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A generalization of the phase-field theory for multivariant
martensitic phase transformations is suggested that allows
one to vary martensite—martensite interface energy inde-
pendent of energy for austenite-martensite interfaces. The
finite element method is utilized to solve the coupled
phase-field and elasticity equations. Width and energy of
the austenite-martensite interfaces are determined. Split-
ting of the martensite-martensite interface into two auste-
nite—martensite interfaces, leading to barrierless austenite
nucleation, is obtained. The effect of the martensite-mar-
tensite interface energy and grain size on the stationary
and non-stationary nanostructure inside the transforming
grain embedded in the austenitic matrix is determined.
Some nano-structures differ essentially from the prediction
of crystallographic theory. Relationships between the
number of twins in grain vs. grain size, and width of twin
vs. its length are found. Two unexpected stress-relaxation
mechanisms at the boundary of transforming grain are re-
vealed.

Keywords: Martensitic phase transformation; Phase field
approach; Interface energy and width; Twinning; Nanos-
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1. Introduction

Martensitic phase transformations play a very important
part in materials science, being responsible for formation
of unique microstructures, mechanical properties, and ma-
terial phenomena in steels, shape memory alloys and
ceramics. Martensitic phase transformation is a first-order,
displacive, and diffusionless transformation. During cool-
ing or mechanical loading, the crystal lattice of the cubic
phase, austenite (A), transforms to the lower-symmetry lat-
tice of martensite (M). Due to symmetry of the crystal lat-
tice, there is always a finite number of crystallographically
equivalent martensitic variants M;. The typical microstruc-
ture during transformation consists of a fine mixture of
martensitic variants and residual austenite. The width of
each martensitic variant plate is of the order of magnitude
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of several to several tens of nanometers and is determined
by the interplay of elastic energy of internal stresses and in-
terfacial energy between both martensite and austenite and
martensitic variants. There are a number of continuum the-
ories that determine the parameters of such a nanostructure
[1-5], assuming some geometry. Alternatively, a phase-
field or Ginzburg-Landau (GL) approach was broadly ap-
plied to model the evolution of nanostructure without a
priori geometric assumptions [6—13]. However, some basic
mechanics and physics are still missing in the phase-field
equations. Recently, in [14~16], we developed a sophisti-
cated thermodynamic Gibbs potential that allowed us to de-
scribe some conceptually important features of known ex-
perimental stress—strain curves for shape-memory alloys,
steel, and ceramics. Namely, the transformation strain ten-
sor is independent of temperature (in agreement with crys-
tallographic theory [17]), phase transformation starts at
nonzero tangent elastic moduli, temperature dependence of
stress hysteresis is controlled and can be negligible, and all
thermomechanical properties of A and martensitic variants
M; are introduced into the theory for arbitrary symmetry
of M;. Large-strain formulation and simulations are pre-
sented in [18]. The importance of dynamics is demonstrated
in [19]. The threshold-type (athermal) interface friction is
introduced in [20, 21], which allowed us to describe multi-
phase stationary microstructures. The interface tension is
introduced in [22, 23]. Surface-induced phenomena caused
by the reduction in surface energy during transformation
are described in [22, 23] and the theory was extended for a
microscale in [24].

The evolution of martensitic microstructure is described
in terms of the evolution of the n order parameters 7, asso-
ciated with i martensitic variant M;. Bach order parameter
77; varies from 0, corresponding to A, to 1, corresponding to
M;. The local Helmholtz free energy depends on the elastic
strain tensor, temperature, and all order parameters 7;. In
addition to the local contribution, the Helmholtz energy in-
cludes a part depending on the gradient of the order param-
eter Vy,;, which is concentrated at the finite-width interface
between phases and reproduces the interface energy. The
evolution of the order parameters and multivariant marten-
sitic microstructure is described by n Ginzburg—Landau
equations, which represent the linear relationships between
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the rate of change of the order parameters, 7;, and general-
ized thermodynamic forces conjugate to them.

One of the remaining problems is related to the current
form of the gradient energy, vV = g (520, |Vni)), where
J is the gradient energy coefficient. Since " depends on
the single material parameter §§ only, it is clear that it is im-
possible to vary the energy Eyny of the martensitic variant
M; — martensitic variant M; interface independent of the en-
ergy Eam of the austenite A — martensitic variant M; inter-
faces. In fact, as will be shown below, for neglected cou-
pling with mechanics, Eppy = 0.5 Eaym, while in reality
energy Eam is independent of the energy Emym and may be
essentially larger. In the current paper, the expression for
gradient energy is generalized by adding the products
V7, - Vy; with an additional material parameter b, which
allows us to change the energy of the M;—M; interface inde-
pendently of that for A—M; interfaces. This results in more
sophisticated GL equations, which become coupled through
Laplacian operators, in addition to the usual coupling due to
local energy terms. Note that while models with multiple
gradient energy parameters had already been introduced
for martensitic [14] and ferroelectric transformations [28,
29], they never were applied for study of M;—M; interface.
The finite element method (FEM) approach, algorithm,
and subroutines are developed using COMSOL Multiphy-
sics code [25].

Detailed analytical study of the M;-M,; interface has
been performed in [7, 16, 26] for the case in which it is de-
scribed by a single-order parameter that has opposite signs
for the two variants. Both elastic stresses and surface ten-
sion were neglected. Here, we will numerically study the
M;-M, interface for cubic to tetragonal transformation,
when each variant is described by a separate order parame-
ter and both elastic stresses and surface tension are taken
into account. A coupled system of two GL equations and
equations of elasticity theory, suggested in [22], are used.
Solutions are found in a nanosize slab under stress-free
boundary conditions and plane stress formulation. The effect
of the material parameter b that changes M;-M, interface
energy with respect to A-M interface energy is studied in de-
tail, and analytical approximations for M;~M, interface en-
ergy and width are obtained. Heterogeneous internal stress
fields (both elastic and surface tension) are obtained for the
case in which a sharp-interface approach suggests a stress-
free solution. For relatively large M;—M, interface energy,
barrierless austenite nucleation within the M;—M, interface
is obtained in the region of stability of martensite, when tem-
perature reduces to the thermodynamic equilibrium tempera-
ture. The width of the austenitic region increases toward the
free surface, and triple a junction between austenite and two
martensitic variants is observed.

