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ABSTRACT: Multiscale modeling of structures made from shape memory alloys (SMA) is pre-
sented. Starting with consideration of a single transformation event at the micro-level and averaging
over the representative volume, micromechanically-based macroscopic constitutive equations are
derived, which are used in Finite Element Method (FEM) code 1o model] the behaviour of structures,
Using the thermodynamic theory of phase transformations (PT} in elastic materials on the mi-

cro-level, the macroscopic associated transformation

flow rule, the corresponding extremum princi-

ple and the nonconcavity of the transformation surface are derived for transformational
micromechanisms of inelastic deformation due to phase transformation, twinning and reorientation
of martensitic variants. A simple three-dimensional micromechanically-based model for
thermaelastic martensitic PT is presented. The model is transformed 1o the fash ion similar to that for
Jo-plasticity theory. It allows one 1o modify the FEM for elastoplasticity (including the radial return
algorithm for numerical integration of the constitutive equations and calculation of the consistent tan-
gent moduli) in order to model PT in SMA. Some axisymmetric problems for PT in SMA tubes are

solved. In particular, PT regularities of a ube assem

at different external conditions.

INTRODUCTION

DEQUATE mathematical models and consistent numeri-

I methods play a very important role in the desi gn and
development of control methods for structures made from
smart materials. A key point in mathematical simulation is
the derivation of reliable and simple three-dimensional con-
stitutive equations describing the deformation of SMA. An-
other is the development of effective and robust numerical
methods. The mechanisms of inelastic behavior of SMA are
related to martensitic PT of the parent phase (austenite) into
the product phase (martensite), reverse PT of martensite into
austenite and transformation of one martensitic variant into
another  (recrientation). Deformation Iwinning and
detwinning can be considered as a particular case of PT with-
out a jump in the thermal (chemical) part of the free Energy.
These processes are connected to the Jump-like deformation
of crystal lattices which can be described by variation of the
wransformation strain tensor & from its initial value & to fi-
nal value &. The transformation strain for twinning is sim-
ple shear. For classical micromechanisms of the plastic de-
formation of metals, like dislocation motion or MACroscopic
shearing along slip directions in single crystals, it is possible
to prove the validity of the macroscopic associated flow rule
[Hill (1967), Rice (1971)). It is shown using either the

*Author to whem cormespondence should be sddressed,

bly with a SMA cylinder element are investigated

micromechanical approach [Hill (1967), Mandel (1966)] or
the method of internal variables [Rice (1971), Nemat-Nasser
{1975)] that if the associated flow rule is valid at the micro-
level (for each point of representative volume) then it is valid
at the macro-level (for the entire representative volume).

Such research has not been completed for SMA. There are
several papers in which some general relations for represen-
tative volume of elastoplastic material with moving inter-
faces are considered [Leblond et al., (1989), Levitas (1992,
1996), Pradeilles-Duval and Stolz (1993)]. However, no re-
sult related to the macroscopic normality rule was obtained.
Moreover, PT is related not only to amoving interface, but to
the nucleation process as well. To the authors’ best knowl-
edge, the only papers combining micro- to macro-transition
with consideration of the nucleation process are by Levitas
and Stein (1997) and Levitas, Idesman, Stein et al. (1999},
however under some special constraints on admissible stréss
and strain fields.

The goals of this paper are:

® to develop the method of micro-macro transition for
transformational mechanisms of inelastic deformation in-
cluding both nucleation and interface propagation and to
derive some general properties of MAcroscopic constitu-
tive equations for SMA

* to formulate a micromechanically-based simple
three-dimensional model for SMA consistent with the
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general properties derived and 1o substantiate the similar-
ity between phase transition theory and J; -plasticity the-
ory

* to present an algorithm for finite element (FE) solution of
boundary-value problems using the above similarity

® a5 an illustration, to solve numerically a set of problems re-
lated to tube connection by using the shape memory effect

Having set forth these goals, a quite rational and economic
multiscale description of SMA structures was developed.

The following symbolic tensor notations are used through-
out this paper: vectors and tensors are denoted in boldface
type; A -B and A: B are contractions of tensors over one or two
indices; := means equals per definition; the Euclidian norm
IA| = (A:A)"2 is the modulus (amplitude) of tensor A; (4),
represents the symmetric part of tensor A.

