V,
corresponds to a small change of the order parameter from £” to £ (0=¢=1) and to the change of the
transformation deformation gradient F, "*! and, if necessary, to the boundary conditions corresponding to this
variation of £ Fig. 4(b). At deformanon without PT a load increment is a small change of the boundary
conditions and temperature. Calculations are carried out in the current configuration using the true Cauchy stress
tensor. First let us consider integration procedure at elastoplastic deformation, i.e. how one can calculate stresses
through the known values of the total F"" " and transformation F, "*! deformation gradients and the order £t
at the end of a load step (at time ¢, ,). From Egs. (17) and (21) we get

F -F '=AF_-s-F, (42)
where F, =F_-F,. Then, the plastic deformation gradient F is integrated by means of the exponential formula
[10]

F"H_exp()l(F"H) .sn+l_ n+l) F _(Fn+]) exp(Asn+l) Fn+l F

P

(43)

P’
Equality (43), can be checked using definition of the exponential function. Plastic incompressibility is exactly
represented by the approximation Eq. (43), because

det(F, ") = det(F, )™ detlexp(As” )] det(F ") det(F ) = det(F ) = 1 (44)

due to detlexp(As” ")} =exp(I:As" ") =exp(0)=1, see also [10].
For the trial elastic predictor we can write

F'''=F*.F F¥*=F%.F'"" (45)

p’
where F¥ is a ‘trial value’ of the elastic deformation gradient. At elastoplastic deformation from Eq. (43) it

follows that
Fn+l=Fn+l‘F;+l=F:l+]_F((;H*])*l.exp(/\sn-*-l) n+l F _exp(Asn+l) Fn+].Fn. (46)

et et p

Then, from Egs. (45) and (46) we obtain

F*=V*.R*-F/"'=F""-F" "=exp(As""")- Fo,” =exp(As" ) V' -R.T-F, (47)
and hence
VE*.R* =exp(As" - VI RIT (48)

Due to the isotropic elastic law (19) the symmetrical tensors exp(/\s"“) and V:H have the same principal
directions, and therefore their product is a symmetric tensor. Then, because of the uniqueness of the polar
decomposition, Eq. (48) yields

V¥ =exp(As"" ) Vi, (49)
R¥=R"". (50)

Taking the logarithm of both sides of Eq. (49), we get
InV*=A"""+lnvV:", (51)

n+1

As elastic strains are small V"' =T+¢£."', €/7' < I then In V2" '=£""'. Let us designate In V * = g*, where

e¥ generally is not small. Then
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et =gk — A" (52)

€ =

Eq. (52), the elasticity law Eq. (19) and the flow plastic rule (21) have the same form as for the case of small
strains. Therefore in calculating stresses we can use directly the radial return algorithm [8,14], Box 2.

Box 2.
The radial return algorithm

1. Compute trial elastic strain &*

Fj=Fn+].(F:)fl.(Fn+l)—l, (53)

t
1 1
e¥*=InV*=—In(V* V¥ =—In[F* (F*)]. (54)
e € 2 € e 2 € e

2. Compute trial elastic deviatoric stress s*

s* =2G dev €¥.

2 (55)
If |s*| — ga}(q", £7)=<0 then s"''=s* andgoto6.
3. Compute unit normal field n
g*
;= 56
SPE (56)

4. Compute consistency parameter A by local iterations from the following nonlinear algebraic
equation

role\Gae)
*| — el n = n
Is*| - 2GA \/;a'y g +\34¢67"). (57)

5. Compute the equivalent plastic strain g" "', plastic deformation gradient F ;H and deviatoric

stress "'
n+1 n 2
n+l __ 2 n+1 n+1y =
§ - 3 U—;(q s § )nv (59)
F:+l:(Fin+l))*l_(F:k)~l.exp(/\sn+l).F;k'F:1+l.F:. (60)

6. Add the mean stress (due to elastic volume change)

" =s5"""+ K(e*:D)I. (61)

In contrast to the radial return algorithm for the case of small strains we add only the calculation of some
kinematic parameters, namely F* and £* (Step 1, Box 2) and F ;“ (Step 5, Box 2).