Multivariant nanostructure in a nanograin embedded in
austenitic matrix was studied as well. For very large over-
cooling, it resembles finely twinned structure (in agreement
with crystallographic theory [17]). However, the small
grain size causes deviation from straight interfaces, the
width of martensitic variants varies, and non-complete mar-
tensitic variants and broadened interfaces are observed. For
smaller overcooling, the nanostructure contains a lot of re-
sidual austenite, split M;—M, interfaces and triple junc-
tions, as well as incomplete martensite, and it is much dif-
ferent from the prediction of crystallographic theory.
Reduction in martensite—martensite interface energy leads
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to reduction in twin width, increase in the number of com-
pleted variants, reduction of residual austenite, and to
sharper interfaces. Some quantitative characteristics of na-
nostructure as well as specific stress-relaxation mecha-
nisms are found. The effect of the finite element size on
the martensite—martensite interface width and energy is stu-
died, and conditions for mesh-independence of the solution
are found. It is demonstrated that when element size ex-
ceeds the interface width, the obtained nanostructure differs
significantly from the correct solution and leads to a wrong
conclusion that it is independent of the M;—M, interface
energy.

The obtained results represent a more sophisticated and
precise model for coherent solid—solid interface than cur-
rent phenomenological sharp-interface models reviewed in
[5, 27]. Our phase-field solution resolves interface structure
and heterogeneities of all fields along and across the inter-
face, exhibits heterogeneous elastic stresses and surface
tension, and demonstrates the evolution of the interface
structure including splitting the interface into two interfaces
and the formation of a triple junction as well as the effect of
crossing of a free surface.

The paper is organized as follows. In Section 2, a system
of coupled phase-field and elasticity equations is presented
and discussed. The numerical procedure is outlined in Sec-
tion 3. Section 4 contains a description of all our results
and concluding remarks are presented in Section 5.

Contractions of tensors A = {A;} and B = {B;} over
one and two indices are designated as A - B = {A;By } and
A : B = A;Bj;, correspondingly. The subscript s designates
symimetrization of a second-rank tensor; the subscripts e
and t are utilized for elastic and transformational contribu-
tions to the total strain; ® is used for a dyadic product of
two vectors; I is the second-rank unit tensor; and / and V
designate the gradient operators in the undeformed and de-
formed states. Some preliminary results have been pre-
sented in the short letter [22].

2. System of coupled phase-field and elasticity
equations

In this Section, we summarize and discuss the main equa-
tions from {22]. The total system of equations is presented
in Box 1 for n martensitic variants and specified for 2 var-
iants.

To make the theory from [22] more accessible and to fo-
cus on our main problem, we simplify it for small-strain
formulation. However, to correctly introduce surface ten-
sion we will consider finite displacements and keep some
terms, which are usually neglected in small-strain formula-
tion. The motion of the elastic material with phase trans-
formations is described by a vector function r = r{ry,?),
where ry r are the positions of material points in the unde-
formed €2y and the deformed Q states, respectively; and ¢
is the time. Material in the reference configuration is in the
austenitic state. We introduce traditional decomposition
Eq. (3) of the strain tensor & =(\/u), into elastic & and
transformational ¢ parts, where u is the displacement vec-
tor. Eq. (3) also contains decomposition of strain into volu-
metric & and deviatoric e contributions and an expression
for the ratio of the mass density in undeformed g, and de-
formed p states in terms of volumetric strain &g. Transfor-
mation strain & determines the locally unloaded (i.e.,
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stress-free) state of material point. For phase transformation
between austenite A and the /M martensitic variant M;, the
order parameter 7; is unambiguously related to the corre-
sponding transformation strain &;, which is determined by
crystallography. When the order parameter #; changes be-
tween O for A and 1 for M;, the transformation strain varies
between zero and ¢;. In general, transformation strain &, de-
pends on all order parameters #; and is determined by
Eq. (4); a is the material parameter.

The Helmbholtz free energy per unit undeformed volume
v = ¥(&,n;,. Vy;, 8), where 6 is the temperature, can be
presented with the help of kinematic decomposition
Eq.(3) and Eq. (4) as y=p(e—e,n,Vn,0) =
w(e,n;, Vn;, 0). That is, it can be expressed in terms of total
strain or elastic strain and different functions of the order
parameters, which is convenient in transferring some equa-
tions from [22]. The Helmholtz free energy consists of four
contributions (Eq (6)): the elastic part w*(go, €,7;,0), the

thermal part ¥ that is responsible for the driving force for

/700

phase transformation, the thermal part —" that is respon-

sible for the barrier between phases, and the gradient energy
Po wY. Elastic energy Eq. (7) is accepted in the simplest

1sotropic form with equal bulk K and shear # elastic moduli
of phases. Since elastic strains are much smaller than the
transformational strains, neglecting anisotropy and change
in elastic moduli does not change any conclusion. The ther—
mal part of free energy is divided into two components P
(Eq. (8)) and i (Eq (10)), one of them i is multiplied in
Eq. (6) by the density ratio py/p (the reason will be dis-
cussed below). In Egs. (8)—(11), 8. is the thermodynamic
equilibrium temperature for stress-free A and M, 8, is the
critical temperature at which stress-free A loses its thermo-
dynamic stability; A is the barrier for transformation be-
tween martensitic variants, similar to Ag(de — 6.) for auste-
nite — martensite transformation (A4p is the material
parameter); B and C are parameters that do not affect the
phase equilibrium or phase transformation conditions but
affect the thermodynamic potential at parameters #; away
from both the A and M; minima and the minimum-energy
paths between the minima. The gradient energy in Eg.
(13), in contrast to known publications [6,—13, 18-21],
contains the products bVy; - Vy; with a material parameter
b, which allows us to control the energy and width of the
M,;—M; interface independent of those for A—M; interface.
Gradient energy depends on two material parameters: S,
which is present in all theories, and the new parameter b.
Thermodynamic procedure for the materials with a ther-
modynamic potential depending on gradient of the order
parameters Vy; in the deformed state and linear relation-

O

ships between generalized thermodynamic fluxes — and

conjugate forces X; lead to the expression for the true Cau-
chy stress tensor ¢

oy ~p ( oy )
C=—=-—) —{Vn® (1)
Og ; Po oV /
and to the generalized Ginzburg—Landau equation
a; p Oy
L X," X,‘ = < — 2
or A Po O, le v (po oVy; @)
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where y is the kinetic coefficient, and the derivative dy /9y,
is calculated at & = const. For the chosen potential, Eq. (1)
reduces to Eqgs. (15)—(17), in which the stress tensor con-
sists of two parts. The elastic stress o, is related to elastic
strain by Hooke’s law Eq. (16). The second contribution
o (Eq. (17)) is concentrated at the interface (i.e. it is zero
if #; = 0 and #; = 1) and represents surface tension. There
are two reasons for the appearance of the surface tension.

