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Simulation of martensitic phase transition progress with
continuous and discontinuous displacements at the interface '
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Abstract

The problem formulation for martensitic phase transition (PT) progress in elastoplastic materials at small strains, based
on a recently proposed thermomechanical approach [V.I. Levitas, Mech. Res. Commun. 22 (1995) 87; V.I. Levitas, I. Phys.
IV, Collogue C2, 5 (1995) 41.], is presented. Stress history dependence during the transformation process is a characteristic
feature of the PT criterion. To define the PT progress a corresponding extremum principle for PT is used (without any
kinetic equations). A relatively simple mechanical mode! for incoherence at interfaces is proposed. The problem of progress
of PT in a cylindrical sample with a moving coherent and incoherent interface is analyzed by the finite element method
(FEM) using a layer-by-layer progression technique. It is shown that the incoherent interface has low mobility or cannot
move at all, which agrees with known experiments. Possible reasons of formation of discrete microstructure (discontinuously
transformed subdomains) such as incoherence, perfect plasticity or plasticity with hardening are modeled and discussed. The
elastic problem of progress of PT for the same cylindrical sample with coherent interface has also been solved using an
element-by-element progression technique. It is shown that the shape variation of the transformed region during PT progress
is insensitive to mesh refining. © 1997 Elsevier Science B.V.
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1. Introduction required microstructure and physical-mechanical
properties. Strain-induced PT and transformation-in-
duced plasticity (TRIP) are other important exam-

ples. Martensitic PT in elastoplastic materials is a

PT in elastoplastic materials are phenomena that
are very widespread in nature, physical experiments

and modern technologies. Practically all PTs with
volumetric transformation strain exceeding 0.5% are
accompanied by plastic strains, e.g. during heat treat-
ment of steels. Thermomechanical treatment of mate-
rials involves consecutively or simultaneously occur-
ring PT and plastic straining which results in the
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complex thermomechanical process accompanied by
the change of mechanical properties, transformation
strain and a complicated distribution of local stresses
and strains. The difficulties of a thermomechanical
description of PT are related to the definition of the
PT condition, the formulation of boundary value
problems and their numerical solution.

We consider the instantaneous occurrence of PT
in some volume based on thermodynamics, without
introduction of volume fraction and prescribing the
kinetic equations. There are only three known nu-
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merical approaches of such type of PT with coherent
interface in elastoplastic materials. Ganghoffer et al.
[1], Marketz and Fischer [2,3] and Marketz, Fischer
and Tanaka [4] used FEM to compute PT progress in
a grain (appearance of martensitic plates). Typical
for these papers is that the PT conditions for elasto-
plastic materials are not related directly to the second
law of thermodynamics and the dissipation due to
the PT. The analysis of such approaches is given in
Ref. [5]. In papers by Levitas [6,7] a thermomechani-
cal description of PT in elastoplastic materials, based
on the second law of thermodynamics, was pro-
posed. Numerical realization of the approach for
martensitic PT with fixed interface is presented in
Refs. [5.8].

The aim of this paper is to show the possibility of
modelling coherent and incoherent martensitic PT
with moving interface for elastoplastic materials.
Here we will not consider crystallographic peculiari-
ties of PT, but we will deal with the more simple
case of dilatational transformation strain only (shear
components of transformation strain were taken into
account at finite strains in Ref. [9]). The condition of
nucleation (in contrast to known approaches) in-
cludes the history of local stress variation in the
nucleus during the transformation process. There-
fore, knowledge of stresses and strains before and
after PT does not give sufficient information to
calculate the PT condition. This fact causes addi-
tional difficulties for the numerical method.

Firstly the formulation of an elastoplastic problem
with PT based on the recently proposed PT criterion
and related maximum principle {6,7] is presented.
Then we will consider the simplest model problem
for coherent and incoherent PT in an elastic and
elastoplastic cylindrical sample with moving inter-
face between the new and old phase. It will be
shown that incoherence at the interface and plasticity
considerably change the PT process and can be
possible reasons of formation of a discrete mi-
crostructure of the new phase. The interface motion
is prescribed in advance by a number of intermediate
interface positions during PT. The PT condition for
such interface motion is defined and analyzed using
the PT criterion and extremum principle, i.e., the
inverse problem is solved. Then, another problem of
determination of the coherent interface positions dur-
ing the growth of new phase in cylindrical sample

for elastic materials is considered. All the model
problems under consideration are axisymmetric and
restricted to small strains. To calculate PT condition
for the above problems, elastoplastic contact prob-
lems are solved by FEM [10] to determine the varia-
tion of local stresses as function of growing transfor-
mation strain.

Note that some analytical solutions based on the
above theory and interpretation of some experiments
are presented in Ref. [11].