Let us consider the use of the radial return algorithm for large load increments. In this case it can give a large
deviation from the exact continuous solution due to only one point for integration of constitutive equations per
time step, Eq. (43) (or when explicit or implicit scheme is used for a derivative approximation). Therefore we
suggest to use numerical integration of constitutive equations with a finite number of intermediate integration
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f(T, g% &%)=0

f(7”,q",§"”)=0

Fig. 5. On numerical integration of constitutive equations at elastoplastic deformation within a load increment.

points for stress calculation at the end of a load increment, Fig. 4(c). At first let us consider the case when the
stress T" lies within the yield surface, point A, Fig. 5. If the trial elastic deviatoric stress s* lies outside the yield
surface we get point C, Fig. 5. It means that during loading (the variables F, F,, £ are changing from values
{F",F, &} to{F""', F'"", £"'}) a material point at first deforms elastically (lme AB), then plastically (line
BC). We assume that durlng load increment the variables F, F,, ¢ are changed proportionally to one scalar
parameter x, O0=«=<1

F“=F"+x(F""' —F"),
F=F!+xF!"" —FD), (62)
gl{ — §n + K(§11+I . fn)'

Then, the value x = a—corresponding to point B at the yield surface—can be computed by local iterations
(like the consistency parameter A in the radial return algorithm) from the following nonlinear algebraic equation

fAF,F7, £%,q9", £9=0

The stresses—corresponding to point B—are computed from the elastic law using known values of F®, F* o &N
The remaining parts of the variables F, F,, £ are subdivided into m intervals according to the following formulas
(so we have m intermediate points corresponding to plastic deformation process), Fig. 4(c),

P
FI :Fa +_(F" 1 _Fa)’
m

i a l n+1 a@
Fl=F"+ ;(Ft —F?), .

E=¢+— (f"“—f“)
1=12,..m

Then, we calculate subsequently {7, g, F } in every intermediate point through the prescribed values of F', F
¢' according to the radial return algorlthm up to the final values of {F"*', F'*' £"*'} Schematic subd1v1s1on
of the deformation gradient, the transformation deformation gradient and the order parameter within a load

increment is shown in Fig. 4(c). We can propose a simple formula for calculation of the number m

2
ol a0

i a»'( q", fa)

where s* is the trial deviatoric stress for the final values of {Fy*!, e, {F}"*"; v, is a small number which
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can be found from the numerical experiment, for example ¥, =0.1. The cases when the stress 7" lies on the
yield surface or the trial elastic deviatoric stress s* lies within the yield surface are particular cases of such
considered above.

REMARK 1. For the subdivision of the total and transformation deformation gradients into m parts we assume
that F and F, are proportionally changed with increasing the order parameter ¢ during a load step, Eq. (63).

REMARK 2. The stresses computed in the intermediate points within a load step (points D,, Fig. 4(c)) satisfy
only constitutive equations but not the equilibrium equations. Only the stresses for the first and final points
(corresponding to the beginning and the end of a load step, points A and C in Fig. 4(c)) fulfill the equilibrium
equations, because we calculate residuals of the equilibrium equations and solve the global FE system of
equations only for stresses at the end of a load step for point C, Fig. 4(c) (see below Section 3.2 and Box 3).

REMARK 3. The proposed numerical integration of the constitutive equations takes much less computer time
than the solution of the global FE system of algebraic equations and does not increase essentially computing
time. Such a modification can be used for any elastoplastic problem without PT as well.

3.2. General solution scheme and the consistent tangent moduli

The stresses "' must satisfy the equilibrium equations which we enforce weakly using the principle of
virtual work

ad
JTN+I:<_5?_>SdV=ftn+I . nds+f pfn+l . ’Y]dV, (64)
v § v

where ¢ "', f""' are the specified surface traction and body forces at time t,.; m are the virtual displacements;

V, S are the volume and surface of a body in an actual configuration. As the stresses T" "' can be expressed in
terms of the deformation gradient F"*' then solving Eq. (64) we can find F"*' at time t,.,. In order to use
Newton—Raphson iterations for solving Eq. (64) (see Box 3 below) we need its linearized form. So, the rate
form of the principle of virtual work (Eq. (64)) in actual configuration with the Cauchy stress tensor reads as
follows (see Appendix}

an ov n+1 an+1 ( av) n+l) f : n+1 v 3
far'(_ o T AT ()T ) av = n-[t+t (I:-;—N-d-N)]dSJrJ’n-fpdV,
v

S \4

(65)

where N is the unit normal to the surface S. In order to use the left part of Eq. (65) for calculation of the tangent
moduli we should express the rate of stresses T" "' in terms of the velocity gradient dv/dr. Let us consider the
derivation of such a formula which is consistent with the radial return algorithm for stress calculation with only
one point integration within a load increment, Box 2. As T""' is a function of £* we can write