Po#1+80

with respect to gy gives 1 and results in the appearance of
hydrostatic pressure wV + {7, even for negligible strain &.

The first is because differentiation of the term

That is why the term Po_ 1 + &p, negligible in small-strain

theory, is kept as a multiplier for the selected energy contri-
butions. The second reason is the presence of the gradient
energy " (V#,). Note that if the energy w¥ depended on
the gradient of #; in the undeformed state, V;],, it would
not make a contribution to the surface tension. Thus, again
even for neglected strains we have to keep the difference
between gradients in deformed and undeformed configura-
tions to reproduce the desired surface tension. The criterion
for the correct expression for the surface tension in [22] was
that for a single-order parameter it reduces to the biaxial
tension along the interface, with the total interface force in
each direction equal to the surface tension.

The kinetic Ginzburg-Landau Egs. (2) for n order pa-
rameters reduce to Egs. (19), which for b # 0 are coupled
through Laplacians in addition to traditional coupling
through the local energy terms and transformation strain.

The reason that we keep the term BQ’ which is usually

neglected in small-strain approximation, is the following.
We found that the sum of the first three terms in the right-
hand side of Eq. (19) (local contribution to the driving
force) have similar magnitude but the opposite sign to the
terms with Laplacians. Thus, a small difference in any of
the terms can lead to significant change in the total driving
force. Another important point that follows from Eq. (19)
is that surface tension tensor o does not appear in the ex-
pression for the driving force X;, which depends on elastic
stresses only o.. However, surface tension indirectly contri-
butes to X; by affecting stress distribution.

We have to add traditional equilibrium Eq. (22) to com-
plete the total system of equations. Boundary conditions
Eq. (23) for each order parameter correspond to the case in
which surface energy for the external surface is indepen-
dent of #; —i.e., of phase [22].

Box 1: Problem Formulation

B.1. Kinematics

B.1.1. Decomposition of the strain tensor &

&= (%u)s; £ =& +&;
1
e:geol+e; %:14»80 (3)
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B.1.2. Transformation strain &
n n-1 n
a=> eapln) — > > mnr(nLy +nily)
k=1 i=1 j=itl
Lj,' = ((1 — 3) & -+ 3E[j; (4)
() = anz (1 —m)* + (4n3 — 3n)

For two martensitic variants

& = Etl(a’ﬁ + (4 ~ 2a) ’7? +(a— 3)’7?

—3nin; — (a - 3)mim)
+eo(am, + (4 — 2a)ny + (a—3) 1}

=3y — (a = 3) 113n3) )
B.2. Helmholtz free energy and its contributions
Po . P
v =y (e, e,7;,0) + 7)941/9 +v'+ ;OWV (6)

B.2.1. Elastic energy for equal elastic properties
of phases

1
vt = —Z—Ké‘%e + e, : e, (7)

B.2.2. The thermal part of the Helmholtz free energy
responsible for the driving force for phase
transformation

n

1
W= 3400~ 0e) Y i3 — 2my)

k=1
n—1 n

—Ao(0 - 0c) Z Z ’7?’7,2(’7,' + 77j) (8)
i=1 j=i+1

For two martensitic variants

1
= 3400 = 0e) x {1 (3 = 2m) +15(3 = 2my)

=3 (m + 772)} ©)

B.2.3. The thermal part of the Helmholtz free energy
responsible for the barrier between phases

n n=1 n
P =" A0(0 — 0) (U~ + 3 S Fylmm) (10)
k=1

=1 j=it1
Fij(’7i,’7j) = (1 —m; — )

x {B[(n; — ’7]')2 /e ’7;] + C77i77j}

) (A= Ao(Be — 6c)) (1)

For two martensitic variants

9 = Ao(0e — 60) {1 (1 = m)* + (1 — n,)"}
+mma(l =y — )
X {B((1; = 12)* — 1 — 1) + Cymy}

+ 717511y + 1) (A — Ao (B — 6c)) (12)

B.2.4. Gradient energy
v _é n ) n n ‘
vi=3 (; [Vl + b;jg_;jvﬂi ;) (13)

For two martensitic variants

yY = (|V’71|2 + |V’72|2 +2bViy - Vi)

(Vi + Vi +2(b - 1)V, - V) (14)

NI ™

B.3. Stress tensor
0 = 0.+ 0y (15)

B.3.1. Hook’s law for elastic stresses

e

0
ay; = Keged + 2ue. (16)

G =

B.3.2. Interface tension tensor

Og = (l//v + ‘7/9)1

- ﬁ}:(vﬂi @V + bV ® Z 'nyj) (17)

=1 =T

For two martensitié variants

O = [g((vm V) +2(b— 1)V, - V)
+Ao(0 — 0) {mi (1= m)* +m5(1 = )’}
+mm(l =y —mn,)
X {B((m —m)* —m —m) + Cminy}
i3 (my + 1) (A — Ao(8e — 6c)) |1
= B{Vm & Vi, + Vi, @ Vi,

+b(Vn; ® Vi, + Vi, ® Vi) } (18)
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B.4. Ginzburg-Lindau equation
Loy _p da p oy’ 0y
x 0t po Cdm opy O O,

+B(V?n;+ b Z V277j), i=1,...,n (19)

