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Abstract

The paper presents a finite element (FE) procedure for solving contact thermoelastoplastic problems at large strains. A
rigorous derivation of the constitutive relations used and the structure of a tangent stiffness matrix and load vector at arbitrary
thermomecanical loading are given. The deformation model [1, 2] is used which is based on the multiplicative decomposition of
the total deformation gradient to an elastic, temperature and plastic parts and the generalization of Prandti-Reuss equations to
the case of large strains, high pressures and temperatures. A method is proposed for the generalization of the elastic law at small
strains to the case of high pressures which is based on the use of the existence of an elastic potential (hyperelastic material) at
large elastic strains.

The algorithms for solving thermoelastoplastic problems at large strains and contact elastic problems at small strains are
considered individually and in combination for solving contact thermoelastoplastic problems at large strains. An algorithm for
solving thermoelastoplastic problems at large strains is based on a modified method of initial stresses allowing the use of both the
constant and the variable tangent stiffness matrices. An algorithm allowing for contact conditions (which are described using a
friction surface, in the particular case, the Coulomb’s law of friction is considered) involves the simultaneous consideration of an
arbitrary number of deformable bodies in contact. The pairs of nodes with the same coordinates are introduced along the
interface. Owing to transformation of the set of FEM equations, the contact conditions reduce to the usual boundary conditions in
terms of stresses or displacement with iterative redetermination of their types (adhesion, slip, no contact) in each pair of nodes.
Optimum variants of combinations of the iterative procedures allowing for plastic flow and contact interaction are studied.
Particular problems are solved. An attractive feature of the present approach is the simplicity of allowing for the contact
conditions for an arbitrary number of deformable bodies in contact and insignificant modifications of computer program which are
necessary for the change from small strains to large ones.

1. Introduction

Main aspects of the construction of numerical procedures of solving contact thermoelastoplastic
problems at large strains are as follows: (a) the choice of justified deformation models at large strains
including the choice of a deformation measure and its decomposition to an elastic, temperature and
plastic parts as well as a correct accounting for finite rotations (satisfying the conditions of invariance
with respect to rigid rotations and the choice of type of the objective derivative); (b) the development
of computational algorithms which include the transition from a continuous problem to a discrete one,
the construction of iterative procedures with a high rate of convergence for the consideration of
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physical, geometrical non-linearity and contact conditions; and (c) efficient implementation of the
numerical procedure as software which depends mainly on (a) and (b).

The development of models of thermoelastoplastic behaviour of materials at large strains is
elucidated in numerous works [1-12 and other]. Many of them are based on multiplicative decomposi-
tion of the total deformation gradient to an elastic and plastic parts, which permits a visual geometric
interpretation of strains. Problems of development of numerical algorithms of solution of elastoplastic
problems at large strains (with the use of Lagrangian and updated Lagrangian formulations) are
considered in [3, 13-23 and other]. In this case, the structure of FE equations (i.e. a tangent stiffness
matrix and a load vector) is determined by chosen measures of strains and stresses. Models and
algorithms of the accounting for contact interaction are given in [13, 23-31 and other].

The present work introduces one of possible approaches to the development of a FEM procedure for
solving contact thermoelastoplastic problems at large strains for isotropic materials and contact friction
described using a friction surface (in the particular case, the Coulomb’s law of friction is considered).
The deformation model [1, 2] is used which is based on the multiplicative decomposition of the total
deformation gradient to an elastic, temperature and plastic parts and the generalization of Prandtl—
Reuss equations to the case of large strains, high pressures and temperatures. And it is supposed that at
normal pressures elastic strains are small, at high pressures shear elastic strains are small, while
volumetric elastic strains are finite (plastic strains are finite in both cases). A method is proposed for the
generalization of the elastic law at small strains to the case of high pressures which is based on the use
of the existence of an elastic potential (hyperelastic material) at large elastic strains.

The algorithms for solving thermoelastoplastic problems at large strains and contact elastic problems
at small strains are considered individually and in combination for solving contact thermoelastoplastic
problems at large strains. An algorithm for solving thermoelastoplastic problems at large strains is
based on the modified method of initial stresses allowing the use of both the constant and the variable
tangent stiffness matrices. An algorithm allowing for contact conditions involves the simultaneous
consideration of an arbitrary number of deformable bodies in contact. The pairs of nodes with the same
coordinates are introduced along the interface. Owing to transformation of the set of FEM equations,
the contact conditions reduce to the usual boundary conditions in terms of stresses or displacement with
iterative redetermination of their types (adhesion, slip, no contact) in each pair of nodes. Optimum
variants of combinations of the iterative procedures allowing for plastic flow and contact interaction are
studied.

An attractive feature of the present approach is the simplicity of allowing for the contact conditions
for an arbitrary number of deformable bodies in contact and insignificant modifications of computer
program which are necessary for the change from small strains to large ones. It should be noted that the
present work gives a rigorous derivation of the used constitutive relations and the structure of a tangent
stiffness matrix and load vector at arbitrary thermomecanical loading.

A numerical procedure developed for solving contact thermoelastoplastic problems at large strains is
realized for an axisymmetric case as software. Testing problems as well as problems on stress—strain
state of elements of high pressure apparatus for synthesis of superhard materials have been solved.

2. Constitutive equation

Let us consider a complete system of equations for solving three-dimensional contact thermoelasto-
plastic problems at large strains. A model of material mechanical behavior at large strains [1, 2] is used.
Effect of viscosity and creep are neglected. We assume that at normal pressures the elastic strains are
small, at high pressures the shear elastic strains are small and the volumetric elastic strains are finite.

Kinematics

The total defornration gradient tensor is presented as the product

dx
Fzgf:Feﬁ'Up:Fe'Ue.Up:Ve'Re'UH.UP’ (1)
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where x and X are the position vectors of a point in the deformed and undeformed conﬁguration§,
respectively; F,, and F, are the thermoelastic and elastic deformation gradient tensors; V, is the elastic
left stretch tensor; U, U, are the thermal and plastic right stretch tensors, respectively; R, is the
rotation tensor. The tensor U, for the isotropic law of thermal expansion is given by U, = (1 + a6)I,
where « is the thermal expansion coefficient; @ is the temperature, 7 is the unit tensor. However, when
solving elastoplastic problems, not the relationships (1) are used but their rate form derived by
differentiating (1) with respect to time [1, 2] (see Appendix A)

v
_1fov a_")t]_(i"_> _B, 2
d_2[6x+(6x T \ox s_a2+d9+dp’ @
1[ov  [ov\'] [ov  (ab) 2. 2 3
:E[ﬁ'(ﬁ)]:<§)a’ do‘1+a017 a _1+311(Be)’ ()

where v = ¥ is the velocity vector; d, d,, d, are the rates of the total, thermal and plastic deformatiqns,
respectively; af = a6 + af; B, = 1(V, -V, —I) is the elastic deformation tensor (which in the numerical
algorithm is calculated by integrating Eq. (2) or by inversing the elastic law using known strcsse§);
1,(B.) is the first invariant of the B.; W is the spin tensor characterizing particle rotation rate with
respect to the current configuration; C = C + 2(C - W), is the objective Jaumann derivative of the €
tensor; (C),, (C), are the symmetric and antisymmetric tensor parts, respectively; a point above
indicates the time derivative.

Note that at, normal pressure (I,(B,) << 1) and small thermal deformations (a8 << 1) it follows that
a*=1, d, =~ (a6)I and the expression (2) can be written in the form

d=B. +d,+d,. 4)

2. . ,
The difference between Eq. (4) and the case of small strains lies in the fact that B, is instead of B,, and
the plastic deformation rate d, is not a time derivative of the plastic deformation tensor.

Physical relations

In order to separate elastic and plastic modes of deformation, a loading function ¢ is introduced:
at normal pressures

¢(T’ q,e)=0'i_®(q,9), (5)
at high pressures
(P(T, q’0)=0-i_¢(q’6)(1+'“70) ’ (6)

where T is the Cauchy stress tensor; ¢ = | (34,: dp)”2 is the accumulated plastic strain; o, = 11,(T) is
the pressure; o; = (25:5)""? is the stress intensity; S =dev T is the deviatoric Cauchy stress tensor;
@(q,0) is the function to be found experimentally; « is the material constant (it is assumed that
1+ ko, =1 at normal pressure).