Tn+l —

aTn+l e 8Tn+l <a£f )
s EX= deF oF F ). (66)
For isotropic elastoplastic materials with hardening the tensor 87" "'/ d€¥ is the consistent tangent modulus for
the case of small strains without PT [8,14] (because all the equations for their calculations are the same):

ntl

aTn+l - el 1 . _
Ger = K(&TI®I+26(¢ )3(11—;1@1)—26741@':, (67)

where
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2 qv(qn+l’ §n+l) - 1 ) _i
e brg e TR T 9
+_—ai:——l__.__—
3G(¢")

and II is the fourth-order symmetric unit tensor with components }(6,, 8,+8,9,). Dependence of elastic and
plastic material parameters o,, G, K on the internal time ¢ does not change the calculations because ¢ is like
loading parameter, and we prescribe it in advance at the beginning of every step, i.e. for every step we use the
known values of K and G (which does not vary during a load step) and the known function o,(q) at &l

To calculate £* in Eq. (66) we use some simplifications. Let us represent V¥ as
V¥E=I+¢¥* (69)
Then expanding In V¥ in terms of ¥ we get
InV*=g*=§*+0(£*%) (70)

and we will neglect the term O(fsffz) in the following equations. Differentiating the expression

F* - (F¥)'=V*.V*~]+2¢* (71)
with respect to time and taking into account

. . . v

j— -1 —l— 71. —_ —

F*=F-F, -F_ =F'F F:‘—ar F* (72)

we get
v
2k | . yk.pE
er=(Grveve), )

Then, the expression (66) takes the form

. o
T" ' ="t E.-vaf’f) (74)

s

Now, we can represent the left part of Eq. (65) as follows:

61) ( av n+1 n+1 (av * *) ( av) n+l) f 81' n+1 av
far' —o T e vEvE) S )T ) dv=| ke, (75)
v

1

where k" "' is the spatial consistent tangent determined by (75). The index form of k! (in Cartesian coordinate

system) reads as follows

n 1 n
Kin = ~ T8 + 5 iy F ) FE),18,, + FE), (F$),,.8,) + T,8,,,. (76)
The same terms on the right part of Eq. (65) is dependent on dv/dr. They are as follows
n+1 ov n+1 v
n-t I:g-—N-d-N dS=| »n-k :'é;"dS, (77)

N S
where k',’+I is determined by (77). The index form of k'l”l (in Cartesian coordinate system) is as follows
& "y =18, = NN,). (78)

imn

Let us introduce index notations of tensors in the rectangular Cartesian coordinates system and the standard FE
displacement approximations

an,  9Y, ' I
h A~ h N i iB . i ia

T = W- T = fllr — i .
”l IB('{’H)UB’ vl la(‘(m)va’ axj axj ”B’ ax, a'x/ va’

(79)
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where ¥4(x,) are the known interpolation functions, x,, are coordinates of a material point in the actual
configuration, 7, and §,, are the nodal values of components of the virtual displacement and velocity vectors; i,
jym=1,2,3 a B=1, 2,., 3XM (M is the number of nodes). Then, Eq. (64) can be rewritten as follows

| wray -y <o, (50)

where

1( 0¥, ¥,
[B]=5< ax; + ox;

i

is the standard finite element B-matrix for the current configuration (the same as for small strains),

({f}"*‘)er,"“% ds +f P W AV, (81)
N \4
is the standard FE load vector. From expression
an n+1 av f n+l | a_v
fa—r.k o dV—| n-k] “or ds, (82)
\4 S

which follows from Egs. (65), (75) and (77), we get the consistent tangent stiffness matrix [K]

o o o
B n+l na n+1 na
(K] g, = f “ox, Kim o, AV f g K7 i . dS. (83)
Vv ’ s

The global finite-element iteration procedure is briefly presented in Box 3.

REMARK 1. We can further modify Eq. (74) allowing for & ¥ <<I at small increment of external load
T ' =" hd+W)- A +289)], ~c""d+W-2E%), (84)

where W=(dv/dr), is the spin tensor. If the components of the tensor d have the same order or exceed the
components of the tensor W then

Tn+| %cn+l:d, (85)

i.e. the structure of Eq. (85) is the same as for the case of small strains (but we consider large transformation—
and plastic strains).

REMARK 2. It is necessary to note that approximate calculation of £¥* (using Egs. (70) and (71)) and hence
k""" might affect the rate of convergence of the global iteration scheme but not the accuracy of the algorithm
for stress calculation, Box 2.

