Strength of Materials, Vol. 28, No. 3, 1996

LARGE ELASTOPLASTIC STRAINS AND THE STRESSED STATE
OF A DEFORMABLE GASKET IN HIGH PRESSURE EQUIPMENT
WITH DIAMOND ANVILS

V. |. Levitas, S. B. Polotnyak, and A. V. Idesman UDC 539.893

A procedure is developed and realized in the form of a numerical modelling program for deformation of
a gasket in diamond anvils taking account of the effect of high pressure and large elastoplastic strains
for the material. The procedure is based on the finite element method with a stepwise iteration algorithm
(the initial stress method). In the case of considerable distortion of the finite element network with large
strains a procedure is used for redefining the network deformation. A package of programs for solving
elastoplastic problems with large strains and high pressure developed at the Institute of Superhard
Materials of the Ukrainian National Academy of Sciences is used in the calculations. Two materials are
considered: hardened stainless steel T301 and pressed lithographic limestone (PLL). A degree of com-
pression of a factor of eight is achieved for PLL (Odquist parameter q = 5.5, elastic volumetric strain
(EVS] 0.7, pressure 24 GPa) and a factor of 5.8 for steel T301 (q = 3, EVS 0.7, pressure 50 GPa). The
distribution of elastic and plastic zones during deformation and stress distribution over the anvil-gasket
contact surface are obtained, and the stagewise nature of the deformation process is revealed.

In high-pressure equipment with diamond anvils (HPEDA) pressure is generated during compression of a deform-
able gasket between the anvils [1]. The gasket fulfils the role of deformable packing for the high-pressure zone and it is a
force support for the anvil surfaces (due the ring of gasket material squeezed out around the edges of the ring) thus
providing a distribution of stresses in the anvil and gasket surface so that they do not exceed permissible levels. Normally
as a gasket material there is use [1] Niconel X750, hardened steel grade T301. Wapally. etc.. in the form of a thin disk
with an initial thickness of 150-300 pm.

A study of the behavior of gaskets used in HPEDA makes it possible to optimize conditions for generating
ultrahigh quasistatic pressures and also to determine material properties with deformation by pressure in the megabar
range. A number of tests have been undertaken for describing the compression of gaskets in diamond anvils [2-4]. The
mathematical models obtained make it possible at the qualitative level to describe the deformation process. A common
drawback of them is failure to consider features of the material deformation at high pressures involving the presence of
high volumetric elastic and high plastic strains, and the dependence of gasket material yield strength on pressure.

The aim of the present work is a numerical study of the compression of deformable gaskets in diamond anvils
taking account of the effect of high pressures and presence of large elastoplastic strains.

We consider two gasket materials: hardened stainless steel T301 (normally used for obtaining pressure of the
megabar range) and pressed lithographic limestone (PLL). The latter is a standard material in synthesizing superhard
materials and therefore its behavior at pressures in the megabar range is of considerable interest.

A typical feature of the problem in question is the fact that the gasket material experiences very marked plastic and
considerable elastic volumetric strains (in compression the gasket thickness decreases by a factor of five to twenty depend-
ing on the magnitude of the pressures generated). We describe a model for the material. We shall assume that it is
plastically incompressible since porosity which develops during plastic deformation at such high pressures should disap-
pear. Volumetric elastic strains under high pressure are finite, but shear strains limited by the yield strength are small.
Since gasket material strain is high and loading is uniform then a model for an ideally elastoplastic isotropic body is used
[5]. A plasticity condition is used in the form of the Shleicher-Nadai criterion, and the rule for plastic flow in the deviator
plane is associated with this criterion. In view of the fact that anvil and gasket geometry and also their loading conditions
are close to axisymmetrical, the problem is solved in an axisymmetrical arrangement. In this case a closed set of equations
(in the deformed current state) is written as follows [5].
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1. Equilibrium equations (with absence of volumetric forces)
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(The nonlinearity of kinematic expansion (4) (@ # 1) is caused by finite volumetric elastic strains).