MICROMECHANICAL DERIVATION OF THE
MACROSCOPIC TRANSFORMATION
FLOW RULE

There are two important differences between slip and
transformational mechanisms of inelastic deformation
which make impossible an application of the methods devel-
oped for classical plasticity [(Hill (1967), Mandel (1966),
Rice (1971), Nemat-Nasser (1975)].

1. At the micro-level (for each material point of the repre-
sentative volume) it is possible to describe the slip mecha-
nism by infinitesimal increments of inelastic strain. The
change in transformation strain & — & is always finite.
For each PT or twinning the transformation strain &, rep-
resents a set of symmetry-related constant tensors, trans-
formation strain € = 0. All intermediate values of trans-
formation strains & are unstable and cannot exist in
equilibrium.

2. At the micro-level, there is a local constitutive equation
for the slip mechanism, but there is no local constitutive
equation for transformation strain &. PT criterion is
nonlocal, and to choose the actual €, in each point of a
nucleus among a finite number of crystallographically ad-
missible martensitic variants, as well as a position and
shape of nucleus, an extremum principle for the whole nu-
cleus is used [see Levitas ( 1998), as well as Equations (9)
and (16)]. Even if we assume that distribution of transfor-
mation strain in the nucleus can be determined by crystal-
lographic theory of martensitic PT proposed by Weschler,
Liberman and Read or Bowles and Mackenzic [see ..,
Wayman (1964)], then nonlocal PT criterion and
extremum principle are necessary to determine the shape
and position of the nucleus and one of invariant plane vari-
ant among all crystallographically admissible.

Considered here is the particular case when elastic proper-
ties do not change during PT; deformations are small, and the
elasticity law is linear. Consider a representative volume V of
multiphase material (Figure 1) under macroscopically ho-

Qe

Vie

Figure 1, Aaprasentative volurme V with existing martansite V. and
multi-connected currently transforming region V., inside austenitic
matnix V.

[l

mogeneous boundary conditions [Hill (1967), Havner
Ufj:jihdiﬁve decomposition is adopted for local and for
MACroscopic strains

E=E +&; e=€+¢€ (1)
where € and € are the macroscopic total and elastic strains

and ~ denotes local fields. Macroscopic stress and strain are
local stress and strain averaged over the volume ¥, i.e.,

¢ . h
"=FL“’W = (&) @)

¢ -
e==[,&v=(& @)

where {...) means an averaging over the representative vol-
ume ¥

Let us concentrate on direct martensitic PT and divide the
volume V into three parts (Figure 1): the infinitesimal volume
V, in which during time Ar PT occurs and parts of austenite
V, and martensite V,, which do not transform during time Ar.
Volume V, may be a new nucleus or volume covered by an in-
terface T moving with velocity v, during time Az, ie., dV, =
v, AtdE. The following expression for the local stresses is
valid for a linear elastic solid:

ﬁ{r]=u:A{r}+L Gir,r'): & (r')dr’

+ j'v" Gir.r'): & (r')dr’ (4)

where r is the position vector, A the fourth-rank localization
tensor and G the Green function for internal stresses. Equa-
tion (4) is the consequence of the linear response (o externdl
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stresses o and inelastic strains. Tensor A can be determined
by solution of the linear elastic problem for representative
volume without PT. As elastic constants are assumed to be
the same before and after PT, tensor A is constant. For homo-
geneously distributed elastic constants (e.g.. a single crystal
or isotropic material) tensor A is the fourth-rank identity ten-
sor. For macroscopic transformation strain, the Mandel
{1966) formula

€ =(A:&) (5)

is valid. Now an equation for the rate of macroscopic trans-
formation strain will be derived. By definition it holds

€in={A:&®0) (6)
€ (1 +A)= {A: i’m) +(A (& - i”},. %}
2 ‘:{,H(..a.:.;a;-a:;)n% (7

where & and & represent the transformation strain before
(i.e., at time ¢) and after (i.e., at time ¢ + A7) PT in the trans-
forming volume V,,, and