The iteration procedure using the consistent tangents and the radial return algorithm with one integration point
for stress calculations provides a fast decay of residual, but large load increments can violate the plastic flow
rule (see Section 3.1 above). Therefore, to increase accuracy of the solution at large load increments and to
preserve fast convergence, we propose the following modifications. The consistent tangents are always
calculated with one integration point for the radial return algorithm. For stress calculations the radial return
algorithm with one integration point can be used at initial iterations of the current load increment (2—4 iterations
in order to obtain initial approximation of the solution). For subsequent iterations stresses should be computed
with many integration point procedure described above (Section 3.1).

To determine the PT temperature we calculate the work integral Eq. (24), in PT criterion (23). It can be done
after solving the elastoplastic problem or during the solution process, i.e. the increment of the work integral for
every loading step is calculated at the last iteration of every load step when the stress T in equilibrium is
computed.
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Box 3.
Finite element solution algorithm

1. Initialization at ¢,. Data structure:
Variables at quadrature points {g, F,}"
Initial conditions for displacement vector at nodal points {u}" "' =0
Initial nodal coordinates {x}"
Current values of the order parameter £” "', the transformation deformation gradient {F,}
boundary conditions

+1
""" and

2. Let {u};"" be solution at the k-iteration.
2.1. Compute {F};"' at quadrature points
2.2. Compute {T, g, F,,}:Jrl at quadrature points according to the radial return algorithm and
many integration point procedure
2.3. Compute the consistent tangents at quadrature points.
2.4. Compute residuals of the equilibrium equation {¥};"" (see Eq. (64))

= - f (BT av
V}:+I
(for the current configuration and the Cauchy stress tensor the expression for {1If}:+I is the
same as for small strains, {f}; "' is the standard FE load vector, [B];*" is the standard

B-matrix for finite elements with updated coordinates {x}; "' ={x}" +{u};*")

IF [{#}; || < TOL GO TO 4 (TOL is a prescribed small number)

3. Solve system
(K Au ™" =y}

where [K] is the consistent tangent stiffness matrix, y is a parameter which is defined from
numerical experiments, y €[0,1]. For the simplest case y=1.

Update {u}; ) ={u}, "' +{Au};"’

Set k=k+1 and GO TO 2

4. Update data structure

{q, Fp}n+ 1 :{q’ Fp}:+l
Update nodal coordinates {x}" "' ={x}; "'

REMARK 3. For increasing accuracy of stress—strain state calculation a mesh adaptivity can be used as it is
done, for example, for elastoplastic problem at small strains in [24,25). The development of such a procedure for
finite elastoplastic strains with PT will be studied elsewhere.

REMARK 4. In the considered approach the PT region is assumed in advance and then the condition for PT in
this region is determined, but in general case the PT region has to be computed. It can be done using extremum
principle Eq. (25). For small strains the numerical procedure for determination of the progress of PT region due
to changing external conditions (boundary conditions or (and) temperature) was proposed in [5]. It includes the
determination of a sequence of small regions (each small region coincides with a finite element) where PT
occurs, i.e. the whole PT region consists of all the small computed regions. The same procedure can be used as
well for finite strains presented here. But a mathematical justification of this numerical scheme is open.
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4, Numerical examples

To determine the conditions of martensitic PT and twinning in elastoplastic materials using PT criterion (23),
we solve simple boundary—value problems. The following simplifying assumptions are presumed:

e clastic properties of matrix and nucleus are the same (for steel) : Young’s modulus E=2- 10° MPa, Poisson
ratio u =0.3.

o the case of plane strain state is considered;

e the inverse problem is solved, i.e. the position and size of the transforming region is specified a priori, and
then the condition for PT is determined;

e the transformation deformation gradient in the transforming region (nucleus) increases homogeneously from
the unit tensor to the final value according to Eq. (15);

e temperature is homogeneously distributed and does not change during PT, but it can change during
elastoplastic deformations without PT.

o the critical driving force k_ is a constant or a function of temperature only.

Then, at given temperature, k. and Ay’ are known, hence the value of the work integral ¢ (due to PT
condition (23)) gives full information for evaluating the possibility of PT. _

For problems 4.1 and 4.2 the components of the transformation deformation gradient F, are prescribed in
advance. For problem 4.3 we show the possibility of using the extremum principle Eq. (25), to choose the
favorable value of the transformation deformation gradient F,. Quadratic triangles are used in calculations.

4.1. Appearance of a single martensitic plate in elastoplastic material

Here, we present an example of appearance of martensitic nucleus in elastoplastic material at finite strains. A
similar problem for a representative volume of elastoplastic material was considered in a paper by Marketz and
Fischer [4] for the case of small strains and another thermomechanical description of PT (using a simplified
criterion for PT without taking into account the variation of stresses during PT). We also analyze and discuss a
possible scenario of appearance of martensitic plate using the extremum principle for PT.