In an elastic region

— 6_90 a_cp 7
©<0 ore=0, aT.%+66¢9<0 (7)

and the physical relations are assumed to be in the form of Hooke law:

at normal pressures

T=E@®):B,=A0)I,(B)I +2u(®)B, , (8)
at high pressures

T=E(,,0):B,=\(I,,0),(B)I=2u(l,,0)B,, (9

where E is the elastic modulus tensor; A, u are the Lame coefficients which depend on 6 as well as on
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1,(B,) at high pressure (the likely ways for concretizing of Eq. (9) are given in Appendix B). For the
elastic deformation, in view of Eq. (2) the relationships (8) and (9) in terms of rates take the forms (see
Appendix C):

at normal pressures

v JoE .
—F - (d — o=, 10
T=E:(d-d)+-5:B.0, (10)
at high pressures
T=d’E:(d—d,)+E:B,, (11)
where
. dE . OE . , OE IE .
= —b=at———1:(d~- +—0. 12
E a]](Be) II(Be) + 06 6 a 311(Be) [I(d dﬂ)] 00 0 ( )
In an elastoplastic region
_o .5, 9, 13
=0, aT.;‘+660>0 (13)

and the plastic flow rule is accepted as
d,=AS, A,=0. (14)

At normal pressures the plastic flow rule (14) is associated with the yield surface (5), at high pressures
Eq. (14) is not associated with the yield surface (6). The condition of plastic incompressibility which
follows from Eq. (14), is generally adopted for metals at normal pressures but is taken as an assumption
for high pressures (this can be attributed to the fact that at high pressures the intrinsic pores as well as
those induced by plastic deformation are closed and the material becomes plastically incompressible).

Computational algorithms do not usually involve Eq. (14) as such, but the quasi-linear relationships
between the stress rate and the rates of deformation and temperature which follow from Eqs. (4) and
(8) at normal pressures or Egs. (2) and (9) at high pressures, Eq. (14) and the condition ¢ =0 and may
be written as (see Appendix C):

at normal pressures

s 1 dp JE . 1<a(p oE . 6(p.>
— o p-Q_T. (o =, _ o= 0= s . 15
T (E vE‘SaT'E)'(d d,,)+ao.Be(9 ” 8T'80'B°6+600 E:S, (15)
_% o :’2(2 : )”2
V—aT.E.S oq 3S.S ,
at high pressures
2
- d . 1 0 . g .
%=<E—a—E:S-£:E):(d—d)+E:Be——(a2—qp:E:Be+—(€0>E:S,
v or 0 v oT a0 (16)
_ 20 o _a_‘P<2 : )1/2
v=a 5 E:S 3q 3S.S ,

where E is calculated from Eq. (12) both for the elastic and the elastoplastic regions (because in view of
Eq. (14) I:d,=0). . ‘

It should be noted that tensor T which appears in Eqs. (7) and (13) can be replaced with tensor T,
since for the accepted expressions (5) and (6) for ¢ the relation d¢/dT : T=0d¢/oT : T is valid (see
Appendix C). However, for calculations (when Egs. (10), (11), (15) and (16) are used), it is convenient
to express Eqgs. (7) and (13) in terms of T.
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Standard equilibrium equations
ox >
where p is the mass density and f represents the body forces.
Contact conditions
Now we write friction conditions at the contact boundary S, for the case of large strains in the

three-dimensional case, and write them in scalar form for deformed state in the local coordinate system
formed by singular normal r, and vectors r;, r; tangential to the contact surface of the first body.

T,=-T:<0; T,=-T,, m=ij (18)
u,—ul<8, >T,=T!=T/ =0}S, (19)

u _ung 1 2 1 20
u,—u, =6, >T,<0 (20)
FXT,, T}, T})<0, >u,—u,=0, (21)

OF*(T,, T{,T;) 1S US;
aT) ’

n

1 i 1
FXT,,T,,T;)<0
m=i,j

FXTL T, T))=0, >ul—u,=A, (22)

where T,, T,, T, are the normal stress and the stresses tangential to the contact surface, 7, =r,- T T
T,=r,-T-r,m=i, j,indexes 1 and 2 identify those belonging to the first and the second bodies,

respectively; u,, 4,, u,,, u,,, m=i, j are, respectively, the components of displacement and velocity

vectors in the local coordinate system, & is the gap; F*(T,, T,, T;) =0 is the friction surface; A, =0 ?s
the scalar parameter. Thus, for the isotropic Coulomb law of friction, the surface F*(T,, T;, Tj) is
written as

1. s
FX(T, T, Tj) :_)7 [(Ti)h + (Ti)z]ll +T,, (23)
where v is the friction coefficient. Then, the slipping law (22) reduces to

i, —u) =AT. ., A=0, m=i,j. (24)

In the axisymmetric case, circumferential tangential stress and displacement are equal to zero, .and
normal r, and tangential r; to the first body surface singular vectors are arranged in an axial section,
Egs. (23) and (24) taking the form

1
FY(T, T) = |T)+T,, 25)

W=, =M\T), 4,20, (26)

The relationships (2)-(22), when supplemented with boundary conditions, constitute a comprehensive
system of equations for solving contact thermoelastoplastic problems.
3. Numerical technique

For the FEM solution of the above system of differential equations the equilibrium equations (17)
may be written in variational form following the principle of virtual work (weak form)

fT:d*dvzfz-u*ds+f of -u*dv | (27)
\4 S \4

where u* are virtual displacements, d* = (ou*/dx); t, f are the surface tractions (including contact
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forces) and body forces, respectively; V, S are the volume and surface of the body in the current

configuration. . .
Consider the FE form of Eq. (27). Using indicial notation, the rectangular Cartesian coordinate
system and introducing the standard approximation

1 /9%, oY )
* — % * _ ia 2y = 28
u; =¥ (x,)a, , dij 3 ( ax, + ox; U, » (28)
or
lu} =[N|{a*},  (d*}=[B){a*}, (29)
(where ¥ _(x,) are the known interpolation functions, i are the nodal values of components of the
vertual displacements vector; i, j,m=1,2,3;a=1,2,...,3x M, M is the number of nodes; Eq. (29)

is the standard FE notation of Eq. (28) in matrix form) we have

L 2
[ 1 (_‘?& + ’“) T, dvzf t¥, ds + fv pf¥, ds
v S

2\ox;, ox
! ' 30
or
B av=tar. tay=[ v s+ [ ven v &)

It should be noted that Eqs. (27)-(31), written in the current configuration, are of the same form for
both small and large strains.

The use of FEM involves FE approximation of displacements, strains and stresses and the solution of
a continuous problem reduces to the determination of the parameters under study in a finite number of
nodes of the FE mesh so that the solution obtained should satisfy Eqs. (2)~(16), (31) and contact and
boundary conditions.

To solve the above set of equations, a numerical technique has been developed which consists of
three parts: (a) a procedure for solving thermoelastoplastic problems at large strains; (b) a procedure
for solving contact elastic problems at small strains [31]; (c) a combined procedure for solving contact
thermoelastoplastic problems at large strains.

The solution of the class of problems under discussion depends on history of deformation, therefore it
is realized in step-by-step form, i.e. with a known solution at the instant of time ty_, one should find a
solution at the instant of time ¢, =¢,_, + At, where N is the step number. It should be also noted that
the numerical techniques developed do not formally distinguish between normal and high pressures (at
normal pressures some simpler relations given above are used).

3.1. The procedure for solving thermoelastoplastic problems at large strains

The procedure for solving thermoelastoplastic problems at large strains is based on the stepwise
solution using the method of initial stresses. The solution is made using a variable reference
configuration which coincides with the deformed configuration at the previous solution step. The
algorithm used can be easily given by

() ~laa}=0; (¥} ={ag}; i=0;
@) |pi=i+1;  (Aa}= (K] (¥}
() || taa}={Ad) +{Aq};  {AT)={AT({AI},A0)};  {x,} = {x} + (At} ;
(B = (o) - [ BIATY+ (aTh v
4) —Is the convergence achieved (||¥)]| < ¢)? (32)
no—(2) | yes— (5)

(5) ““N=N+1; {x} ={x} +{Au}; {T)={T} +{AT}
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Here, N is the step number, i is the iteration number, {x}, {x,} are the vectors of nodal coordinates at
the beginning of a step and after the ith iteration of the Nth step, respectively; {&} is the nodal
displacement vector; [K] is the stiffness matrix (either constant elastic or variable tangent stiffness
matrix (see Appendix D) may be used, as the problem solution depends only indirectly on the type of
the [K] matrix defining the convergence rate of an iterative process); {¥;} is the residual of the FE
equilibrium equation (31) written for the i-th iteration in the current configuration;

(@)= |, INGEDTC + 18y as+ [ NI ef) + (apn) v

is the load vector in ith iteration of the Nth step of loading;

(80} = [ INCEDT (a0 a5 + [ (NI Ao} v

is the initial value of the incremental load vector at the Nth step; [N({x,})], [B({x;})] are the standard
FE matrices (see Eq. (29)) written in current configuration {x,} of the Nth step); ||| = (¥} {¥})/
({¢;}'{q,}) is the residual vector norm;  is the preset accuracy; {T} is the stress vector at the beginning
of the Nth step; A denotes increment of a quantity; ¥ is the scalar parameter which permits accelerating
the convergence of iteration process (may be determined by a numerical experiment and may be varied
with the number of iteration; in the simplest variant y = 1).