1
(), =Vl (.. )dV,

is the average over the nucleus V,. For direct PT, & =0 and
Equation (7) takes into account the appearance of transfor-
mation strain & in the volume V, . Equation (7) is also valid
for reverse PT and reorientation of martensitic variants, In
this case, nucleus V, belongs to velume V,, and in addition to
the appearance of transformation strain &, Equation (7)
takes into account the fact that transformation strain € dis-
appears in the volume V,,. For the reverse PT, & is given and
& = 0. Introducing the volume fraction of martensite ¢ :=
V,/V and the rate of volume fraction of martensite
¢:=V, [VAr (the change in martensite volume is V) at Ar —
D and V, — 0, we obtain from Equation (7)

fe’::?(.d:{i’l—i{))n or i?cr—=(.4:[i’z—ii ) (8)

The PT criterion is applied in the following form [Levitas
(1998), Levitas and Stein ( 1997))

<L€ i di’> ~Ay® —k, =0 ©)

where Aw® is the change in the thermal part of free energy
which is an experimentally determined function of tempera-
ture. As temperature variation during the transformation
event is not included i this paper, Ay® is a constant. To cal-

culate the transformation work in Equation (9), one must
vary the transformation strain € in the nucleus from & to
€, and for each & calculate corresponding stress & by so-
lution of the elastic boundary-value problem. Equation (%)
means that the calculated value of the dissipation increment
during the complete PT in region V,, reaches its actual (exper-
imentally determined) value k.

Macroscopic transformation surface shall now be defined.
Macroscopic stresses o, for which corresponding local
stresses

& (r=0"Alr)+ L Glr.r'): & (r)dr'

+ _[1H Gir.r') & (r'dr' (10)
satisfy the inequality
(L‘ ﬁ-’:d‘e’) ~Ay® —k <0 (1)

for all admissible ficlds €., € and V, define the region in the
macroscopic stress space oo, .. ., e+ <l c,=V,/V=
Ac where PT for the given volume fraction increment c,, is
impossible (because the PT criterion is not satisfied). At the
surface p(o, . .., ¢ +¢,)=0, PT condition (9) is satisfied, i.e.,
PT can occur.

As the main assumption we use the postulate of
realizability [Levitas (1995, 1998)]: as soon as PT can occur
from the point of view of thermodynamics, it will occur, ie.,
the first fulfillment of the necessary energetic condition (9) is
sufficient for the occurrence of PT.

Consequently, condition g{er, . . ., ¢ + c,) = 0 defines the
surface in the macroscopic stress space where PT occurs with
the given ¢, i.e., the PT surface. As ¢, = ( we obtain PT sur-
face pior, ..., ¢) =0 which is completely similar to the yield
surface for slip mechanisms of plasticity, i.e., it is independ-
ent of an infinitesimal increment of some parameters. Condi-
tion e, ..., ¢+ c,)=0, whichis necessary and sufficient for
the occurrence of PT in some volume ¥V, during the time As,
can be presented in the following form

Qlo(r + A1), o, clr+ A =0

=@(o(1), ..., () +P(or(r), ..., c(r))As (12)

This equation due to arbitrariness of Ar resulis in @(or, . . ., c)
=0and @i, ...,ch=0. We arrive at a definition of load-
ing-unlpading conditions similar to those in plasticity the-
ory:

atplor, . ,¢)<0=PT does not occur (13

atpler, ...,c)=0 and ¢lo, ..., c)=0= PT occurs

(14)
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Equation (14), is called the consistency condition in plastic-
ity theory. The combination of Equations (9) and {1 1) results
in the extremum principle

iil-, = ] S l&_.l = L
Uﬂ nnde’) ~ Ay —k,,—ﬂ:r(ji{cr.de )n-mp —k,

at  @lo, e+e)=0>0(a’, ,c+c,) (15)
which is equivalent o the principle of the maximum of aver-

aged microscopic transformation work

< ;Eﬁ:dﬁ‘)n ><_[;1' ﬁ-':di‘)n

at @@, . ,c+c,)=0>q(0",...,c+c,) (16)
Let us derive corresponding extremum principle at the
macrolevel. In volume V., transformation strains do not
change during time A, and in volume V,,, they vary from &
to &. The extremum principle (16) allows one to determine
the shape and position of the nucleus V, as well as the distri-
bution of transformation strain &, within it.