The cross section of a sample in plane strain state is given in Fig. 6. To evaluate the kind of martensitic plate
formation (simultaneous appearance of a thin plate or appearance of a small nucleus and its subsequent growth)
we carried out calculations for three cases of appearance of nucleus: (a) simultaneous PT in regions I-V (for the
whole martensitic plate); (b) subsequent PT in regions I-V, i.e. first in region I, then in region II and so on; (c)
appearance of one nucleus with different ratio of its width and length, i.e. PT occurs in region I, or
simultaneously in regions I-II, or simultaneously in regions I-III and so on until simultaneous PT in regions
[-V. The following plastic properties of steel are used in calculations [4]:

yield stress o' =2.5-10" MPa for austenitic matrix and ¢ =8-10° MPa for martensitic nucleus.

For simplicity we assume that yield stress in the nucleus changes instantaneously to the value of product
phase after beginning of PT. The boundary of the sample is free from stresses which corresponds to experiments

for temperature-induced PT. For our calculations the transformation deformation gradient F, and the order
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Fig. 6. Cross-section (a) with stress-free boundary and FE mesh (b) of a sample with a nucleus (regions [-V).
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parameter ¢ are subdivided into 60 increments. ﬁ, has the following components [4,17] in the Cartesian
coordinate system with the normal » is directed along axes X,, Fig. 6

(F),, =1, (F),,=02, (F),, =0, (F),, = 1.026, (F)y, =1, (86)

the other components are zero. Solving the elastoplastic problem with incrementally enlarged transformation
deformation gradient we calculate stresses and the value of the work integral ¢, and then from Eq. (23) one can
find the PT temperature.

Results of calculations for simultaneous PT in regions I-V are presented in Fig. 7-10. The martensitic plate
deforms practically elastically with the exception of small regions near short sides (Fig. 8(b)). In the parent
phase the plastic strains are concentrated around the transformed plate (Fig. 8(a)). The shear stresses in the plate
which make a main contribution to the work integral ¢ are distributed homogeneously in the central part and
strongly inhomogeneously on periphery, Fig. 9. So, the analytical Eshelby solution for elastic materials at small
strains which gives a homogeneous stress distribution within a plate deviates essentially from the real solution at
finite elastoplastic strains (that was also indicated for the case of small elastoplastic strains in [4]). In Fig. 10 the
variation of the work integral ¢ as a function of the order parameter ¢ is shown, curve 1. We can use PT
criterion (23) and the calculated value of the work integral ¢ = —37 MPa at £=1 in order to determine the PT
temperature, when the value of dissipative threshold k_ is known from experiment, or in order to determine k..
from the measurement of temperature for temperature-induced PT. If we use the data from Kaufman and Cohen
[26] for steel Fe+30% Ni, then Ay® is —215.12 MPa at the martensite start temperature M,, and according to
Eq. (23) k,=215.12—37=178.12 MPa.

Now consider the second scenario of PT appearance when it occurs first in region 1, then in region II and so
on until the region V. The final value of the work integral, ¢ = —71 MPa at £=1, is approximately the same for
all five regions I-V (some of curves 2-6 coincide, Fig. 10); the value of the work integral ¢~ —71 MPa for PT
in volume I is much smaller than ¢ = —37 MPa for the whole volume 1-V (simultaneous appearance of the
whole plate). According to extremum principle (25), it means that simultaneous formation of thin martensitic
plate is thermodynamically more favorable than appearance of a nucleus in a rectangular subdomain and its
subsequent growth. The presence of stress concentrations (dislocations, grain boundaries) can, of course, change
the scenario of nucleus appearance. In a simplified way we can simulate the presence of stress concentrators by
a properly growing function &. (V) [2]. Then extremum principle (41) will result in appearance of a small
nucleus.

The results for appearance of one nucleus with different ratio of its width and length are shown in Fig. 11
(case (c)). As we can see, the larger ratio y=1{/h (! and h are the length and width of a nucleus) is, the larger
driving force for PT (the work integral ¢, Fig. 11) is produced, but the dependence is nonlinear. A further
reduction of the thickness of the transforming plate might be found by amendment of the physical model by a
surface energy.
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Fig. 7. FE meshes of regions I-V before (a) and after (b) PT at simultaneous PT in regions I-V.
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Fig. 8. Isobands of accumulated plastic strain ¢ in a matrix near the martensitic plate (a) and in the martensitic plate (b) after PT.
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Fig. 9. Isobands of shear stress in the martensitic plate after PT.
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JFig. 10. Work integral as a function of £ Curve 1 corresponds to simultaneous PT in regions I-V, curves 2—6 correspond to subsequent PT
in regions I-V.
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Fig. 11. Work integral as a function of a ratio /A of the length [ and width » of a nucleus.