=i

For two martensitic variants
18y, p { 2 3
e =2l 2an, +3(4 — 2a)n) +4(a—3) 7
X or o { 1 ( ) 1 ( 1
—2(a—=3)mm; — MM} oe i &u
+ {677117% +3(a— 3);7%77%} Oe : 8Q}
——=Ap(0 — 0,)
x {6’71(1 — ) + 23157, +’72)}
+ (L =1y — 1) {BQ2M —12) = 1) +D’72}
+ 2’71’7%(15’71 + 1) (A — Ao(6e — be))

+ B(V?n, + bV 1) (20)

1 3, P{ 2 3
——=="<{2an, +3(4 —2a)n; +4(a—3)n
28 2 a3 20y + a3

—2(a—3)np — 93} o ¢ €

+ {671 +3(a - 3) 77%’7?}0'6:8[1}

pl

YW

po 3 O( ’3)
x {6m2(1 = 115) + 2,07 (150, + 1) }
+712’71(1_’72_’71){3(2(772—’71)_1)+D’71}
+ 2’72’7%(15’72 +111) (A = Ao(6e — )

+B(V2, + bV) (21)
B.5. Equilibrium equation
V.e=0 (22)

B.6. Boundary conditions for the order
parameters

n-Vi; =0, i=1..,n ! (23)
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3. Numerical procedure

Material parameters. We will consider cubic-to-tetragonal
phase transformation in NiAl alloy. We will use the follow-
ing material parameters determined and/or collected from
the literature in [15, 16, 21, 30]:

Ap =440 MPaK™!, A=532GPa, 0,=215K

. =—183K, a=298 B=0, D=05GPa

24
B=518-107"N, 5 =2600 (Pa-s)”" (24)

K =112.62 GPa, u=1715GPa

In our plane stress 2-D FEM simulations, we included two of
the three possible martensitic variants with the following trans-
formation strains [15, 31]: & = (0.215;—0.078; -0.078),
& = (—0.078;0.215; —0.078). Let us determine the range
of variation of parameter b from the condition wV > 0 for
all arguments in Eq. (14). It is clear that at the M;—M; inter-
face one has Vi; - Vr; <0, because for transition from
;= 1landz; =0 ton, =0and#; =1 across an interface,
7; reduces and #; increases. Since we can choose V7, arbi-
trarily to ensure that v > 0 for all arguments, we choose
Vn; = —Vr;. Then, one has Vv = —f(b—1) |V,]* and
condition ¥V > O implies b < 1. Note that for b= 1, a
sharp-interface solution with Vi, = —Vy; is #; = H(¢),
which gives zero energy . Here H is the Heavyside step
function and £ is the local coordinate along the normal to
an interface with & = 0 at the interface. Indeed, 'V = 0 be-
cause of b = 1, and all other energy contributions, being fi-
nite at any point, produce zero interface energy due to zero
interface width. Thus, for the thermodynamic parameters
for which martensitic variants are stable or metastable, for
b =1 the sharp M;,—M; interface represents the minimum
interface energy solution. Numerical results below confirm
that with » — 1 the width and energy of the M;-M; inter-
face tends to zero. We will focus below on the case b > 0
for which the energy of the M;—M; interface is less than or
equal to the doubled energy of the A—M interface.

In the current study, the FEM is utilized, which is imple-
mented in COMSOL code using the arbitrary Lagrangian—
Eulerian approach [25]. The complete system of equations
describing the phase transformation has a similar mathema-
tical structure to the coupled equations of diffusion and
elasticity (or thermoelasticity). The order parameters can
be treated as concentrations of different species; & is a
counterpart of concentration strain with sophisticated de-
pendence on concentrations; Ginzburg-Landau equations
are similar to diffusion equations with complex stress- and
concentration-dependent sources — 5%‘{ and cross-effect

0 Miile
between diffusion of different species in Fick’s law. Thus,
the GL equations are programmed and solved using Transi-
ent Diffusion equations in deformed configuration. Elasticity
equations are solved with the help of a Structural Application
module. Triangle Lagrange elements with quadratic approxi-
mation of the displacements and order parameters have been
used. Since for 7; comresponding to A and M; extrema
r,/0t = 0 according to GL Eq. (21), we always include in
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the initial condition small deviations from these extrema to
avoid a stacking system in them.

We will determine below the width Aym(0) = 2.07 nm
and energy Eamm(0) = 0.50347 m~2 of M;—M; interface
for b = 0. The maximum surface tension stress g7, along
the M;—M; interface has an order of magnitude of I GPa.
Characteristic phase transformation time, 1/(Ay), has an
order of magnitude of 0.1 ps and time step in our problems
is of the order of 10~3 ps. All size, stress, energy, and time
parameters will be normalized by 2.07nm, 1GPa,
0.5034Jm 2, and 0.1 ps, respectively. Normalized parame-
ters e.g., E will be designated by bars, E. Temperature is
uniform and constant for all calculations. The thermal driv-
ing force for phase transformation will be characterized by

€

dimensionless overcooling Af =
€

To test the numerical procedure, plane vertical interface
propagation was considered in a rectangular sample of the
size of 8.12 x 2.71. Good correspondence with analytical
solutions in [14-16, 21] was found. To reduce internal
stresses and to check the effect of the external stresses, the
following components of the transformation strain have
been used: along the vertical interface & = 0; normal to
the interface & = 0.05; and shear-strain y = 0.1. For
example, for temperature 6 = §, = 215K, normal g, =
1 GPa, and shear stress T = —0.3 GPa the interface veloc-
ity is 993.4 ms~" in our calculations and 998.0 in [21].

To verify the A—M energy, a plane vertical interface pro-
pagation was considered in a square sample of the size of
4.83 x 4.83. The first martensitic variant is considered
only —i.e. 7, = 0. To reduce internal stresses at the vertical

b=0

&
)
N
wn

b=0.5

b=0.75

b=0.5 1

a b C
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A-M interface, crystal lattice of M is rotated by 36.5° in the
right-hand side of the sample to get & = 0. This leads to the
components of &) = 0.1113, &, =0 and &7 = 0.1305 in
the coordinate system xy. In the left half of the sample, initi-
al conditions #; = 0.001 correspond to A, and in the right
part initial conditions #; = 0.999 correspond to M;. The
temperature § = §, = 215K and the stress-free boundary
conditions are accepted. The energy of the A~M interface
is E = 0.2244 Tm~2 and equal to the value 0.2244 obtained
with analytical expression from [16].