After substitution of Equation (4) into the left part of
Equation (16) and integration we obtain the transformation
work per unit volume V,

%J‘y_ J‘;'zﬁ: de€'dV, = r.r:(A (& -i{]).
+VL,,J-V,, .[,,m (&(r)—&(r): Glr,r"): &(r")drdr

. b £ L =f " "
+§'i;:!-,—_ .I-p"{izf"l—i{lﬂ):ﬂ{r.r y: (&, (") — & (') drar
(17)

Using Equation (8) as V,, — 0 we obtain
u:(a;(i;—i;)) :ﬂf:—?é’=n‘ — (18)
" P .

Consequently, the first term in Equation (17) is the macro-
scopic transformation work per unit volume fraction incre-
ment and per unit representative volume, the second term
represents the interaction energy between transformation
strain in a volume V,, and the jump of transformation strain in
transforming volume V,,, and the third term is the energy of
internal stresses in the transforming volume V,. For the
stresses & in the principle Equation { 16) we obtain the same
expression with o instead of o. After substitution of these
expressions in principle Equation (16) at ¢, — 0 one obtains
extremum principle in terms of macroscopic variables only

o€ >oE at olo,  =0390,.. (19

i.e., the principle of the maximum of macroscopic transfor-
mation power. Principle (19) coincides with the known
extremnum principle in phenomenological plasticity theory,
Using it, the associated transformation flow rule

2 (20)

é=h2
dor

can be derived for a smooth transformation surface and the
corresponding expression for a singular point at the transfor-
mation surface. Here h is the Lagrange multiplier which is
determined with the help of consistency condition Equation
(14). The nonconcavity of the PT-surface follows from Equa-
tions (19) and (20) as well (Figure 2). Consequently, despite
the essential physical and formal difference in comparison to
the case of plasticity due to slip mechanisms, the associated
flow rule is proved for the transformation mechanisms of in-
elastic straining as well.

It i possible to prove that h=¢ and the kinetic equation
for the rate of volume fraction of martensite can be found
from consistency condition Equation (14).

What do all the above results mean in practice? A priori,
one needs seven scalar equations: an equation for the PT sur-
face, a kinetic equation for the rate of martensite volume
fraction and five equations for the deviatoric transformation
strain rate (volumetric transformation strain rate is equal to
the product of the local volumetric transformation strain and
¢). 1t is proven above for a quite general case that only one
equation is needed for the PT surface, and the remaining six
equations can be derived from it.

Similar results can be obtained for the reverse PT (or reori-
entation process): the rate of macroscopic transformation
strain due to reverse PT (reorientation) is orthogonal to the
surface of reverse PT (reorientation) in a MACTOSCOPIC slress
space. Surfaces of direct and reverse PT and reorientation
can intersect each other, i.e., direct and reverse PT as well asa
reorientation process are possible simultaneously in differ-
ent parts of the representative volume,

Some known experiments under combined torsion and
tension [Rogueda et al. (1996), Tanaka et al. (1998)] confirm
with reasonable accuracy the validity of the associated trans-
formation rule for direct PT. The reason for the possible devi-

@le, =10

wle, .)=10

(a) {o)

Figure 2. (a) Schema of nonconcave PT-surface and associated
fransformation flow rule; (b violation of principle Equation (19) for
concave PT surface,
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ations from Equation (20) in experiments is the same as in
slip plasticity, namely the presence of singular points on a
transformation surface. Additionally, simultaneous direct
and reverse PT and reorientation can occur in different parts
of a volume,