4.2. Appearance of a single twin in elastoplastic material

As a model example, we consider appearance of a single twin caused by external stresses, Fig. 12. We take

the same cross-section of a sample as for the previous problem, i.e. a twin forms a single plate in the parent
phase. The differences from the previous problem are:

(a) the transformation deformation gradient has only a large shear component

(F_',)“ =1, (F:)lz =0.707, (Fr)zl =0, (F:)zz =1, (F,),zs =1, (87)

the other components are zero,

(b) the plastic properties of both phases are the same, and we analyze two cases with o,=4- 10° MPa and
a,=6-10° MPa; ‘

(c) the thermal parts of the specific Helmholtz free energy for both phases are the same ¢f: ./,;’ ;
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Fig. 12. Cross-section (a) and FE mesh (b) of a sample with a twin 1.

We consider twin formation due to external shear stresses which are constant during the twinning. The
following boundary conditions are applied:

e along BC boundary u, =0, 7,=180 MPa;
e along AD boundary u,=u_=0;
e along AB and CD boundaries o, =7,=0 (free surface),

where u, and u_ are the normal and tangential displacements, ¢, and 7, are the normal and shear stresses.

The calculation of the work integral ¢ allows us to evaluate the possibility of twin formation, which
yields—according to criterion (24)—that at ¢ <<k_ the appearance of a twin is impossible. The sequence of
calculations is the same as for the problem with martensitic PT. For solving the elastoplastic problem the
transformation deformation gradient F, and the order parameter £ are subdivided into 300 increments. Results of
calculations are presented in Fig. 13—15. There we can see that the plastic strains are concentrated in the parent
phase near the short sides of the transforming plate, Fig. 14. The shear stresses in the plate (Fig. 15) are
homogeneously distributed in the central part and strongly inhomogeneously on periphery. In contrast to the
previous problem 4.1, shear stresses (absolute values) in central part are smaller and they have the same sign as
the external shear stresses. At the yield stress o, =4- 10° MPa the calculated value of the work integral ¢ is 30
MPa, Fig. 16, curve 1. If we know that a twin appears at applied shear stress 7, = 180 MPa then we can evaluate
the value of k., as according to criterion (24) ¢ =k_ (k. is a material parameter). Variation of the yield stress
changes considerably the results. Such, solution of the same problem with another yield stress o, =6- 10° MPa
yields ¢ = — 187 MPa, Fig. 16, curve 2. It means that such a twin can not appear at 7, = 180 MPa because the
condition ¢ =k=0 is not met.
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Fig. 13. FE mesh of the region I before () and after (b) twinning at 7, =400 MPa.
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Fig. 14, Isobands of accumulated plastic strain ¢ in a sample (a) and near a twin tip (b) at o, =400 MPa.
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Fig. 15. Isobands of shear stress in a twin at o, =400 MPa.
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Fig. 16. Work integral ¢ as function of £ during twinning (curve 1 at o,=400 MPa, curve 2 at o, =600 MPa).

4.3. Nucleation at shear—band intersection

It is known from experimental observations [27] that strain—induced PT occurs at shear band intersection. Let
us consider the thermomechanical formulation of a model problem of nucleation at shear bands. Cross section of
a sample is given in Fig. 17. The following presumptions hold: shear bands are introduced in advance; the
material deforms elastoplastically within shear bands and elastically only outside shear bands. The plastic
properties are the same as for the problem 4.1.

The following boundary conditions are applied:

e along AB boundary, u,=0, 7,=0;
e along CD boundary, u,=u*, 7,=0 (u* is the prescribed normal displacement);
s along AC and BD, boundaries o, =7,=0 (free surface).