Let us discuss the algorithms. It should be noted once more that all the components of stress and
strain tensors are written in common Cartesian coordinates (or in cylindrical coordinates if the problem
is axisymmetric) for any deformed configuration both at the beginning and at the end of the step of
loading. This means that the components’ form of the representation of Egs. (2)—(16) is derived from
the tensor one by replacing the tensor notations in Egs. (2)-(16) with their components in Cartesian
coordinate system. Only the Cauchy stress tensor is used in the proposed algorithm.

The sequence of the calculation at loading step N is the following:

(a) The {A#,} increment of displacement at the ith iteration of loading step N is calculated by solving
the {Au,} = y[K] ' {¥_,} system.

(b) Then, {Au} = {Aa} + {Aw,}, i.e. overall displacement increment for ith iterations at loading step
N is determined. Using relations (10), (15) or (11), (16) and known {Au} and A#, increment of stress
{AT} = {AT({Aa}, A6)} is calculated (in more detail below).

It should be noted that from algorithm (32), the displacement increment {Au} as well as the stress
increment {AT'} are calculated for each iteration of the Nth loading step, beginning from the end of the
preceding step (which is of a deformed configuration obtained at the N — 1th step). This permits the
unstable calculations to be eliminated in determining stresses when at various iterations of the Nth step
of loading at the same point the repeated alternation of plastic loading and elastic unloading can take
place.

(c) Then we calculate the residual of equilibrium equations written in a current configuration at the
ith iteration

) =g [ (BT + AT av (33)

If the convergence is not reached, i.e. ||%|| exceeds some preset number &, we return to point (a).

(d) We calculate new coordinates {x} = {x} + {Ai} and stresses {T} = {T} + {AT} at the end of the
Nth loading step which serve as the initial data for N + 1th step of loading.

Let us consider the item (b) in greater detail. In works [3, 23] in order to determine stresses from
known displacements at elastoplastic straining one uses an approximate ‘return mapping algorithm’ in
which the plastic strain increment direction is given according to the plastic flow rule for stress values at
the end of the loading step. In this case within the step, this direction remains without changes even at
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large displacement and strain increments, and a scalar value of plastic strain increment is found, in the
general case, through the solution of a non-linear scalar equation by the iterative method.

The present work uses a precise numerical integration of constitutive equations. Now we consider
peculiarities of this procedure. The sequence of d7 =T dt, dB, = B, dt and dgq = ¢ d¢ calculations in
terms of known values of displacement increment du = v dr and temperature increment do = 6 dt for
the case of high pressures is as follows (at normal pressure the procedure is similar). First, we determine
d from Eq. (2) and W and d, from Eq. (3). Then, assuming the strains to be elastic, we find T (from
Eq. (11)), =T — 2(T-W), and dT = T dt. Then we check the condition o(T + dT, g, & + A8) <0 (this
1s equivalent to condition (7)). If it is valid we suggest that dT' has been correctly calculated. Otherwise,
we take strains to be elastoplastic and T is found from Eq. (16). In case of elastoplastic straining we
determine d, and dg = g dr=(3d,: dp)”2 dr from the relation (C.9) (see Appendix C) and Eq. (14). It
follows from Eq. (2) that

Be=[1+%ll(83)] d—-d,—d,)—2B,W),. (34)

Alternatively, B, can be also calculated from known T and T by inversing the thermoelastic law (9),
whenever possible, and differentiating it. Thus, to solve the thermoelastoplastic problem, it is sufficient
to calculate T, B,, g and the total displacement u (the calculation of U,, Uy, U,, R, are not needed
here).

We describe now the sequence of calculations of {AT'} in case of large values of {Au} and A6 for
algorithm (32). First, we assume stress increment to be elastic, and to determine {AT} we use relation
(11) (in the same way as in determining dT) Then, we check the condition

@, = o({TY + {AT), ¢,0 + A0) <0 .

If it is valid, then stresses {AT} have been correctly calculated. At ¢, >0, one has to determine the
moment of transition of straining from the elastic region into the elastoplastic one (when ¢, = ¢({T}, ¢,
6) =0, this need not be done). The moment of the straining transition from the elastic region into
elastoplastic one is determined by the following procedure [32]. Let, at the beginning of the step,
¢, =9({T}, q, ) <0. Using the algorithm (32) and known {A:}, A we find stresses {AT} with the
use of the elastic law (11) (in the same way as in determining dT'). Let, in this case, ¢, = ¢({T} +
{AT}, g, 6 + A0)>0. Then, 7 =0~ 1 parameter has to be determined, which will characterize the
attainment to the yield surface, i.e.

@ =@({T} + (AT {AG}, 7A0)}, q,0 + 7 A9) =0 (35)

Expanding ¢ function into Tailor series and restricting ourselves to derivatives of the first order we
obtain

L@}

T e (%6)
If, after the calculation of r from Eq. (36), |¢;| > ¢, here ¢, is a given tolerance), then 7 value can be
refined similarly by iteration, using parameters ¢, and ¢, (or ¢,) as initial and final values of ¢ function.
Thus, when straining by 7{A#&}, v A9 in calculating {AT} one has to apply relation (11). In further
straining by (1—7){Aa}, (1 —17)A6, the interval (1 —7){Ai}, (1 —7)Af must be divided into small
values, and {AT} value is to be defined by numerical integration (using the relation (16)). The number
of divisions of the integration interval can be determined numerically from the condition that relation
e({T} + {AT}, g + Aq, 8 + A9) =0 is satisfied. Note that in elastic region (interval 7 AiZ, 7 A@) stress
increment {AT} was calculated from Eq. (11) using finite values of 7{Ai}, 7 A9. However, in the case
of large values of 7{Au}, 7 Ad, in order to calculate {AT} increment, one can also divide interval 7 A,
7A@ into smaller values and to perform numerical integration. A numerical experiment has demon-
strated that the time for integrating constitutive relations by using the above procedure is much less

than the time for FEM solving the linear system of equations.
In case of small rotations W= 0 and at normal pressure (I,(B,) <<1), the given algorithm (32) for
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solving thermoelastoplastic problems at large plastic strains completely coincides in form with that for
the case of small strains, only {x} = {x} + {Ad} coordinates should be redetermined at large strains.

Let us compare the present approach based on the initial stress method at large strains with known
ones. All of them are based on the calculation of tangent stiffness matrix which may have different
forms depending on a formulation used (Lagrangian or updated Lagrangian formulation) and chosen
measures of stresses, strains and constitutive equations. The tangent stiffness matrix is calculated using
a rate form of the principle of virtual work. This may cause violation of the equilibrium equations for
finite values of stresses. When using the present approach, the equilibrium equations (31) are satisfied
for the finite values of stresses (||%|| <&, see Eq. (32)) to a preset accuracy. The algorithm (32) permits
the use of both constant elastic and variable tangent stiffness matrices. This is due to the fact that the
stiffness matrix has no explicit effect on the fulfilment of equilibrium equations but it governs the rate of
convergence of iteration process (though ‘wrong’ choice of a stiffness matrix may lead to weak
convergence or divergence). An attractive feature of the present approach is the simplicity of transition
from the case of small strains to that of large strains owing to proper choice of measures of stresses and
strains and to iteration scheme of the problem solution.