4. Results

4.1. Description of the problem for martensite~martensite
interface

The sample in the initial state has a square shape, with the side
of 4.83. In the left half of the sample initial conditions
71 = 0.999 and 77, = 0.001 correspond to Mj, and in the right
part initial conditions #; = 0.001 and 7, = 0.999 correspond
to M. Small initial deviations for #; from 0 and 1 were used
to avoid possible artificial stacking of the system at M; mini-
ma (as described above), while for this problem it was not ne-
cessary. Crystal lattice of the austenite is rotated by 45°,
which leads to the components of &, =& =¢&;,=¢, =
0.0685 and &7 = —& = 0.1465 in the coordinate system xy.
External stresses are absent in the deformed state. To avoid ri-
gid-body motion due to numerical errors, one point of the ex-
ternal surface is completely fixed and another one is fixed in
the x direction. Initial conditions for stresses are ¢ = oy.
Homogeneous stationary temperature § = &, is accepted.

Fig. 1. (a) Distribution of #; — 7, (b) dimen-
sionless surface tension stress @y, (c) total
stress &7, and (d) energy  for various parame-
ters b (shown at the left) in a sample with two
martensitic variants. For small b, the austenitic
region appears at the interface between mar-
tensitic variants, leading to splitting of the
martensite-martensite interface into two auste-
nite-martensite interfaces and to a triple-junc-
tion point.
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Fig. 2. Profiles of the order parameters #; and #, vs. X at § = 4.35 for
different values of b for the M;—-M, interface.

4.2. Martensite-martensite interface contours and width

Profiles of the order parameters #; and #, vs. ¥at j = 4.35
are shown in Fig. 2 for different values of b. Isobands of
1, — 17, in the sample are presented in Fig. 1a. It is clear
that the width of the M;-M, interface decreases with in-
creasing b and decreasing interface energy. For the case
b < 0.8 —i.e., when the energy Enpy of the M;—M, inter-
face is larger than the energy Eam of the A-M interface,
the austenitic region nucleates barrierlessly at the marten-
site—martensite interface at the bottom part of a sample;
the smaller b is, the larger is the austenitic region. Such a
nucleation does not require thermal fluctuations and is ob-
served experimentally e.g., in [32]. Barrierless austenite
nucleation within the M;~M, interface starts in the region
of stability of martensite (6 > 6.), when temperature re-
duces to the thermodynamic equilibrinm temperature. Note
that similar nucleation was found in 1-D models with a sin-
gle-order parameter [16, 26] (so-called soliton splitting).
However, in [16, 26] martensitic variants were always se-
parated by the point # = 0 corresponding to austenite,
which expanded into the finite region while approaching
the thermodynamic equilibrium temperature. In the current
2-D simulations with two order parameters, one martensitic
variant can transform into another without passing through
the austenitic point #; = 7, = 0, but still the finite austeni-
tic region #, = #, = 0 appears between martensitic var-
iants near one of the free surfaces. Also, 2-D simulations
exhibited the variable width of the austenitic region and tri-
ple junction between an austenite and two martensitic var-
iants. Note that the appearance of an additional phase in-
side the interface was suggested and explored in the
theory of phase transformation via virtual melting [33,
34], in which a molten layer appears at the interface be-
tween two solid phases.

There are different ways to define quantitatively the in-
terface width even for a single-order parameter [16, 26]; it
is not trivial to do this for two order parameters using inter-
face profiles #, and #, vs. x. Also, interface width deter-
mined with the help of 7, (x) and #,(x) profiles is not phys-
ical because interface width determined using &(x) (which
is a potentially measured physical parameter) differs signif-
icantly. Since transition from M; to M, occurs by a twin-
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ning shear along the interface, we use a profile of the shear
component

& = 0.1465({an] + (4 — 2a) 7} + (a — 3) 7} — 33
—(a=3)mm} — {(an; + (4 —2a) 73

+ (a—3)n5 —3mni ~ (a—3)mn3}) (25)

to determine the martensite-martensite interface width
Anpv (Fig. 3). Thus, Aym(d) is defined as a length along
which transformation shear varies between —0.99 and
0.99 of its maximum magnitude at § = 4.33, where width
and interface energy belong to the region of their small
variation along the y direction. For b = 0, we obtained
Ay = 2.07 nm, which is used as a parameter for normal-
ization of all spatial dimensions. Since Aym(0) = s1/8
with some parameter s [16], we obtain from our simula-
tions that s = 9.095 - 10* nm N~%°. Dimensionless inter-
face width Aypv vs. b is presented in Fig. 4. Approxima-
tion of this curve gives the following equation for the
interface width

Avmna = 9.095 - 10%/B(1 — p1445)1/2 (26)

15 2 25 3R
Fig. 3. Distribution of the shear component of the transformation

strain along x for b = 0.5 at § = 3.86, which is used for definition of
the martensite—martensite interface width.
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Fig. 4. Dimensionless martensite-martensite interface width Amm
vs. b.
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4.3. Martensite—martensite interface energy

Energy of a thermodynamically equilibrium interface be-
tween phases for arbitrary y is defined as an excess epergy
with respect to bulk phases, i.e.

!
E ::/ wdxp — ! (27)
0

where [ is the initial width of a sample and integration is
performed in an undeformed state. Parameters for the bulk
phases (designated with the subscript b) can be taken at the
points away from the interface, assuming that they are dis-
tributed almost homogeneously and are the same from both
sides, which is the case for the examples in the current
paper. A more complex situation will be considered else-
where. We defined Enpy for y = 4.35, which belongs to
the region with almost homogeneous energy distribution
along the y axis for all b. For b = 0 and neglecting internal
stresses we obtained Fypy = 0.4490 I m 2, which is twice
of the energy of A-M interface. With elastic stresses we
have Eypy = 0.5034 T m~2. All energies are normalized by
this value. Since Emm(0) = z4/f, with some parameters z
[16], we obtain from our simulations that z = 2.212 - 10,
Dimensionless energy of the M;—M, interface Eypy vs. b,
as well as each energy contribution, are presented in
Fig. 5. Approximation of this curve gives the following
equation for the interface energy