A SIMPLE MICROMECHANICAL MODEL FOR
PSEUDOELASTIC BEHAVIOR OF CuZnAl ALLOY
AND ITS NUMERICAL TREATMENT

The results obtained in the previous section represent a
micromechanical basis for the formulation of simplified
models for the behavior of SMA. In the first approximation,
one can use pure phenomenological models based on pre-
scription of the PT surface @(er, ..., ¢) =0, i.e., as in the
phenomenological theory of plasticity. However, it is very
difficult to guess or find experimentally this equation. A
more advanced approach has to be based on the
micromechanical derivation of the equation for a PT surface.
A very detailed micromechanical description developed by
Patoor, Eberhardt and Berveiller (1996) is very important for
describing physics, but it requires time-consuming computa-
tions and does not allow the presentation of constitutive
equations in analytical form for complex loading processes.
An alternative approach is the formulation of a simple
noncontradictory  analytical three-dimensional  micro-
mechanically- and thermodynamically-based model. Such
models can be implemented in computer codes for the analy-
sis of structures consisting of intelligent materials. [t is clear
that these models cannot precisely describe material behav-
ior, and we arrive at the situation similar to the phenom-
enological plasticity theory. The simplest plastic model with
isotropic and kinematic hardening is the most popular for
structural analysis and simulation of technological pro-
cesses, despite the fact that it strongly simplifies reality. An
analytical phenomenological thermodynamic SMA model

which is realized in computer code (using an analogy with
numerical methods of plasticity) for modeling of structures
from SMA is suggested in the paper by Lagoudas et al.
(1996). In the paper by Levitas and Stein (1997) a
micromechanical model allowing for five micromechanical
mechanisms of PT (nucleation at direct austenite —
martensite and reverse martensite — austenite PT, interface
motion at direct and reverse PT and reorientation of
martensitic variants) is proposed. Comparisons with other
models, e.g., by Sun and Hwang (1993), are made as well, In
this paper we consider a particular case of this model for nu-
cleation for the stress-induced direct austenite — martensite
PT only, when the modulus of transformation in nucleus
strain reaches its maximum possible value. The detailed deri-
vation of constitutive equations for this case is also presented
in the paper by Levitas et al. (1998) with parameter identifi-
cation using simple tension experiments. This model is not
exactly the same as the flow theory of plasticity, because,
e.g., the result & =¢ has no counterparts in plasticity theory.
However, we succeeded in transforming these equations into
the form which is completely similar to that of plasticity the-
ory. The final equations for the model are presented in Table
I and compared with equations for J>-plasticity.

Here u is the displacement vector, /1(€®) is the first invari-
ant of €*; K,  are the elastic bulk and shear moduli, e is the
back-stress (using the terminology of plasticity), m is the unit
vector in five-dimensional deviatoric stress space (i.e., [n| =
1), €” is the plastic strain tensor, g is the accumulated plastic
strain. Function A(c, 8) is a known material function for PT
[see Levitas et al. (1998)],

,q(.;;:‘E[ﬁq-l (mp-“ @) +k, {r})]
2 a

Ay®(8) = Ay, —Asgh
ku(c)=b+dc

Table 1. Analogy between the model for SMA and Js-plasticity.

Phase Transition

Plasticity

Kinematical decomposition e=(Vu), =«" +¢
Hooke's law o= Ki(e* ) + 2G dav &°
PT criterion q>=|:-gfug.ﬂ:c,ﬂ}=ﬂ

Consistency conditon j=(8nchH) =0

¢ s-a

TEC

Associated flow rule

v g
6= 1

Evalution equations

Equilibrium equations

Kinematical decompasition e=(Vu), =" +¢"

Hooke's law o = Ki,(e®) + 2G dev «*
Yield condition p=8-al- %i‘{q.ﬂ} =
Consistency conditon ¢ =(80g08)=0
i i’ s-o

Associated flow rule '*—[=_=n

Y. |' iy “‘I

i 2
a- 5!

Evolution equations

a=2Hige

3

Equilibrium equations Yo=0
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where P characterizes the cnergy of internal stresses,
a= |E | characterizes the maximum possible transforma-
tion strain, e.g., at tension, Ay, and As, are the difference in
the reference values of free energy and entropy, b >0 and d >
(are the material parameters. The functions flg, B) and H{g)
are defined in plasticity theory [see Simo and Taylor (1985),
Simo and Hughes (1998)].

Note that k, is an increasing function of ¢. In the space of
deviatoric stress, PT criterion represents a sphere with grow-
ing radius, and this sphere is shifted on vector e = —Pe’ (Fig-
ure 3). The modulus |e] grows when ¢ grows, and at a radial
loading the center of the sphere moves in direction opposite
to 5. Consequently (using similarity with plasticity theory),
in space s the material exhibits isotropic hardening and kine-
matic softening. The transformation strain rate vector €' is
directed along the normal to this sphere. Difference |s — o
has a meaning of mean siress in austenite [Levitas and Stein
(1997)].