For calculations the transformation deformation gradient F, and the order parameter £ are subdivided into 60
increments. In the local Cartesian coordinate system (one axis is directed along vector #, another one is located
in the plane of the vectors n and k, i.e. in the plane of Fig. 17) the transformation deformation gradient f[ has
the following components

X

7
AKX 28
VIR

K]
%
<
S
bl !
&
|>

AV,
L0
rAYAYd!
AN
'mﬂu
VAVAAVAY,

&
AV YA
oy
9
K

AV,
A

vav, y,-4§"'i A'A

‘.?',i:,ﬁv»

)0 ) ) AV aVAVAVAS.
a b

Fig. 17. Cross-section (a) and FE mesh (b) of a sample with a martensitic nucleus (1 or 2) at two shear-band (I and I1) intersection.
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(F), =1, (F),,=02, (F), =0, (F),, = 1.026, (F), =1, (88)

the other components are zero.
Four different values of maximal prescribed displacement u® _ are considered, namely

u¥ =0.14; 0.19; 0.24; 0.34, (89)

max
which correspond to the following macroscopic tensile strain

e=u¥* /h=0.0047, 0.0063; 0.0080; 0.0113, (90)

max

where h=30 is the initial height of the sample. During PT the transformation deformation gradient and
prescribed displacements grow proportionally to the order parameter &,

u* (&)= uf + @k, —u)é, on

i.e. it means that the transformation deformation gradient grows proportionally to the prescribed displacement.
For all cases we start PT at e=uf/h=0.14% when plastic strains appear in shear—band regions. This
corresponds to the situation where transformation occurs during the shear—band intersection event. The
beginning of PT can be enforced by variation of temperature.

For this problem we assume that the transformation gradient F, is determined up to arbitrary rotation (see
Remark 3, Section 2.1). For the considered plane case it means that the direction of the normal n with respect to
the global coordinate system is unknown. We find the most favorable one using the extremum principle (25),.
Four different angles were prescribed a=0; 45° 50°% 90° between n and axis X,, Fig. 17. Solving four
boundary—value problems for the u¥  =0.24 and appearance of martensite at the shear—band intersection we
have found that the corresponding values of the work integral ¢ are ¢ = —36.86; 22.59; 21.86; —37.06 MPa,
respectively. According to the extremum principle (25), the most favorable direction for the vector n is along
one of the shear bands (along the axis X, Fig. 17), since for this direction the work integral ¢ =22.59 has a
maximum value. In the following calculation we use this direction for prescribing the transformation
deformation gradient F,. Then, the transformation deformation gradient F, has the components Eq. (88) in the
local coordinate system in which axes are directed along shear bands.

REMARK. For an infinite number of variants for the angle between n and axis X, the check of a discrete
number of possible values gives an approximate solution. If we use in three-dimensional case the model with a
finite number of variants for F,, then such a check allows to find the true variant.

P, MPa
320.00 —
ol =758
300.00 —
b powe o5
280.00 —| 602 ¢=2259
260.00 —
03 @=-283
240.00
1 4 p=-587
«
220.00 T I ; ‘ — . ! u
0.00 0.10 0.20 0.30 0.40

Fig. 18. Relationships between external averaged axial stress P and vertical displacement u* (at different values u* after finishing PT). (1)
work integral ¢ =75.8 MPa, (2) ¢ =22.59 MPa, (3) ¢ = —28.3 MP4y, (4) ¢ = —58.7 MPa, (5) without PT.
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In Fig. 18 the relationship between external averaged axial stress (obtained from the problem solution and
averaged over boundary CD) and vertical displacement at boundary CD is shown and computed values of the
work integral ¢ are indicated. Curves 1-4 correspond to appearance of nucleus at shear band intersection, curve
5 describes deformation without PT. The growth of axial stress for curve 1 is explained by the fact that yield
stress for nucleus is higher than for matrix.

Using PT criterion (23) and the value of the work integral ¢ (for curve 2-4) we can calculate the PT
temperature. If the temperature is given then using the value of the work integral ¢ we can predict whether PT
occurs. For normal displacement u* =0.19 at boundary CD we have solved also the problem with appearance
of nucleus in volume 2, Fig. 17 (volumes 1 and 2 are equal). The work integral is ¢ = —42.2 MPa for this case,
i.e. the PT driving force X for nucleus at shear band intersection (volume 1, ¢ = —28.3 MPa) is higher than for
nucleus in volume 2, and—due to extremum principle (25),—PT will occur at the same external conditions in
volume 1 at shear band intersection. We also have solved the problem when after nucleation in volume 1, PT
occurs in volume 2 (i.e. the growth of nucleus 1 is modelled). But the value of the work integral ¢ for volume 2
was much smaller than ¢ for volume 1 of initial nucleus. This means impossibility of growth of nucleus 1
because the appearance of nucleus at intersection of other shear bands is more favorable. This corresponds to the
known experimental observations [27].