B = 2212 - 10%/B(1 — b#5)1/2 (28)
It follows from Eqgs. (26) and (28) that
Evm(b) = 0.24322 Ay (B) (29)

i.e., energy of the interface is proportional to its width for
all b and the ratio Enpu(b) /Avm(b) 1s independent of b.
Note that for the equilibrium A—M interface described by
a single-order parameter and neglected mechanics, analyti-
cal solutions give ¥ = wV at each local point [16, 26]
(note that y/a(@e) = 0). In our FEM simulations, while total
interface energy Eam = 0.2245Jm™2 coincides with the
analytical expression from [16], the contribution of the gra-
dient energy EY,, = 0.11497 m~? is larger than the contri-
bution of the thermal energy E%,, = 0.1094Jm~?; elastic
energy E%), = 0.0002T7m™ is negligible. In contrast, for
the M;~-M, interface described by two order parameters,

the contribution Eyp, of the gradient energy %wv to the

1.2¢ '
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Fig. 5. Dimensionless total energy of the M;-M, interface Evm vs. b,
as well as each energy contribution due to gradient £Y,, thermal £¥,,
and elastic Eyy, energies.

Env 1s essentially larger than the contribution E&M of the
thermal energy gpgl/“/g (Fig. 5). Thus, local equality cannot be

valid as well. Approximation of the results of the calcula-
tion gives

EIY/;M =1.316- 1()4\/E(1 _ b1.220)1/2
(30)

E&M = 0.8073 . 104\/3(1 . b1.226)l/2

For sharp-interface between twins, elastic energy is supposed
to be zero (we obtained this using FEM as well). However,
for finite-width interface, elastic energy produces a contribu-
tion of 4.0% for b =0, 7.1% for b = 0.75, and 14.5% for
b = 0.99. Local energy y is distributed symmetrically with
respect to the y axis with the sharp maximum at x = 0 and al-
most zero value away from the interface (Fig. 1d), because
the only possible contribution, elastic energy, is very small
outside the interface. For large b, local energy is almost
homogeneous along the y axis, with some reduction for small
¥ due to increase in the interface width and tendency to po-
tentially split into two A—M interfaces, but with some con-
centration at the bottom free surface. For small b, the region
with almost homogeneous energy distribution along the y
axis reduces with reduction in b. Maximum energy signifi-
cantly reduces for y near the interface splitting region. After
the interface splits into two A—M interfaces, the local energy
maximum is shifted to the center of theses interfaces.

22
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Figure 6 shows the M;—-M, interface width and energy
vs. number N of finite elements per interface width (deter-
mined by Eq. (26)) for two values of b. It is clear that for
more than 6 elements per interface width results are practi-
cally independent of the FEM discretization. However, for
3 and fewer elements per interface width, both interface
width and energy exceed essentially the correct value, espe-
cially for relatively large b. These results allow one to
choose proper FEM discretization for the solution of more
sophisticated problems with multiple interfaces and com-
plex microstructure and to avoid wrong solutions (see be-
low).

4.4, Martensite-martensite interface tension and stresses

Distributions of total, elastic, and surface tension stresses in
the y direction in the entire sample and vs. ¥ for y = 4.35
are shown in Figs. 1 and 7. Note that for sharp-interface
and neglected surface tension, total and elastic stresses are
zero, which we confirmed by our FEM simulations. In con-
trast, a finite-width, phase-field solution always results in
significant stresses inside and near the interface. Surface
tension is localized at the interface and its maximum value
increases with growing b. In Fig. 7, the total and elastic
stresses are significantly larger than the surface tension;
they spread significantly outside of the interface (where
they are equal due to the absence of surface tension). Since
total force in the y direction should be zero (or within com-
putational error), stresses outside the interface are mostly of
the opposite sign to those inside the interface; they have
smaller magnitude outside the interface. At the same time,
at the external (almost) horizontal surfaces total normal
stress is zero due to the boundary condition, and thus the
elastic normal stress is equal to minus the normal compo-
nent of the surface tension. A sharp drop in total stresses

near the intersection of the interface with the free surface
of a sample is visible in Fig. 1. In the sharp-interface ap-
proach, one would apply concentrated compressive loads
equal to the surface tension at the points of intersection of
the interface with free surface of a sample. In the phase-
field approach there are no external concentrated or distrib-
uted loads. Surface tension stress is applied at each point of
the interface and zero external normal and shear stresses re-
sult in a concentration of elastic stresses and strains in the
region where interface crosses the free surface of a sample.
For small b, when M;—M,, interface splits into two A—M in-
terfaces, surface tension stress is again localized at the in-
terfaces, while total and elastic stresses spread into the aus-
tenitic region. There is no stress concentration at the triple
junction point (region).

4.5. Austenite—Martensite interface

The first martensitic variant is considered only - i.e.,
7, =0. We start with the rectangular sample of size
4.83 x 4.83 in the austenitic state. To reduce internal stres-
ses at the vertical A—M interface, a crystal lattice of M is ro-
tated by 36.5° in the right-hand side of the sample to
get & = 0 (Fig. 8) [22]. This leads to the components of
g = 0.113, &) = 0 and & = 0.1305 in the coordinate sys-
tem xy. In the left half of the sample initial conditions
7, = 0.001 correspond to A and in the right part initial con-
ditions #7; = 0.999 correspond to M;. When conditions for
7, = 0.999 are applied, the right half of the sample deforms
to the state shown in Fig. 8. External stresses are absent in
the deformed state. To avoid rigid-body motion due to nu-
merical errors, one point of the external surface is comple-
tely fixed and another one is fixed in the x direction. Initial
conditions for stresses are ¢ = o,. Homogeneous station-
ary temperature is 8 = 8,. Again, for sharp-interface we ob-

Fig. 7. Distributions of dimensionless total
& = oy + &, elastic o2, and surface tension

stresses oy in the y direction vs. ¥ for
¥y = 4.35 and several values of b.
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tained a stress-free solution. For a finite-width interface and
6y = 0, even while &), = 0 everywhere, there is a signifi-
cant ¢” stress with concentration near the intersection of
the interface and the free surface. Maximum tensile stresses
are in the martensite, and compressive stresses are in auste-
nite. The surface tension stress a7, exceeds this maximum
value of ¢” by a factor of more than 2. Due to asymmetry
of the deformed geometry, there is some asymmetry in sur-
face tension distribution. Surface tension changes the distri-
bution of ¢, increasing significantly the tensile stress and
moving its maximum to the center of a sample. The maxi-
mum of compressive stress remains near the lower intersec-
tion of the interface and the free surface, in the austenitic re-
gion. Note that due to the stress-free boundary condition, ¢’
is close to zero at the intersection of the interface and the
free surface — 1. e., stress concentration is shifted inside the
sample.