In order to find the distribution of stresses, strains and vol-
ume fraction of martensite for a structure made from SMA
using the above described simple model, we have to solve the
set of equations presented in the left column of Table 1. Due
to the analogy found between the model for SMA and
elastoplastic model with kinematic and isotropic hardening
[the right column of the Table 1, see Simo and Taylor (1985),
Simo and Hughes (1998)], the methods developed for
elastoplastic problems may be used. For discretized solu-
tions, the FEM is applied. This solution is realized in a
step-by-step form, i.e., with a known solution at time 1, a so-
lution at ime ¢, is computed, where n is the step number.
When an increment of total strain Ae is known, then the
stresses «r can be calculated according to the radial return al-
gorithm presented in Box 1 [see Simo and Taylor (1985),
Simo and Hughes (1998) for plasticity].

Introducing a new variable ¢, = aﬁr instead of ¢ we
obtain full correspondence between elastoplastic equations
and equations for SMA. Then the consistent tangent moduli
c™! =(da™!)/(dAe) (which is calculated according to the ra-
dial return algorithm) have practically the same form as in the
paper by Simo and Taylor (1985) for plasticity, i.e.,

p=0
Figure 3. PT-surface with isotropic hardening and kinematic soften-
ing.

Box 1. The radial return algorithm.

1. Compute trial elastic deviatoric stress 5™ (elastic pre-
dictor.

5 = 5" +2G dev Ae (22)
g ="+ Pe
If (s " c") =" +P¢’,‘|—EA(:“}5{| then (23)

s =g and goto Step 5

2. Compute unit normal field n

(24)

3. Compute the increment of the volume fraction of
martensite Ac by local iterations from the following
nonlinear algebraic equation

5" +2G(dev Ae —aAch) + Ple) + d&cﬁ)l =J§A{c“ +Ac)
(25)

4. Compute the volume fraction of martensite ™!, the
transformation strain €' and deviatoric stress 5™

Cn+] el E‘l + A flﬁ}
5 = " +2G(devae - aAci) an
€ =€ +alch (28)

5. Add the mean stress (due to elastic volume change)

o' =5 L K(Ae: DI (29)

1

+1
b i =KI®I +2t}ﬁ(ﬂ—5!®f]—2{}?ﬁ ®n

dAe

where

> er[c‘"'} EJ:PM

e
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Box 2. Finite element solution algorithm.

1. Initialization at r,. Data structure: variables at quadra-
ture points {c, €. &]". Initial conditions for the incre-
ment of the displacement vector at nodal points {u ™!
= 0. Current values of boundary conditions.

2. Let {u);*" be solution at k-th iteration.

2.1 Compute [Ae}}™ ={(Vu),}i" at quadrature

2.2 Compute [o,c,¢ )" at quadrature points ac-
cording to the radial return algorithm (Box 1) and
substep integration procedure [Idesman et al.
(1999)]. '

2.3 Compute the consistent tangents at quadrature
points [Equation (21)],

2.4 Compute residuals of the equilibrium equation
{1_‘,}:+I

(W™ = = [ (BT oy av

(1f1™*" is the standard FE load vector, [B] is the
standard B-matrix), IF |(#);*']< TOL GO TO 4
(TOL is a prescribed small number).

3. Solve system

[K](Aufy =y {9

where [K]= [, (IB )c""' [[BJdV is the consistent tan-

gent stiffness matrix  (for the first iteration

[K1= [, (IBY E)[BJdV is the elastic stiffness matrix),

vis a parameter which is defined from numerical experi-

ments, ¥ € [0,1]. For the simplest case y= 1. Update

()] = ()™ 4 {Au)?*'. Setk=k+1and GO TO 2.
4. Update data structure

e+l ael

{c.€,.8)" ={c.€.0

and I is the fourth-order symmetric unit tensor with compo-
nents (1/2)(8;8; + 8;8,); 8y is the Kronecker delta. A finite
element algorithm for solving the boundary value problem is
described in Box 2. It includes the iterative computation of
the unknowns {c.€,o }"*! at time n + 1 using the calculated
values of these parameters at time n. According to the algo-
rithm, it is not necessary to calculate the total displacements.