3.2. A procedure for solving contact elastic problems at small strains

Let us represent the algorithm of solving contact elastic problems at small strains in case of FEM
discretization for an arbitrary geometry of the contact surface, rather common laws of contact friction,
an arbitrary number of interacted deformable bodies (preserving symmetrical stiffness matrix of the
linear algebraic equation system). It is based on combined consideration of bodies in contact. The pairs
of nodes with the same coordinates are introduced along the contact boundary (Fig. 1). Because of the
presence of energy dissipation in friction, the problem must be solved step-by-step in terms of
increments.

The friction conditions (18)—(22) in view of FE discretization may be written as follows.

Let nodes A and B be in contact and belong to bodies 1 and 2, respectively. Then

fh+i=0, <0, p=n,ij (37)
if
A TA 7A —A _B _ .
F(7;,F},£')<0, then Aud,—Air=0, (p=n,i,j), (38)

if

Fig. 1. A part of contact surface.
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OF(TE, A, )

F(i,, 12, =0, then Aa?-Aa’=0, At -aia®=aat?=2,

nr it ats ’
AL=0, m=i,j. (39)
Assume that there is no contact between the points A and B. Then
A _ B __ —A -8 _ T
t,=t,=0, u, —u,<8é, p=n,i,j. (40)

Here, ¢,, @,, p=n, i, j are the components of load vector due to contact forces and the nodal
displacements vector in a local orthogonal coordinate system formed by vectors which are normal and
tangential to the surface of the first body (r, and r,, r;, respectively); the superscripts A and B denote
those belonging to the respective nodes, and & is the gap; Au’.? are the components of point B sliding
vector with respect to point A; F(i%, &7, t_f) is the function of friction (for Coulomb’s friction law
F(i2, 1, I =1/y[(F1) + (£)’1'"* + 2, y is the coefficient of friction). In contact nodes the load
vector due to contact forces {7} is given by

{1} =fv [B]'{T} dV~fv INIYpft dv={q} - {F}, {F} =L [N]{pf}dv , (41)

which follows from Eq. (31). Here, {f} is the load vector due to body forces.

Let us rearrange the relationship (39). Since one of the tangential vectors r, or r; is chosen arbitrarily
to an accuracy of a rotation, r; is specified as being coincident with the direction of possible slipping, i.e.
such that oF(¢,, ¢, )/ 9f;' =0. For example, in the case of Coulomb’s friction, this means that
0F/dt,=1/y t! =0. Then, for a new position of r; and r; vectors, the relationship (39) can be rewritten
as

n? ]
—A 5

ot

o AF(E2, 1}, 1)
if F(f;, 0} 7')=0, then Aa?-Aa’=0, Aul —Ag] = Agtt =N —
j

AL=0, m=n,i. (42)

Hereafter, we assume that the tangential vector r; coincides with the direction of possible slip and use
Eq. (42) instead of Eq. (39) (in the case of plane and axisymmetric problems, r; is determined in a
unique manner and lies in the plane, for which the calculation is carried out, or in the axial section,
respectively).

The FEM solution of the contact elastic problem in terms of increments reduces to the solution of
linear algebraic equations at Nth step of loading

[K[{aa} = {Aq} . (43)

It should be noted that the conditions (37), and (40),, when represented in terms of increments and
with account of Eq. (41), have the respective forms

Aqy, +AqE =Af2 +AFS, p=n,ij, (44)
Aq, =Af), AqZ=Af7, p=n,i,j, (45)

where Af ;‘, Af_ : are the known components of increment of the load vector due to body forces.
For simplicity sake assume that for Eq. (43), load vector due to thermal strains is included into the
vector {f}.

REMARK 1. The relationships (37)-(45) and the iterative procedure described below hold true for
both small and large strains; for large strains Eqs. (37)-(42) are written for the current deformed
configuration ({7} and [B] in (41) are the Cauchy stress vector and the standard kinematic matrix
calculated for the current configuration, respectively; [K] is tangent elastic stiffness matrix at large
strains).
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REMARK 2. In discretization of problems by FEM, the account of boundary conditions reduces to
their applying in nodes of FE mesh along the boundary. Contact problems are the problems with
unknown boundary conditions at the contact surface which are to satisfy friction conditions. The
conditions of contact friction (37)-(40) are written for such a case of the arrangement of a pair of
interacting contact nodes, when their coordinates coincide or differ slightly by values of small
displacements (i.e. the solution of the contact problem reduces to the fulfilment of the conditions of
friction in pairs of contact nodes). If when solving the problem, the coordinates of the interacting
contact nodes start to differ considerably, then at a definite step of the problem solution one should
redetermine the FE mesh. Thus, the contact surface is formed by contact pairs of nodes whose
coordinates coincide or their difference may be neglected.

Since the components of vectors {Au} and {Aq} in Eq. (43) are written in the global coordinate
system and the contact conditions (37)~(40) are formulated in the local coordinate system, the system
(43) may be modified as follows

[K1{ad) = {ag}, (46)

where [K]=[B]'[a]'[K][«][B] is the symmetric matrix, {Ad} = [Blla}{Ai}, {Aq} =[Blla]{Aq} (the
matrices [a] and [B] are given in Appendix E). The elements of the {A#} and {A§} vectors for the
nodes beyond the contact surface are equal to those of the {Ai) and {Ag} vectors; for nodes in the
contact surfaces

- V2 V2

M =58 M), = (i - A “n
~t \/Q \/i £ n f f

Ady =5 (Mg +Aql) == [(AF) + ATS) + (AT + AF2)) (48)
.. V2 V2o . - .

Ag, == (8q; —Ag)) =~ [(AL; AT +(AF; = AFD); p=n.iij, -

where Au,, Ag,, At,, Afp are the incremental components of the nodal displacement vector, load
vector, the load vector due to contact and body forces written in the local coordinate system,
respectively; the superscripts A and B correspond to points A and B.

Now we present an iterative procedure of solving contact elastic problems. Consider two cases:

(a) The contact surface does not change. In the first iteration, we solve the system (46) with adhesion
conditions (38),, (44) in all pairs of nodes at the contact boundary which is equivalent to conditions
Ad, =0,A3" =V2/2 (Af, +Af]) = Ag,, p=n, i, j; Ag; is a known value. It should be noted that in
case of the given interference (Aif — Adr =8, § <0), the kinematic boundary conditions Au, =6
should be imposed on the system (46). On solving the system (46) we check the friction condition F( £,
&, t_].s) =0, here § is the iteration number (a total increment of displacement at the Sth iteration of the
Nth step of loading is equal to the sum of increments of displacements for all the S-number previous
iterations of the Nth step). If the friction condition F(73, 7, £7)>0 is not satisfied at some contact
nodes, we determine from Eq. (39) a new direction of the possible slipping and redetermine the
position of r; and r; vectors to satisfy the condition (42). Then, from the condition F(75, 77, t—f“) =0
we find t_f“ and At—].sH = t_jsH - t_f for S + 1th iteration. Since the direction of the possible slipping can
vary at different iterations, then for S + 1th iteration of the Nth step one must project the slipping
vector for S-number of previous iterations on the new slipping direction (determined on solving the
system (46) at the Sth iteration) and to put A, = —Au;'” (where Aa?*? is the projection of the slipping
vector for the S-number of previous iterations on r, new direction). Vectors f]s and £ are calculated
from Eq. (41) by the solving of the problem at the Sth iteration of the Nth step of loading. It should be
noted that as Af ;f and Af f (p=n,i, j)in Egs. (48), (49) are practically independent of iteration then
with account of Eq. (44) for all iterations beginning from the second one

- - V2 _
A, =0; AqP=T(At;‘—Azf); p=n,i,j. (50)
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Imposing constraints Az, =0, AG, =0 (p=n, i, j) on the system (46) at those contact nodes where
K, fjs) <0, and imposing constraints Ad, =0, Aii; = —Au; ", Ag, =0 and giving the incremigt
of load vector Ag; = V2/2 (Aff - Aff) = Aqf at those contact nodes where F(7,, I, tf) =0 (Au;”,
qub are the known values, p =n, i j), we obtain a set of equations for finding out the increments of
displacements at the S + 1th iteration of the Nth step of loading. Then, having solved the system (46) at
the S + 1th iteration we check the conditions F(7} ', 7 "', & ") <0 for new values of load vector {Z}.
The iteration process ceases when the condition F(7,, ¢;, t;) <0 is satisfied at all contact nodes.

(b) The contact surface changes (i.e. the number of pairs of nodes being in contact varies). In this
case additional standard check 7, <0 and the conditions of the mutual impenetration (40}, should be
made.