4.6. Martensitic nanostructure formation in the grain

To elucidate the effect of martensite—martensite interface
energy and FEM discretization on the nanostructure forma-
tion, we consider a square grain with a size of 6.04, in
which transformation occurs, embedded in the square ma-
trix with a size of 24.15, which is kept in an austenitic state.
The upper and lower external boundaries are fixed in the y
direction and free in the x direction. The lower left corner
is fixed in the x direction and the vertical sides are stress-
free. Displacements are continuous across the surface of
the internal square, and the boundary conditions for the or-

b=Q025,N=114 b=Q2I5N=24

Af= 193

8= 2.40

w472
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Fig. 8. (a) Plots of the y-component of dimen-
sionless surface tension &, for the A—M; inter-
face, as well as total stress & for the case with
and neglected surface tension stress, along the
line passing through the middle of an initially
squared sample with a size of 4.83, shown in
(b) and (c). Varant M, is rotated by 36.5° to
get & = 0 at the A-M, interface; (b) and (c)
present the distribution of dimensionless total
stress & for the case without and with surface
tension, correspondingly.

der parameters Eq. (23) are applied at this surface. The fol-
lowing initial conditions were applied: all stresses are zero
everywhere; in the small square, #; = #, = 0.999. Since
we are interested in a stationary nanostructure, such initial
conditions for #; allowed us to avoid consideration of mar-
tensite nucleation and led to fast relaxation to the stationary
solution. It is known that small grain size and elastic con-
straint suppresses martensitic phase transformation [4, 35].
That is why three large overcoolings, A8 = 1.93, 2.40,
and 4.72, have been studied.

Problems for two different b and two different meshes for
each b have been considered: a) for b = 0.25 with 11.4 and
2.4 finite elements per interface width determined by
Eq. (26); b) for b = 0.75 with 9.5 and 1.5 finite elements
per interface width — according to Fig. 6, finer mesh should
give a mesh-independent solution, but rougher mesh should
increase interface width and energy, and solutions may be
wrong.

Results of calculations are presented in Fig. 9. First, let
us focus on a correct solution for fine mesh. Crystallo-
graphic theory and continuum sharp-interface theory sug-
gest an alternate twins solution with planar martensite-mar-
tensite interfaces. Results that resemble this solution are
obtained under large overcooling only. Small grain size
distorts this nanostructure, leading to non-planar interfaces
and variable width of martensitic variants, as well as non-
complete martensitic variants and broadened interfaces.
Most of these distortions are caused by boundary condi-
tions Eq. (23) according to which #; contour lines should
be orthogonal to the sides of an embedded square, which

Fig. 9. Stationary distributions of 7, —#, ina
sguare grain with a size of 6.04, in which
transformation occurs, embedded in the square
matrix with a size of 24.15 (not shown), which
is kept in the austenitic state. Results are
shown for three different overcoolings
Af =193, 2.40, and 4.72 (designated at the
left), for two different parameters b and two
numbers of finite elements per correct inter-
face width N.
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confronts the 45° inclination of martensitic twins that is ex-
pected from crystallographic theory. Note that the bound-
ary conditions Eq. (23) mean that the surface energy of
the bounding small square is independent of #; — i.e., of
phase state. Also, in the region where twins intersect the
square boundary, martensite is not complete (i.e., 7; < 1),
which reduces the energy of internal stresses. Reduction in
M;-M, interface energy leads to the expected reduction in
the width of twins and an increased number of twins. For
lower overcooling, the nanostructure is much different
from the prediction of crystallographic theory. It contains
a large number of residual austenite, split martensite—mar-
tensite interfaces, and triple junctions, as well as incom-
plete martensite. Reduction in M;-M; interface energy
leads to an increase in the number of completed twins, re-
duction of residual austenite, and to sharper interfaces.
Note that the residual austenite observed in NiTi shape-
memory alloy under conditions when it was completely un-
expected [36] can be partially explained by our simula-
tions.

Results for the rough mesh for & = 0.25 are completely
different from those for the fine mesh for Ag = 1.93; differ-
ent for AG = 2.40; and quite close for Af = 4.72. Results
for the rough mesh for b = 0.75 show a smaller number of
martensitic variants, either incomplete or complete, than
with the correct solution for finer mesh. Note that for
A8 = 4.72, results for rough mesh for b = 0.25 and 0.75

-are quite close, while correct solutions for these b’°s are dif-

b=025,N=0.35 p=D.25 N=045

A= 472
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b=0.95 N=05

ferent, having different width and number of martensitic
variants.

For the mesh with the size of finite element larger than
the correct interface width, solutions for some cases be-
came independent of b (Fig. 10). Thus, nanostructures for
b=025and N =095and for b = 0.75 and N = 0.60 are
very close for A = 240 and 4.72. Nanostructures for
b=025and N = 0.45 and for b = 0.75 and N = 0.30 are
very close for A = 1.93 as well.