NUMERICAL MODELING

The model problems considered in this section are moti-
vated by our collaboration with an experimental group com-
prised of Professor E. Hornbogen and Mr. J. Spielfeld of
Ruhr-University of Bochum. The results presented below are
used for the initial design and will be compared with future
exXperiments.

Tube of SMA under Internal Pressure

Consider the loading of a tube from SMA (CuZnAl alloy)
by internal pressure at ambient temperature, Figure 4. The
solution of this simple axisymmetric problem can be used for
verification of the SMA model for the 2-D case by compari-
son with experiments. The following elastic properties of the
alloy were used in calculations [Levitas et al. (1998)]:
Young’s modulus E = 0.58 - 10° MPa, Poisson ratio p = 0.33.
The thermomechanical material parameters for SMA are de-
termined by using the simple tension experiments by E.
Hornbogen and 1. Spielfeld according to the technigue pre-
sented in the paper by Levitas et al. (1998) and given in
Table 2.

The boundary conditions and the finite element mesh with
quadratic triangular elements are shown in Figure 4, where
u, and i are the normal and tangential displacements, o, and
T, are the normal and shear stresses. The behavior of the wbe
was studied at different values of internal pressure p=0—50
MPa. The results of calculations are analyzed and followed.
Until p = 30 MPa, the tube is deformed elastically without
transformation, see Figure 5(a). Then with increase of p,
martensitic PT occurs and is extended from the internal ra-
dius of the tube to the external one, Distribution of the vol-
ume fraction of martensite along the radius for the section AR
is presented in Figure 6. It can be seen that at p = 35 MPa,
transformation is extended until the middle of the section,
Figure 6(a). At p = 45 MPa, transformation occurs in the
whole section, Figure 6(c). The maximum value of the vol-
ume fraction of martensite (= 71%) is reached at the internal
radins of the tube at p = 50 MPa, Figure 6(d). The
inhomogeneous distribution of parameters along vertical
axes in the upper part of the tube is caused by free surface AB,
Figures 5ia), 7. Distribution of the radial displacement along
the radius at the surface AB for different internal pressure pis
presented in Figure 8 and can be easily measured in experi-
ments.

Tube Assembly

Considered here is the modeling of one type of tube as-
sembly with the help of an additional short tube from SMA
[Hombogen (1991)]. The idea is as follows: at first we de-
form a tube /] from SMA (initially in a pure austenitic state)
by applying the internal pressure at low temperature, trans-
forming it completely into martensitic state. Due to residual
transformation strains the internal diameter of the SMA tube
I after unloading (Figure 9) becomes bigger and we can
freely insert into it two tubes I, which should be connected,
(in Figure 9, only one tube [ is shown, as the second one is
symmetrically located with respect to axes X ). After heating

Table 2. Material parameters.

a = 0.0245
P =544 MPa

Ayg =-13.3 MPa
b =0.038 MPa

Asg = —0.05 MPa/K
d=1.3MPa
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at p =50 MPa ().
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to ambient temperature, reverse phase transition occurs in
the whole SMA tube fI, and it returns to 1S initial geometry.
It causes compressive radial stresses at the interface between
the tubes [ and /. The higher these compressive radial
stresses are, the firmer the connection is. As after assembly at
ambient temperature, the SMA tube /7 should be in austenitic
state (in order to reach the highest compressive radial
stresses al the interface), we can model a stage of assembly as

a purely elastic problem with the interference & at the inter-
face which is equal to the difference of the internal radius of
tube If and the external radius of tubes [. To solve this prob-
lem, we use the technigque for elastic contact problems devel-
oped in the paper by Idesman and Levitas (1993). The value
of the interference & is chosen from the condition that after
assembly the equivalent stresses o, = \EM in the SMA
tube do not exceed the pseudoyield stress A (¢ = 0, 8) = 80

0 a.MPa
10
18
17 —
' —
1
& *r P. MPa
1 4 | ! I L I ! | v | L . I ¥ | T T k I 1
(1] 4 R 12 1R N n n M an an 5N
fa) (h)

Figure 12. (a) Relationship between the radial stresses o, averaged over surface CD, and temperature after cooling without loading. (&)
Residual radial strezses a, (after unioading), averaged over surface COD, after ioading at different values of intemal pressure p and tofal Ln-
loading.
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MPa at ambient temperature. For simplicity, we have as-
sumed a cohesion condition at interface (see also remark be-
low).