It should be noted that in case of contact problems with a variable contact area, a final contact
boundary is known from some considerations, and at contact nodes the conditions of adhesion or zero
friction are given, then the problem can be solved without iteration as the problems with a constant
contact surface. In this case for corresponding contact nodes a negative gap (i.e. interference) should be
given (8,) which equals the gap value between them at the initial state.

Summing up the above procedure one may conclude that the solution of the contact thermoelastic
problem reduces to the solving of a symmetrical system of equations (46) with constant dimensions NN
(NN = triple or twice the number of nodes for three-dimensional or plane cases, respectively), types of

contact conditions being as follows:

Adhesion conditions
Ad, =0 (orAd, =8); A4, =Aq,; p=n,ij.
Slipping conditions

Aﬁ;=5; Ali;zﬁz; Ac'ij—:q,b; Aq;:Aq;, p:ﬂ,i’j.

7

No-contact conditions
AG, =Aq,; AG,=Aq; p=n,ij.

There, 8,, 8,, Aqs, Aq;, Aq;, Aq,, p=n, i, j are the known values, Ag,, Aq], Aq,, Aq), being
presented in terms of components both of body forces {f} and contact forces {f} derived from
preceding iterations.

It is seen that contact conditions in this procedure are conventional boundary conditions in
displacements and forces for the modified system (46). A part of contact conditions (continuity of
displacements A#, = 0 and forces Ag ; = Ag, when crossing the contact boundary) is satisfied exactly at
each iteration, another part of contact conditions (determination of their types and fulfilment of the
slipping conditions) are determined by iteration. The above procedure is presented in Fig. 2.

3.3. A procedure for solving contact thermoelastoplastic problems at small and large strains

Thermoelastoplastic and contact elastic problems at small and large strains are non-linear, and they
are solved by iteration. To construct a solution of a contact thermoelastoplastic problem one should
combine the above iteration procedures. This may be performed by the algorithm seen in Fig. 3. Here,
the thermoelastoplastic problem is solved by the algorithm (32) but having both a modified matrix [K]
instead of [K] and variables {Ad} and {Ag}.

It should be noted that another iteration procedure may be used: at first, the contact thermoelastic
problem is solved, and then we use the algorithm presented in Fig. 3 (i.e. the initial approximation for
the solving of the thermoelastoplastic problem is taken with account of slipping value derived when
solving the contact thermoelastic problem). A numerical experiment has shown that in small loading
steps a final solution is independent of the type of the algorithm used. This may be numerical evidence
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Fig. 2. Iterative procedure for applying contact conditions.

of convergence and uniqueness of a solution. It should be noted that the first procedure requires less
computer time.

REMARK. The paper does not include theoretical evidence of convergence and uniqueness of a
solution. This problem remains open.

The algorithm shown in Fig. 3 can be used both for small and large strains. We explain the fact using
as an example the stepwise solution of a contact elastic problem at large strains. At first, one should
solve elastic problem with adhesion conditions at contact boundary. In this case a modified matrix [K] 1s
used which can be calculated using a constant or tangential stiffness matrix. Then, contact conditions
are checked and redetermined (as described above in Section 3. .2). Further, an elastic problem at large
strains and under new boundary conditions and new matrix [K] is solved, and so on (see Fig. 3).
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Solving of thermoelastoplastic problem under
adhesion condition on contact surface and using

updated stiffness matrix [K]

r—————dphecking of contact conditionsJ
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Correction boundary Redetermination of
conditions on contact finite element mesh
surface (if it is necessary)

Applying new ther-
momechanical loading
conditions

Solving of thermoelastoplastic problems under
new boundary conditions and using new

updated stiffness matrix [K]

Fig. 3. An algorithm for solving contact thermoelastic problems.

4. Numerical examples

The developed technique for solving contact thermoelastoplastic problems at large strains has been
implemented for an axisymmetric case as software by using the following effective methods: the
stiffness matrix is stored in unidimensional array in columns; a blockwise structure of the formation and
solution of a system of algebraic equations by direct LDL'—factorization method has been developed.
A number of testing examples at small and large strains as well as problems on stress—strain state (SSS)
of components of high pressure apparatus (HPA) for superhard materials synthesis have been solved.
All the problems stated below used axisymmetric linear triangular finite elements.

4.1. Problem on pressing the matrix into a ring unit
Fig. 4 shows a FE mesh of the matrix IV and rings I, II and III. These structural elements are used in

pigh pressure apparatus to synthesize superhard materials. The assembly sequence is as follows: ring 11
is pressed into ring I, ring III is pressed into a unit of rings I, II, matrix IV is pressed into a unit of rings

z
A
A B, g ¢ I

U s wos vy "
5y

YAVAVAY YA,

-

0 A, 82 Ce

Fig. 45 Finite element mesh for matrix IV and rings I, II, Il (523 nodes, 887 finite elements, 32 pairs of the interacting contact
nodes).
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L, 1L, III, the interference being &, = 0.015, 8, = 0.02 and &; = 0.02, respectively. Thus, the solution of
the complete problem reduces to the sequential solution of three problems which are defined by the
order of the matrix and rings assembly. All contact surfaces A, A,, B,B,, C,C, are conical, cone angle
B =0.0334. The problems are considered in an elastic formulation and for the case of small strains. The
following mechanical properties were given: for the rings—Young’s modulus E =2.1-10°, Poisson’s
ratio » =0.3; for the matrix—FE =6.4-10°, » =0.22. Along C,C,, B,B, interfaces the friction
coefficient y was given to be 0.15, along A A, interface—y =0.1. Fig. 5 shows variation of radial
stresses o, along A A, contact surface. It should be noted that the numerical solution obtained differs
from the analytical solution of the Lame’s problem on pressing cylinders. This is mainly associated with
account of friction forces as well as with non-cylindrical shape of the matrix IV.

REMARK. Each of the three problems on pressing the rings and the matrix was solved in one step of
loading (at the contact surface according to the above procedure, the interference is directly given).
Hypothetically, this corresponds to the following type of assembling: e.g. an outer ring (ring unit) is
heated, it expands, and an inner ring (matrix) is easily inserted in it, then the construction is allowed to
cool down to the initial temperature. In [33], the solution of the similar problem but in an elastoplastic
formulation and in the case when the inner ring is forced into the outer ring (remind that the contact
surface is conical) is given and then the problem on the force relief is considered. Such an account of
the assembling character of pressing [33] is needed because of the fact that the solution of friction
problems depends on loading history.

4.2. Necking in a simple tension test

Fig. 6 shows an initial and deformed (30% elongation) FE meshes. % elongation (engineering strain)
is defined as 100% - (L — L,)/L,, where L is the current length and L, is the initial length of the bar.
The case of large strains (normal pressure) is considered. The following mechanical properties were
given: E=30-10° »=0.333, the loading surface was described by the relation o, = 120(q +
0.0039)"'**, where ¢ is the accumulated strain. The problem was solved in 30 steps of loading
(displacement increments). The development of a neck as a function of elongation is show in Fig. 7.
The results agree with data in [13].

Fig. 5. Radial stresses distribution o, along A, A, contact surface. 1—numerical solution, 2—analytical solution for Lame’s
problem.
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Fig. 6. (a) An initial mesh for a uniaxial tension test (266 nodes, 454 finite elements). (b) The deformed mesh at 30% elongation.
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Fig. 7. Development of neck as a function of % elongation; u,(0)—radial displacement at neck, R—initial radius. 1-—numerical
solution; @—known numerical solution {13].

4.3. Stress—strain state of components of high pressure apparatus for synthesis of superhard materials

Consider, in short, the solution of a complex process problem on the determination of SSS of
recessed-anvil type high pressure apparatus (HPA) for the production of superhard materials allowing
for large strains, high pressures and temperatures, contact interaction. Fig. 8 shows the upper half of
axial section of the HPA components, where Or is the horizontal axis of symmetry, 0z is the axis of
rotation (the components include elastic tungsten carbide matrix V and reaction mixture I, heater IV,
container II, deformable gasket (DG) III, whose materials belong to a class of rocks and undergo
elastoplastic deformation under high pressures). Coulumb’s friction conditions were specified at the
ABC surface. The following technological stages are considered in succession: (a) the compression with
a force at the surface DK (the forces distributed over the surface KC are due to pressing of the matrix
into a ring unit, the solution of this problem has considered above), see Fig. 9(a); (b) the redistribution
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Fig. 8. The cross-section of components of high pressure apparatus.
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Fig. 9. The pressure distribution (GPa) in the HPA components when compressed (a), heated (c) and unloaded (d) (at P =0.24
P xs Pray is the maximum force) and the temperature distribution (°C) in the HPA (b) components.

of stresses due to heating, see Fig. 9(c); and (c) the unloading which includes cooling and force-relieving
on the surface DK, see Fig. 9(d) (at a force of P=0.24 P, a gap forms between the matrix and DG).