5. Concluding remarks

The description of martensitic PT in elastoplastic materials is mathematically much more complicated than in
elastic materials without dissipation due to dependence of PT conditions on the history of stress—strain changes
in nucleus during PT. Three model problems were solved by introducing some simplifying reasonable
assumptions. Numerical algorithm and solution are given, determining the appearance of a nucleus in some
model problems. Due to the formulation of ‘inverse’ problem—when the PT region is prescribed in advance—
the main computational difficulty lies in calculation of stress changes in the prescribed transforming region in
course of PT at finite plastic and transformation strains. The usage of the current configuration and the true
Cauchy stresses together with the assumptions of small elastic strains and zero plastic spin allow us to
use—with small modifications—the radial return algorithm and the consistent elastoplastic moduli for the case
of small strains. Numerical algorithm developed for PT also can be used for thermoelastoplasticy at finite strains
due to the similarity of formulations.

Acknowledgement

We gratefully acknowledge the support of the VOLKSWAGEN FOUNDATION, grant 1/70283.

Appendix A. Derivation of the rate form of the principle of virtual work

The principle of virtual work in a deformed configuration at an arbitrary time ¢ is given in the form

JT: <(;—:7)Ndvzjt-nd5+j of - mdv, (A1)

1 S Vv

where T is the Cauchy stress tensor; ¢, f are the specified surface traction and body forces; % are the virtual
displacements, p is the density; V, S are the volume and surface of a body in a deformed configuration; r is the
position vector of a point at time . With respect to an arbitrary initial configuration at time ¢, Eq. (A.1) takes the
form

an ar” dv
o ar v = ""'—d5+ £ e, 4, (A2)

v S

o o

where r, is the position vector of a point at time z,, index ‘o’ designates the initial configuration at time t,. To
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express principle (A.l1) in rate form for a deformed configuration we differentiate Eq. (A.2) in the time-
independent initial configuration at time 7, and then we again pass to a deformed configuration at time ¢. First,
we differentiate Eq. (A.2)

an [or, dv on [or, 'dV
]Fj(ar' dV)dV f&r (ar dv)dv

f ds f VAFTAY f ‘ f . N
N ( as )dS + ( ds>d5 +| % fp,dV, + | n-fp, dv,. A3)
S,

So Vo Vo

As 7 is arbitrary and taking into account Eq. (A.2), it follows that the first, the third and the fifth terms in Eq.
(A.3) cancel out. Then

fa" LASpUA ~f 2 s f P, 4V, A4
or T av, V.= n-\t ds, . T nfe, dv,. (A.4)
S, V,

Ca 0

Rewriting Eq. (A.4) for a deformed configuration at time ¢ we get

on ar_ o, Tdv "dv J a ”ds+f D dV. A5
ar o, \ar Tav ) v 1 \'3 ) as n-fpdv. (A-3)
S |4

Let F=0r/or, be the deformation gradient and G=F '-F (right Cauchy—Green tensor). Then dV/ dv, =\/1,(G),
where I,(G) is the third invariant of the tensor G [28].
Let us consider the subintegral expression in the left hand part of Eq. (A.5).

81) ar (c')r dV) dv,

L kY -1
ar (')}‘ or dv F- (F TVIL(G)+F  -TVLG)+F

( I(G))
— |\ F-F ' T+T+T
ar

T\/g(_G)

1. (G V5L(G)
_6_1). 8_ T+T+(I"£>T)
= ar . . (A.6)
Here we have used that F '=—F " F-F™' (which follows from the differentiation of the relation F-F "' =1,

where I is the unit tensor), and that F-F ™' =dv/or, VI,(G) WLG)=I: 2, where v =F is the velocity [28].

Now we consider the first expression in the right-hand part of Eq. (A.5). Taking into account that

/dS\ dS (I v d )
ds,) " ds, ~N-d:N) A7)
where d=(dv/dr),, N is the unit normal to the surface dS [28], one obtains
dS ds, .ds  ds |ds, : v
n- dS s = ds={ »- IK_H‘K ES—dS [t-f—t(I:E—N‘d-N)]dS. (A.8)
S 0 S o o S

Thus, the final rate form of the principle of virtual work is as follows

f%g: _a_ T+T+(r: 2>T>dv=fn'[t'+t(1:2—:—N~d'N):ldS+fﬂ'deV (A9)

14 s v

As T and T are symmetrical tensors we can use simplification

G (1 (D) (5. (1 + (5.
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In order to use Eq. (A.9) for derivation of the tangent stiffness matrix we express the rate of stresses T in
terms of the velocity gradient dv/dr, see Section 3.2,
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