After assembly, the following possible work stages are
modelled: (a) loading of the assembly by internal pressure
with subsequent unloading at ambient temperature; (b) cool-
ing of the assembly without loading (for example, due to a
variation of external temperature).

For both problems, stress-induced martensitic PT was
studied based on the model presented in Table 1, i.e., reorien-
tation of martensitic variants, reverse PT, as well as direct PT
when an amplitude of transformation strain in the nucleus
does not reach its maximum possible value [as, e.g., for tem-
perature-induced PT, see Levitas and Stein (1997)] were not
included. Stress-strain state in the tubes after assembly was
used as initial conditions for the solutions of the problems (a)
and (b).

Due to symmetry with respect to horizontal axes, a half of
a cross section is considered, Figure 9. The properties of the
tube of SMA are the same as in the previous problem. Elastic
properties of steel tubes to be connected, boundary condi-
tions and finite element mesh with quadratic triangular ele-
ments are given in Figure 9,

The distributions of the equivalent stresses in the tubes af-
ter assembly and at p = 50 MPa are presented in Figure 10.
The distribution of the radial stresses at the interface CD is
practically homogeneous except for the corner points C and
I where stress concentration takes place, see Figure 11, The
stage of loading by internal pressure p, accompanied by
martensitic PT, and subsequent pure elastic unloading lead to
adecrease in the residual radial stress averaged over interface

- 1HSHE-H1
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-HBLE-81
S98ZE-81
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- TE15E-81
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RRPe P yengEpyy

Figure 13. Distribution of the volume fraction of martensite in the
SMA tube at 8 =4C.
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Figure 14. Distribution of radial stresses along surface GO in the
tube from SMA at pulling out of the steel tubes (contact problam).

CD, see Figure 12(b). The rate of the decrease is higher at
large values of p, see Figure 12(b). However, the amplitude
of this decrease is relatively small, even at high p. More dan-
gerous is the stage of cooling of the assembly without load-
ing, because the pseudoyield stress reduces significantly
with the temperature decrease for this material [Levitas et al.
(1998)]. Due to stress-induced manensitic transformation
caused by internal stresses in the system, the radial stress av-
eraged over interface CD is much smaller {one half) at 4°C
than at ambient temperature 20°C, see Figure 12(a), The dis-
tribution of the volume fracture of martensite in the SMA
tube at 4°C is shown in Figure 13.

The influence of interfacial friction on the radial stress av-
eraged over interface CD is not very essential. The solution
of the contact problem simulating pulling out the steel tube J
from the SMA tube /I after assembly at ambient temperature
[a normal displacement was applied at surface BE, and the
friction coefficient at the interface CD was assumed tobe 0.2,
Figure 9(a}] has shown the decrease of the radial stress aver-
aged over interface CI is not more than 7.5% (the distribu-
tion of the radial stress along interface CD for this case is
given in Figure 14),

CONCLUDING REMARKS

The micromechanical derivation of the macroscopic asso-
ciated transformation flow rule is carried out for the case of
linear elasticity with equal elastic properties of phases and
small strains. The method used is based on direct calculation
of the transformation work which is very difficult to do with-
out the above assumptions. For more complicated situations
(finite strains, nonlinear elasticity, plastic deformations)
other methods have to be developed. They can be based on in-
ternal variable theory [Rice (1971), Nemat-Nasser (1975)] or
rate form of constitutive equations with PT [Levitas (1992,
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1996)]. For both cases, the nucleation process must be incor-
porated into the model.

It is fortunate that the simplest micromechanically-based
model considered in this paper, the known numerical algo-
rithm used in plasticity theory can be adapted. For more com-
plex situations, when self-accommodation and reorientation
of martensitic variants or reverse PT are taken into account,
new algorithms have to be developed.
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