Note that under compression we redetermined the FE mesh four times. The criterion of redetermina-
tion of the FE mesh was of two conditions: (a) the angles of triangular FE after deformation should not
be less than e (¢ = 15°-20°); (b) the coordinates of the interacting contact nodes at the ABC surface
should not differ more than 0.1-0.2 [, /—the length of a side of corresponding triangular FE
(parameters ¢ and / were determined from numerical experiments). The meshes of HPA components
included 1078-1269 nodes and 1904-2186 FE, 58~68 pairs of contact nodes.

Let us analyze the calculation results. Under compression, maximum values of accumulated plastic
strain (in DG) are 80 to 100%, maximum volumetric elastic strains (in the mixture) are 7 to 9%. The
calculated integral compressive force-vs-displacement curve shows good agreement with the experimen-
tal one. A satisfactory agreement between stress values for the DG calculated using FEM and slip-line
method [1, 2] is obtained.

To calculate the stage of heating, a non-steady temperature field was used which resulted from the
solution of a coupled non-linear non-steady electrical conductivity problem [34]. Non-steady tempera-
ture field and fields of stresses and strains in compression were used as initial data to calculate SSS in
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heating. Calculation results obtained showed monotonous increase of pressure in the reaction mixture,
and in the case of steady-temperature field (Fig. 9(b), maximum temperature of 1637°C is in the central
region of the mixture) the pressure increment attains ca. 41%, this agrees with known experimental
data, light thinning of DG being observed, this agrees with the experiment as well. To study the effect
of temperature dependence of mechanical properties on SSS of HPA components, the stage of heating
was calculated without regard for temperature dependence of mechanical properties, when heating
effect was taken into account only in terms of thermal expansion coefficient. In this case pressure
increment in the reaction mixture amounted to 59%, i.e. the effect of temperature on properties of
materials for HPA components must not be ignored.

The unloading stage consists of two processes: cooling and force unloading as such. SSS in heating
and non-steady temperature field in cooling which resulted from the solution of a non-steady non-linear
electrical conductivity problem [34] were used as the initial data to calculate the SSS of HPA
components in cooling. From the solution of a cooling problem, changes in SSS are defined and
pressure drop down to 4.1-4.3 GPa is found in the reaction mixture. The initial data (to calculate SSS
in force relieving) are stresses and strains achieved in cooling. It is found from the solution of an
unloading problem that a 51% (and more) reduction in compressive force results in decrease of the
matrix/DG contact boundary and at the compressive force of 0.24 P, (P, is the maximum
compressive force) a gap is formed between them (Fig. 9(d)), pressure in the reaction mixture being
rather high (2.5-2.6 GPa). That can cause failure to the container.

The results obtained are used for simulating diamond synthesis and evaluating strength and durability
of the HPA matrices.

5. Conclusion

The present work offers a numerical procedure to solve contact thermoelastoplastic problems at large

strains, normal and high pressures and temperatures.

The main features of the procedure are as follows:

(@ A rigorous derivation of the constitutive relations is given, large volumetric elastic and
temperature deformations are properly correctly accounted for. Considered are the likely ways
for the concretization of the elastic law at high pressures.

(b) The procedure for solving thermoelastoplastic problems at large strains differs only slightly from
the case of small strains, this makes it convenient in practical realization.

(¢) The procedure of solving contact problems for deformable bodies allows reduction of the contact
interaction conditions to usual boundary conditions in displacements and stresses for the modified
FE system of algebraic equations with symmetrical stiffness matrix. And a part of contact
conditions (continuity of displacements and stresses when crossing the contact boundary) are
exactly satisfied, while another part of conditions (determination of type of contact conditions in
pairs of contact nodes—adhesion, slipping, no-contact state and satisfying the slipping conditions)
are satisfied by constructing an iterative procedure. This algorithm is easily realized for an
arbitrary number of the contacting bodies having intricate contact boundaries, and converges
rather well.

(d) Two iteration procedures are proposed for taking into account the contact interaction and plastic
flow. Using a numerical experiment, one has shown their equivalence and has chosen the more
optimal one from the standpoint of computer aided calculation time.

(¢) The procedure proposed has been realized for an axisymmetric case as software. Testing
problems as well as problems on stress—strain state of elements of HPA for synthesis of superhard
materials have been solved with due account of large strains, high pressures and temperature, and
contact interaction. The mechanism of HPA elements deformation have been determined, and a
good correlation with experimental data has been obtained. Thus, the developed procedure has
shown itself as an efficient way for solving complex problems of mechanics.
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Appendix A. Derivation of kinematic relations

Let us shortly describe the derivation made in [1,2]. According to [1,2] we consider first, the
no-thermal strain case (U, = I—unit tensor). Then, Eq. (1) can be rewritten
F = Ve . Vp . Re R

where

(A.1)
V,=R.-U,R..

du

Velocity gradient / and deformation rate d are described as
== ; . -1
= ax-FF

= (Vo V, R)-RLV, v,
=V V4V -V, oV VIV eV (RRY) VY
=V, V4V (V,+V, 2, +02,-V,-Q,-V)-V VA
=(V..VI'+V, - v H+v, (V,-v v (A.2)
d=(),=(Vo V. ),+ (V. 2,V ), + (V. V-V, V. (A.3)
whe{e v = x is the velocity vector, £2_ is the antisymmetrical tensor of an elastic spin, €2, =R,'R,=
(V?-V;l)

s

.

VP=VP+VP-H€+(I;-VP is the objective R-derivative. Let us transform the expression

(V. .V.H,=v - (V,-V,),-Vv. ' =

| D
SV (Vv v,
1 _— .
=zV. (Vo V.- v, ' =V B V., (A.4)
where
1 1 .
B.=5(V.V.-D)=5F F.-1I). (A-5)
Similarly,
Ve 2,V ) =5V, (Vo Ve 2.+ QV V) V!
1 _
=3V Ve V- 1) Q.+ 2V, YV, -D]V,!
=v.'-(B.-2,+0.-B,)- V", (A.6)
As B +B,-Q + Q. -B_=B,_, then
d=V. "B V.'+V, -V, -V V). (A.7)
Tensor {2, is easily determined from the equation
Ve ), =U-V,),~ (V.- V,- V. "),

(A.8)
which is derived from Eq. (A.2) and does not contain V..
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Let the volumetric elastic strains be finite, and the shear strains—small, i.e. V. =al + &, g, <<1

where & is the deviator. Then

B=21r4
= 7 E .

It follows from Eq. (A.2) that the tensor of W vortex

wE@,= = L (Vo) + 2+ (V, V), (A.9)
Having determined £2, from Eq. (A.9) and substituted it into Eq. (A.7) we obtain
(A.10)

1y
d=—B_+d
a
where d, = (V_-V_")_is the tensor of the plastic deformation rate, ée =B, +2(B, - W), is the Jaumann

P = P P
derivative of B, tensor. When deriving (A.10) we have used that

p’

B (V, VD)=l (V, VDL << (Vv )
1 . 1
B, (00, ] =5 e (Vo). << B =
a
To account for the thermal deformations U, = (@ + 1)I we assume that the thermoelastic left stretch
tensor is V,, =V, -U,. Then, Eq. (A.1) is rewritten in the form

F=V,-V, R,. (A.11)
Assuming that
1 1 2
B =5 (Vo Ve D) =5 1(ab + YV, -V, ~ 1) =5 (@b + 1B, + 1)~ 1] (A12)
and accounting for that
v a2 —_—
Vo=(@b+1al+e, B,=(@d+1)B.=75(ab +1)I, (B, W),=(ab +1)(B.-W),,
as in the case with deriving Eq. (A.10) we get
(a0+l)B + L (a0+1)1 B 1(m)2
td =—+5——51+
(a + 1) Poa’ 2 (af+1) a,
v LIS
B, af
, 2
a’ =§ BH+1.