3. Physical relationships in the elastic region F = ¢; — oy(gg) < 0

0y = EijmnBm = ABumdij + 2uBfj, ®
and in the elastoplastic region F = 0
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where indices i, j, k, [, m, n, p, q take the values r, ¢, z (tensor components with pairs of indices rf and 6z equal zero and
they should be excluded from consideration); oy is true stress tensor (in the axisymmetrical case it contains four compo-
nents: radial o, axial o,,, tangential ogg, and shear 7, stresses); dj; is strain rate tensor; d;;P is plastic strain rate tensor;
Wij is rotation tensor; Bije is Figner elastic strain tensor and it is assumed that the deviator components
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3{,' = Ef, -3 Bem.mé,'j <«<1; A, u are Lamé constants; F = 0 is the plasticity surface; o; = (% Sy sﬁ) is stress intensi-

ty; oy(op) = K(1 + pao) is yield strength; 6y = /30, is pressure; K, p are material constants; S = oy — 130mmdij is

stress deviator; BIJ ; i} is the Yauman derivative of tensors Bue, gjj respectively; Eijkl is elastic constant tensor; 6ij is

Kronecher symbol. We note that in the absence of plastic strains relationship (6) is written in the form
oy = A2 Ejmndmn- &

4. Standard boundary conditions in displacements or stresses.

In order to solve set of Egs. (1)-(7) a finite element procedure is developed with a stepwise iteration algorithm [6]
(the finite stress method). We note its features. A change-over from a differential to a variation arrangement is based on
writirg equilibrium Egs. (1) in variational form using the principle of possible displacements (virtual work). A variable
reference configuration is used agreeing with the strained configuration at the end of the preceding step (similar to a
modified Lagraingian approach [7]). In the case of considerable distortions of the finite element network with large
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Fig. 1. Calculation .scheme for determining the initial
stressed state of a deformable gasket in high-pressure
equipment with diamond anvils: a) pressed lithographic
limestone; b) hardened steel T301 (1 is the diamond
anvil; 2 is the deformable gasket; 3 is the region filled by
the gasket material during compression).

strains a procedure is used for redefining the deformed network. In essence it involves the fact that a new finite element
network is constructed (without distorted finite elements) whose boundaries coincide with the deformed contour of the
previous network. Then by means of nodal values of some parameter (stress or displacements components) and iteration
functions within an element for a deformed network nodal values are determined for this parameter in the newly construct-
ed network from values of the coordinates of new nodes.” With this procedure some distortion of the redefined parameter
is possible if the new network contains few finite elements or the new interpolated functions are of a lower order. The
magnitude of the error may be estimated for example by determining the difference of values of the parameter in question
at a series of internal points of the region calculated for the deformed of new finite element network.

The test region is separated into triangular axisymmetrical linear finite elements (from 1500 to 2000 elements
depending on the step in loading). A package of programs used in the calculation for solving elastoplastic problems with
large strains [8] is realized in a ES series computer and a PC. It should be noted that with the aim of evaluating the
accuracy of the results obtained for some loading steps the problem was solved in a finer finite element network (about
3400 elements). Here the difference in stresses did not exceed 4 %.

The calculation scheme for solving the problem is presented in Fig. 1. The following boundary conditions are
assumed: over surface AB there are no displacements in the direction of axis z (u, = 0) and there are no shear stresses
(7, = 0); over AD there are no displacements in the direction of axis r (u; = 0) and 7, = 0; over DF displacements are
prescribed in the vertical direction: u, # 0 and 7, = 0; zero normal ¢, and tangential 7, stresses are prescribed over the
free surfaces. Over CE and EN contact conditions for the anvil 1 and gasket 2 are prescribed. Over CE the condition of
absolute adhesion is prescribed (as shown in [4]), and the value of the friction coefficient between the anvil and the gasket,
traditionally considered important for operation of a system with Bridgeman anvils, has a weak effect on the SSS if it is
not too small. We describe conditions over EN. Here initially there are no contact conditions (o, = 7, = 0). With
compression the gasket material deforms plastically and fills region 3 (Fig. 1b). The broken lines in Fig. 1 show the
contour of the gasket at different stages of compression. With a change-over to a new finite element network conditions
over EN change: over section EN; contact conditions are prescribed for the anvil and gasket (similar to those prescribed
for CE), but over N;N the previous conditions remain (o, = 7, = 0).

In the calculations constants are also used for the materials in question: for diamond [9] Young’s modulus E =
1070 GPa, Poisson’s ratio » = 0.07; for steel T301, E = 260 GPa, » = 0.2525 [10], yield strength o, = 1.6 + 0.0020
GPa; for PLL [5] E = 30 GPa, » = 0.3, o, = 0.244 + 0.2930, GPa; for region 3 (Fig. 1) E = 0.01 GPa, » = 0.2.
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Fig. 2. Isolines for Odquist parameter q in a gasket made of PLL with compression by
a factor of 1.7 (a), 2.6 (b), 3.57 (c), 5.0 (d) and 8.0 (e) in diamond anvils.
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Fig. 3. Isolines for Odquist parameter q in a gasket made of hardened stainless steel

T301 with compression by a factor of 1.36 (a), 1.63 (b), 2.8 (c), 3.8 (d), and 5.8 (e) in
diamond anvils.