To study the scale effect, we consider the same problem
but for system size, which is four times larger than in the
previous problem — i.e., transforming square grain with
the size of 24.15, embedded in the non-transforming auste-
nitic square matrix with the size of 96.62 (see Fig. 11).
Mesh-independent solutions for Af = 2.40 in Figs. 9 and
11 are completely different, with finer nanostructure for a
larger sample. Mesh-independent solutions for A8 = 2.40
in Fig. 11 for different b are completely different as well.
Thus, in addition to alternating twins structure and chess-
board nanostructure [37, 38], novel nontrivial nanostructure
is revealed. For larger overcooling A§ > 3.79, the solution
represents alternating twins for both samples. While the
size of a sample increases by a factor of 4, the number of
twins increases by a factor of 2 = /4. Note that usually
the width of the twin w ~ +/L, where L is the size of a
sample [37, 39]. Then the number of twins in a sample
n~ L/w ~ +/L—i.e., our results correspond to the known
relationship. However, in contrast to previous works [37,

b={.75;N=0.3

Fig. 10. Mesh-dependent distributions  of
7y, — 1, in a square transforming grain with a
size of 6.04, embedded in the square austenitic
matrix with a size of 24.15 (not shown). Re-
sults_are shown for three different overcool-
ings AG = 1.93, 2.40, and 4.72 (designated at
the left), for two different parameters b and
two numbers of finite elements per correct in-
terface width N.

Fig. 11. Stationary distributions of #; — #, in
a square grain with a size of 24.15, in which
transformation occurs, embedded in the square
matrix with a size of 96.62 (not shown), which
is kept in the austenitic state.
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39}, the width of the twin w varies within a sample and re-
duces with reduction of the length of twin /. Figure 12
shows the relationship w(/), which can be approximated as
w = I3 Egs. (26) and (28) are approximately applicable
for the martensite—martensite interfaces in the central
region in Figs. 9 and 11 for large overcooling and are not
applicable for small overcoolings.

Note that the grain increases its size during transforma-
tion, causing compressive stresses from the matrix that sup-
press martensitic transformation. Fine nanostructure at
twinned martensite and grain boundary (Figs. 9, 11, 13)

1 @ Simulation |
- Fitting carve

0 620 30 44 50 (nm)
Fig. 12. Relationship between width of the twin w and its length /.

Dots are the results of simulation, and the curve is the approximation
38
w=[3%
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contains both convex and concave regions. While concave
regions locally reduce expansion of the grain, reducing in-
ternal stresses, the convex areas increase grain expansion
and internal stresses. Analysis of the nanostructure reveals
two stress-relaxation mechanisms at the boundary of trans-
forming grain, as follows.

(a) At relatively large overcooling, leading to an alter-
nate twin structure, incomplete martensite (n; < 1) is ob-
served at the intersection of twin and grain boundaries. It
appears at locally convex parts of the grain boundary only,
where the twin boundary increases internal stresses, and
does not appear at the concave part, where the twin reduces
size and internal stresses.

(b) At relatively small overcooling, significant residual
austenite remains between martensitic variants, and
twinned martensite has a relatively small intersection area
with grain boundary. It is worth noting that only the con-
cave regions of the intersection of twins and grain boundary
are observed.

It foliows from Fig. 11 that rough mesh leads to a com-
pletely different nanostructure in comparison with fine-
mesh solution for A@ = 2.40 and to larger twin width for
Af =3.79. Surprisingly, the mesh-independent solutions
for b = 0.75 are very close to the solutions for rough mesh
for b = 0. The reason is that if the element size is larger
than the correct interface width, it increases interface width
and energy and produces a nanostructure corresponding to
larger M;-M; interface energy — i.e., to smaller . An ex-
ample of the nontrivial evolution of the nanostructure with
time for a large sample is presented in Fig. 13.

Fig. 13. Evolution of nanostructure leading to
the stationary solutions in Fig. 11.
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5. Concluding remarks

In summary, phase-field theory for multivariant martensitic
phase transformations is extended for the case in which M;—
M; interface energy can be varied independently of the A—
M interface energy. This has been done by introducing the
product of the gradient energy of different order parame-
ters, which results in coupling of the Ginzburg-Landau
equations for the order parameters through Laplacians. Sur-
face tension is also taken into account. FEM and COMSOL
code have been utilized for the detailed study of the effect
of the material parameter & that characterizes M;—M; inter-
face energy on the solutions and nanostructure evolution.
Explicit expressions for M;—M; interface width and energy
are obtained. For relatively large M;~M; interface energy,
martensite—martensite interface splits the producing region
of austenite and the triple junction of two martensitic var-
iants and austenite. Such a mechanism of a barrierless aus-
tenite nucleation at M;,—M; interface has been observed ex-
perimentally, e.g., in [32]. Stationary and non-stationary
multivariant nanostructures in a nanograin embedded in
austenitic matrix were studied. Only for very high overcool-
ing does it resemble the alternating twin structure predicted
by crystallographic theory, but with non-planar interfaces,
variable width of martensitic variants, non-complete mar-
tensitic variants, and broadened interfaces, caused by the
small grain size. For lower overcooling, the nanostructure
is much different from the prediction of crystallographic
theory. It contains a large amount of residual austenite, split
martensite—martensite interfaces, and triple junctions, as
well as incomplete martensite. Significant residual auste-
nite between martensitic variants and incomplete marten-
site at the intersection of twin and grain boundaries (where
grain boundary becomes convex) are two main stress-re-
laxation mechanisms at the boundary of transforming grain.
Reduction in the M;—-M, interface energy leads to a reduc-
tion in the twin width, an increase in the number of com-
pleted twins, a reduction of residual austenite, and to sharp-
er interfaces. Relationships between the number of twins in
grain and grain size, and between the width of a twin and its
length are found. The effect of the finite element size on the
M;-M; interface energy and width is studied, and condi-
tions for mesh-independence of the solution are found. So-

mesh. It is demonstrated that when element size exceeds
the interface width, the obtained nanostructure is indepen-
dent of the material parameter b, because M;—M, interface
size and energy are determined by the size of the finite ele-
ment independent of b.

We would like to mention that numerous phenomenolo-
gical models of coherent interface between phases exist in
the literature (see reviews [5, 27]) that are formulated using
the theory of thin shell and interface constants that are un-
known. In the current work, we obtained a significantly
more detailed, flexible, and precise model of a coherent in-
terface, which allows for the non-uniformity of all proper-
ties, as well as all types of stresses and strains along the in-
terface and interface thickness. The interface thickness and
structare vary during thermomechanical loading. The inter-
faces can appear and disappear, and they may intersect each
other, forming triple-junctions and corner points. While all
of these events require separate complex models for the
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sharp-interface approach, they can be treated without extra
effort in the phase-field approach. Also, no new parameters
are required for the interface model that are not involved in
the phase-transformation model.
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