At small volumetric elastic strains in Eq. (A.13) one should assume a° =1, at small thermal
deformations 1+ a6 =1. It should be noted that for the case of isotropic material analyzed in the

paper, there is no necessity for the calculation of £2,, Vp and V., as the model includes only the rate of
plastic deformation d and the accumulated plastic strain g which is determined by means of it.
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Appendix B. Feasible ways for the concretization of the thermoelastic law at high pressures

Let us consider in detail the isotropic law of thermoelasticity under high pressure (9) ?lnd fgasible
ways for its concretization for the case when shear elastic strains are small as compared with unity. In
the general case the isotropic elastic law is presented in the form [35]

1 2
T= (VI +¥,P+¥,P), (B.1)
VI,(P)
where P=F,-F. =B, +1 is the left Cauchy—Green tensor of deformation, ¥, ¥, ¥, are the functi(_)ns
of I,, I,, I, invariants of P tensor. Potentiality conditions for hyperelasic material (under the assumption

that there exists an elastic potential at large elastic strains) impose additional constraints on ¥, Y, and
¥,, one of which is [35]

0 k2
Lo (B + 1) =5 (B.2)

In case of small shear strains the elastic law is taken in the form of a quasilinear dependence of T
stresses on B, tensor

T=[fU)+ LU +26)B. (B.3)
where f, and f, are certain functions of the first invariant /,(B,) of the tensor B.. Comparison between
Egs. (B.1) and (B.3) yields

0. (B.4)

¥ ¥,
1,(B.)) = , I(B)=—F—, ¥,=
ALB) = B = s T
Taking into account that I,(P)=2I,(B,) + 3 and 3/aI,(P) =4 8/8l,(B,), from Eq. (B.2) we have

of,(1,)
1= (B.5)
fl( 1) 611
Then, Eq. (B.3) can be written in the form
_ ), O B6
T—[fl(11)+ ol I+277B. . (B.6)

It is assumed that when B, =0, stress tensor T =0, i.e.

[tray+ 2L

Let us consider polynomial approximations of the function f; = f,(,). Let f, be the polynomial of the
second power

fi=A+BI, +CI;, A,B,C=const. (B.8)

=0. (B.7)

1,=0

Then, from Egs. (B.6) and (B.7) we have that the elastic law (B.3) can be rewritten in the form

T=[(Q2C— A),+CI})JI —2(—A+2CI)B, = [ul + % (A— p,)lf] I+2[p+(A—w)]B., (B.9)

where A =2C — u, u = — A is the Lame constants which are found in experiments at small strains.
Let f, be the polynomial of the third power
fi=A+BI,+CI’+DI,, A,B,C,D=const. (B.10)

By analogy (B.9) we can show that

1
T= [).11 +3(A-p+ 6D)I; + D1~}] I1+2[p+ (A=), +3DI;]B, , (B.11)
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where A, p are the Lame constant which are found in experiments at small strains, and the constant D
must be found in any experiment at large strains.

For the thermoelastic law, in relations (B.3)—(B.11), one should assume that f, = f(/;, 0), =
f:U,,6), A=A@®B), B=B(®), C=C(@®), D=D@®).

Appendix C. Derivation of the thermoelastoplastic rate equations

Let us write the elastic law (9) in the rate form
T=T+T-W+W'-T=(E:B,+E:B,)+(E:B)W+W'-(E:B,). (C.1)
A direct substitution makes us sure that
(E:B))W+W"' - (E:B,)=Al,(B,)W +2uB_-W + A[,(BOW' +2uW'-B,
=2uB,-W +2uW' B,
= (M, (B, W) +2uB, W)+ (AL(W'-B)I+ W' B,)
=E:(B,-W)+E:(W'B,). (C.2)

It is taken into account here that /,(B,-W)=B,:W=0, [,(W'-B,)=W':B, =0, since B,=B_, W=
—W". Then, it follows from Eq. (C.1) that

T=E:B,+E:(B,+B.,-W+W'-B,)=E:B,+E:B,. (C.3)
The plastic flow rule is taken in the form (14)
d,=\S, A0, (C.4)

where § is the stress deviator.
In the elastoplastic region

e=e(T,q.0)=0,~P(q,0)(1+xKoy) =0 (C.5)
and

. Od¢ . d¢ . d¢ .

. 99 ik Ay C.6

¢ 6T'T+6qq+890 0. (C.6)
Considering that

do; (S o _1 o _S 1

oT o’ or 30 oT o, 3 P(q,0)l,

one can show that d¢/aT : T = d@/aT : T. Really,

G(P v 6
Spil=ap: (F+T-W+W'- T)—— T+ (T W)+ 7 (WT),
de S 1
—aT:(T'W)Z E—g@(q,ﬂ)xl): S+§UOI -W
S-S:w 1o 1
:T—_(I’(q,e)KS W+__S W—-5 (D(q,G)KUOS:WZO’

1

as (W:b) =0 for any symmetrical tensor b. By analogy, d¢/dT : (W'-T)=0. Thus,

_9¢ 5z d¢ 99
=or T+5, q+ () 0. (C.7)

It follows from (2) that
B.=dd-d, —d,). (C.8)
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Substituting consecutively Eq. (C.4) into Eq. (C.8), Eq. (C.8) into Eq. (C.3), Eq. (C.3) into Eq. (C.7)
and taking into account that 4 = (2 dp:dp)“2 =1,(2 §:5)"?, we obtain

1[50 . o o L0¢ ]

)\I—V[a sy BB A5 b+ad’ S E(d—dy)|, (C.9)
_ 200 _3_‘P<2 . )”2

v=a' GBS -5 (38:8)

E———aE (B +—8Eé' 2 _9E I1:(d—d +—6E0

=or,B) Bt gg 0=a Gp gy l:(d—d)]+550.

Substituting Eq. (C.4) into Eq. (C.8), Eq. (C.8) into Eq. (C.3) and taking account of Eq. (C.9), we
obtain the required expression

2
N(e-%“p.52%.5). g _1(p2% . p a«».)_
%—(E— VE~Sa_T'E)-(d—da)+E-Be_;(a W:E:Be%—%O E:S. (C.10)

It should be noted that in case of normal pressures and temperatures a°=1, 1+ a# =~ 1, and in case
of small rotations W~0 and T = T, and then Eq. (C.10) and their derivation coincide fully with those in
case of small strains.

It should be noted that when calculating E(/,(B,), 8) value the relationship

LB)=I1:B,=1:B,=d(I,(d)-1,d,)) (C.11)

was used which follows from Eq. (C.8) and the relation /,(d,) = 0. When no plastic deformation present
d, =0, the relation (C.10) (the thermoelastic law in terms of rates) is written as follow

T=a’E:(d—d,)+E:B,, (C.12)

which follows directly from Eqs. (C.3) and (C.8).

Appendix D. Derivation of a tangent stiffness matrix at large strains

The principle of virtual work in a deformed configuration at an arbitrary instant time ¢ is written in
the form

fT:d*dv=ft-u*dv+f of u*dv (D.1)
v S Vv

where T are Cauchy stress tensors, ¢, f are the specified surface tractions and body forces, u* are the
virtual displacements, d* = (du*/ox),, p is the density, (...), designates a symmetrical part of the
tensor; V, § are the volume and surface of a body in a deformed configuration; x is the position vector
of a point at an instant of time r. With respect to an arbitrary initial configuration at an instant of time ¢,
Eq. (D.1) takes the form

[ 1) EY [ s [ o o
v Ti\ex o av, V, = Sot-u dSOdSO+ Vof.u podv,, (D.2)

where X is the position vector of a point at an instant of time ¢, index ‘0’ designates a quantity value in
an initial configuration at an instant of time #,. To express the principle (D.1) in terms of rates for a
deformed configuration we should differentiate Eq. (D.2) in time-independent initial configuration at
an instant of time ¢,, and then we again pass to a deformed configuration at an instant of time .
Differentiate Eq. (D.2).
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) [ () ()
jvo ( ox ) \ax Tay )t ax T av,) o

_ ds —ds .
=L 0 ( dS)dSOwLJ u* - ( dS)dS +f 'prdVO+fVOu*-fpodV0. (D.3)

0

As u* are arbitrary and taking account of Eq. (D.2), it follows that the first, the third and the fifth
terms in Eq. (D.3) are canceled. Then

au*) (aX . ) J' < ) f .
J;/O ( ). ¢ ax dvy = ds, + Yo u* - fp, dv, . (D.4)
Rewrite Eq. (D.4) for a deformed configuration at an instant of time ¢
du*\ dx [(oX dv _ a5\ d ) f .
fv( ox >s'6X (E)x TdV) dav o V= Jsu*'(t ds,/ ds FdS+ | w*-fpdv. (D.5)

Let F=0x/0X be a deformation gradient and G=F'-F be the right Cauchy-Green tensor of
deformation. Then, dV/dV, =1/I,(G), where L,(G) is the third invariant of the tensor G [35].
Let us consider the submtegral expression in the left-hand part of Eq. (D.5).