Modelling of the compression of a disk was carried out stepwise and in each step small vertical displacements u,
over surface DF were prescribed. As the shape of elements is distorted with large strains a change-over is accomplished to
a new finite element network. The problem-was resolved in an ES 10-45 computer. The time for considering one loading
step was 10-60 min depending on the degree of gasket compression. Given in Figs. 2-4 are some data obtained for gaskets
made of hardened stainless steel T301 and PLL in different stages of compression.

As a result of analyzing the distribution of elastic and plastic zones with deformation a stagewise compression was
revealed for the gaskets:

in the initial stage the region of plastic strains in the gasket spreads from the periphery towards the center of the
disk. The anvils draw together with formation of overlaps providing a force support of their surfaces. The maximum radius
oy and axial o, stresses are found in the periphery of the operating surface of the diamond anvils;



Fig. 4. Isolines for axial 0,, stresses in a gasket made of hardened stainless steel T301
with compression by a factor of 1.63 (a), 2.8 (b), 3.8 (c), and 5.8 (d) in diamond anvils.
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Fig. 5. Distribution of normal stresses o, over the contact surface for a diamond
anvil-PLL gasket with compression by a factor of 1.17 (1), 2.6 (2), 3.57 (3), 5. (4), 6.14
(5), and 8.0 (6).

with further compression the plastic strain region embraces all of the gasket with the exception of a small zone
under the anvil close to the axis of symmetry. Here there is a marked reduction in the dimensions of the elastic zone. As
before maximum stresses occur at the periphery of the working surface of the diamond anvils;

a gradual increase in load leads to disappearance of the elastic zone and causes intense plastic flow of the gasket
material. Here the region of maximum plastic strains is located at the periphery of the operating surface of the anvil.

With subsequent deformation the region of maximum plastic strains increases in size and gradually shifts towards
the center of the operating surface of the anvils. Here the zone of greatest axial ¢,, and o stresses shifts from the
periphery of the operating surface towards the center and with compression by a factor of 1.12 for PLL and 3.5 for steel
T301 it reaches the center. Further compression leads to an increase in the level of plastic strains at the periphery of the
operating surface and a rapid increase in axial o,, and radial o, stresses at the center of it. The radial distribution of
normal o, stresses over the anvil-gasket contact surface during compression for gaskets made of PLL and hardened steel
T301 is illustrated in Figs. 5 and 6.
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Fig. 6. Distribution of normal stresses o, over the contact surface of a diamond
anvil-steel T301 gasket with compression by a factor of 1.36 (1), 1.8 (2), 2.8 (3), 3.78

(4), and 5.8 (5).
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Fig. 7. Relationship 7, = f(g,) for the contact surface of a diamond
anvil-PLL gasket obtained by the FEM (compression by a factor of eight)
(1) and the SLM [7] (2).

Given in Fig. 7 is the relationship 7, = f(o,) for points of the contact surface of a PLL gasket compressed by a
factor of eight (curve 1). Previously [5] a similar relationship was obtained 7, = f(o,) using the sliding line method (SLM)
on condition that for the contact surface the Coulomb plasticity condition is fulfilled, i.e. friction is the maximum possible
and sliding occurs almost over the whole contact surface (curve 2 in Fig. 7). In order to solve the FEM problem with a
congition of absolute adhesion it is found that in part of the contact surface (with 6, < 6 GPa or r > 0.07 mm) conditions
of maximum contact friction are fulfilled (Fig. 6). At the same time in the remaining part of the friction surface the
maximum is not reached and the condition of absolute adhesion is correct there. Thus, the condition adopted for absolute
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adhesion over the contact surface leads to a correct result: presence of an adhesion zone (in which 7, < po,, where p is
friction coefficient) and a zone with maximum friction. Large shear strains in the second zone model sliding in the thin
contact layer.

It should be noted that comparison of the results obtained by us and the FEM with experimental data obtained in
the Donets Physicotechnical Institute of the Ukrainian National Academy of Sciences with experimental studies of compres-
sion for metal gaskets in diamond anvils [3] confirm the reliability of the first results.

Thus, as a result of numerical modelling of the compression process for gaskets in diamond anvils a degree of
compression by a factor of eight is achieved for PLL (Odquits parameter g = 5.5, magnitude of volumetric elastic strains
& = 0.7, generated pressure ~24 GPa) and by a factor of 5.8 for steel T301 (q = 3, & = 0.7, pressure ~50 GPa); the
distributions of elastic and plastic zones with deformation, distributions of stresses over the anvil-gasket contact surface are
obtained, and the stagewise nature of the gasket deformation process is revealed. The results obtained were used in
optimizing the construction of diamond anvils for high-pressure equipment [11].
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