(a:ﬂ) ox (53?—""&’17) av,

ox /s X \ox © dV,/ dV
~(5)r -G VRGP AVEG) +F T VEG) s
:(a;j>sz<lv‘-lv"l-T+T+T——V—2((g))). (D.6)

Then, we note that F ' =F "' - F - F~' (which follows from the differentiation of the relation F - F ™' =

I, where I is the unit tensor), and that VI5(G)/VI,(G) =1:dv/dX, where v = ¥ is the velocity [35].
As the choice of an initial configuration is arbitrary, we take ¢ =t,. Then, F = I unit tensor and Eq.
(D.6) takes the form

du* v . dv
(ax >s'<_5;'T+T+<I:E>T>' (D.7)
Now we consider the first expression in the right-hand part of Eq. (D.5). Taking into account that
aS\ _ ds (. v
<dSO> ds, ( ~N-d N) (D.8)

where d = 1[ov/ax + (dv/ax)'] = (dv/éx),, N is the unit normal to the surface dS [35], one can obtain

% \tas,)) as @ v [ fas, TGS,/ | as
. 3
=fu*-[t+t(1:a—v—1v-d-1v)]ds. (D.9)
N 2

Thus, the final form of the principle of virtual work in terms of rates (D.5) is as follows

Ju* - v . v . | v .y
() (- Zor s (1) ) ave [ [i0e(r 2o wean) as+ [ av

(D.10)
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Taking into account that the constitutive relations are formulated in form (16) or, which is just the
same,
T=M'":d+M

(where M' and M? are, respectively, the fourth- and the second-order tensors), Eq. (D.10) can be
rewritten as follows

outy (v ' (3_v)>_f<i"__)
JV( )S.(—ax-rﬂw 1d =21 W)+ (150 ) T) V= | we(l:5-N-d-N)dS

ox
S )_:Mzé dv . (D.11)

, . ou*
=ju*~tdS+ju*-pde—f(;
N v 1%

In terms of indices, Eq. (D.11) can be rewritten as follows

[ 50-+ ; e, av
v 2 \Vax, T ax, /L an Tt My = (T W + W1, T, 4

av,, .
—fut(a——N -d,, N)d5=fu,-*t'idS+fu.*pf.dV
X s v i 4
*

1/0 du,
_fva( u ax )M BdV (D~12)

Let us introduce index notations of tensors in the rectangular Cartesian coordinates system and
standard FE approximations

u?‘ :wﬁ(xm)az I Ui :![,ia(x )6(1 ’

4 _1(6% 8%) - (allf 6%) _
0= 2\ax, T ax, )V WiT o\ T T ax, ) e
where ¥, (x,,) are the known interpolation functions, uj, v, are the nodal values of components of the

virtual displacement vector and velocity vectors; i, j, m = —1 2,3, B=1,2,...,3XM, M is the
number of nodes. Then, Eq. (D.12) can be rewritten as follows

1 /9%, o¥,N\[ a¥, 1 v, ov
I:J'_( + )[ Tk1+ M]lmn( ﬂ+ "“)

v2\adx,  ox, 2 ax, = ax,

_l (a%a a%ﬂ) l <aqua a%a> alpma T )
2 Tm\Tax, "ax,) T2 ax;  ox, *ox,, o)V
o[ G s (e e ] as
s 2°m\ ax, + ax,, N Ve

o owav- | 3(2%. 2 D.13
Vb dS + ¥, f, dv - ax, o, M 6 dv . (D.13)

Eq. (D.13) can be shortly written as follows
[KoalOw =g o [Kpo) = [Kp] +[Kpa) + [Kp] (D.14)

where
1 /0%, ¥ 1/0%, v
1 - - iB iB 1 - ma na _ t 1
[KB“]—IV 2 ( ox; + ax, ) Miimn 2 ( ax, + ax,, ) dv= fv [BY[M[B]dV
[B]' [B]

is the conventional tangent matrix which is calcuiated in the same way as in case of small strains ([B] is
the standard kinematic matrix, written in a current configuration),

(D.15)
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1 /9% V., oV, 1 v, 61P.>
L P Iy il il (G Y N = Tome  TTie
(K] ~fv 2 ( ax; * o, )[ ax, Ti=3 TJ’"( ox,  ox,

i

1 v 6 . ]
-5 - D.16
2 T""'( ax; ax > ( )
o, 1 v, 11/
[Kia]=—pr,.ﬁz,.[ SIS N, ( e )Nk]ds (D.17)
. . 1/90%, d¥,
9s :js gl dS+Jv ¥l dv—jv§< axB ax; )MZO @ (D-18)

Thus, Eq. (D.14) is the required equation of FEM at large strains, which is written using the tangent
stiffness matrix [K,g].

Appendix E. Transformation of finite-element equations for solving contact problem

Let us show in what way we can pass from {Aa}, {Ag} vectors in Eq. (43) to {Au'} and {Ag'}, in
which for contact nodes there stand displacements and a load vector in a local coordinate system (at the
rest of the nodes—in a global system), the symmetry of the stiffness matrix K] being preserved. The
transition from the global coordinate system X;, X,, X5 to the local coordinate system r,, r;, r, is realized
by the rotation matrix [z]: {r, r,, r,}' =[z}{x,, x,, x3}". Then, {Aa} =[a]{Au'}; {Aq} =[a]{Aq"}.
Matrix {«] has the following structure

1 .0

[a] = [zm] (E.1)

0 1
There are rotation matrices [z,,] (m =1, 2,...M; where M is the number of pairs of the contact nodes)
in the main diagonal of the matrix [a] for contact nodes. There are unities in the main diagonal of the
matrix for non-contact nodes; the rest elements of the matrix [a] are zero; [a]'[a]=[/] is the unit
matrix. Substituting {Au} and {Ag} into (43), we have

(K'[{Au’} = {Aq"}, (E.2)

where [K'] = [a][K][«] is the symmetric matrix. For the nodes in contact, the components of {Aq’} are
unknown but there must be satisfied the relations (38),, (42) and (44).

Now we show that to satisfy the relations (38),, (42) and (44) (similarly to the transition from the
global coordinate system to the local one) the matrlx [B] can be used which rotates the elements of
{Au'} and {Ag'} vectors with components {Aup , Au 1, {qu , qu} p =1, j, n through 45°. Thus, we
changeover from the system (E.2) to the system

[KI{Ad} = (A}, (E.3)
where [K]=[B]'[a]'[K][«][B] is the symmetric matrix, {Ad}=[B{Au’} =[Blla]{Au}, {Aq}=
[B1{Ag’} = [B][a]{Ag}. Matrix [B] has the following structure

1 0
Bda‘ Bdr
[B]= 1 . (E4)

For the matrix [B] there are unities in the main diagonal except for the elements 8,, = 8, = cos 45° and
zero beyond the main diagonal except for the elements B, = —B,, = —sin 45° (where d and t are the
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number of mth component of displacement vector of the 4 and B nodes, respectively, in the total list of
elements of the vector {&}; m =1, 2, 3). Thus, the elements of the {A#} and {Ag} vectors for the
nodes beyond the contact surface are equal to those of the {Au} and {Aq} vectors; for nodes in the
contact surfaces

. V2 V2

Ay ==~ (Adp +Aaal); @, =—5- (Adf - Ad); (E.3)
.. V2 V2 o _ - =

AZy =3~ (Mg + 8qp) =~ [(AF; +A) + (A + AT D)) (£-0)
. V2 V2 oo . ; o

A, =5~ (8q; —Aq)) =5 [A7) ~ AT+ (AF T = AF D15 p=nij, (E.7)

where Aﬁp, qu, At_p, Afp are the incremental components of the nodal displacement vector, load
vector, the load vector due to contact and body forces written in the local coordinate system,
respectively; the superscripts A and B correspond to points A and B.
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