2. Problem formulation

Let us consider the problem formulation of
martensitic PT in elastoplastic materials using the
thermomechanical description of PT. The following
assumptions are used: for new (nucleus) and old
(matrix) phases the standard elastoplastic model with
von Mises yield condition is assumed, elastic proper-
ties of both phases are the same [1-4] and the
transformation strain is volumetric. PT is considered
here as the thermomechanical process of growth of
volumetric transformation strain from zero to a final
value which is accompanied by change of thermal
material properties. A set of equations includes the
following relationships:

(1) Kinematic decomposition within geometrically
linear theory:

e=1/2(Vu+ Vu')=¢e°+ &P+ &', (D

where £, £¢ £P and &' are the total, elastic,
plastic and transformation strains, respectively and u
is the displacement vector. For the case of pure
dilatational transformation strain, &' = gyI, where I
is a unit tensor, and 3¢} is the volumetric transfor-
mation strain.

(2) Hooke’s law:

o=E: e =AeD)I+2ue’, (2)
where o is the stress tensor and A and p are the
Lame coefficients.
(3) Von Mises yield condition:
flo)=0,~a(q) <0, 4=(2/3&P:&")"",
(3)

where o, = (3/2s:5)"/? is the equivalent stress, s =
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dev or is the stress deviator, g is the accumulated
plastic strain and Uy(q) is the yield stress.
(4) The associated plastic flow rule:

A=0. 4

(5) Equilibrium equations for neglected body
forces:

V-o=0. (5)
(6) PT criterion [6,7]:

fvnx dv, = fosaj;/"o-:ds' v, — fvnm/ﬂ’ av,

EP = As,

=f kdV, = PT occurs, (6)
Ya

where X is the local dissipation increment in the
course of PT due only to PT (excluding plastic and
other types of dissipation), A¢® = p(yf — ¢), ¢f
and ¢! are the thermal parts of the specific
Helmholtz free energy of new and old phases (func-
tion of temperature only), p is the mass density, V,
is the volume of nucleus, k is an experimentaily
determined threshold value of dissipation due to PT
(which can depend on some parameters, for example
6, €P), &} is the transformation strain after PT. For
the dilatational transformation strain, temperature and
k, distributed homogeneously in the nucleus, Eq. (6)
can be transformed into the following form:

)?:=fe‘[’236-‘0 dey — A=k = PToccurs, (7)
0

1
Go=— | o,dV,, 8
0=y J,o ®)

where o, and &, are the local pressure and pres-
sure, averaged over the nucleus, X is the driving
force of PT (averaged over the nucleus value of X).
Eq. (7) is the final form of phase transformation
criterion which is used in the present paper. The
physical sense of the criterion in Eq. (6)) is the
following: If PT and plastic flow in the given mate-
rial point are thermodynamically independent, then
at X <0 the PT is impossible (contradicts to the
second law of thermodynamics). At X = 0 the PT is
possible, but it will be a PT without dissipation due
to PT (dissipation due to plastic deformation is pos-
sible). Since usually rather large dissipation accom-
panies PT, we assume that the calculated increment

of dissipation X, due to the PT, reaches the experi-
mentally determined value k. This model is similar
to the formulation of yield conditions, see Eq. (3).

(7) Extremum principle for PT: In the general
case the position and volume V, of new nucleus for
each increment of the boundary conditions and tem-
perature ¢ are unknown. To define them, we use the
extremum principle

X(V,))—k<0=X(V,) —k, (9)

which follows from the postulate of realizability [12],
where V, and V" are the actual and physically
possible volume of nucleus. The physical interpreta-
tion of the principle in Eq. (9) is as follows: when
for some volume V, the PT criterion in Eq. (7) is
fuifilled for the first time, the PT occurs in this V,.
For all other V," the inequality in Eq. (9) is valid,
because in the opposite case the PT criterion in Eq.
(7) will be met for this V," earlier than for V. As
only the work integral ¢ = [£”35, d&! depends on
the volume V,, then from the extremum principle in
Eq. (9) it follows that

¢(V,) = max. (10)

(8) One of the mechanisms for getting a more
favorable stress variation in the transforming particle
is related to the possibility of displacement disconti-
nuities across the interface. We show a simple way
of admitting incoherence (sliding). Two types of the
interfaces between new and old phases are consid-
ered: coherent (with continuous displacements across
interface) and incoherent (with discontinuous tangen-
tial displacements across interface). We assume that
PT and incoherence criteria are thermodynamically
mutually independent and that these processes are
coupled by the stress fields only. If, in the course of
the growth of transformation strain and variation of
material properties in nucleus, the incoherence crite-
rion is satisfied, we admit sliding in this point until a
value where the criterion is violated. After complet-
ing the PT we check using the PT criterion whether
PT is thermodynamically admissible. Consequently,
a growing transformation strain produces the stresses
which are necessary for appearance of incoherence
and the incoherence changes the stress variation in
the transforming particle. For the simplest incoher-
ence criterion we assume that, if shear stress at any
interface point reaches some critical value, then slid-
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ing occurs at this point. This condition for a two-di-
mensional problem in local coordinate system has
the following form:

Sliding condition (incoherent interface) at the in-
terface

lrl<T, = w’~a'=0,

(11)
(12)

where 7 is the tangential stress at the interface, 7, is
the critical value of the shear stress, i,, i, are the
normal and tangential components of velocity at the
interface. Indices 1 and 2 identify those belonging to
the matrix and the nucleus.

It is necessary to note that the PT condition in Eq.
(7) has formally the same form for elastic and elasto-
plastic materials with coherent and incoherent inter-
faces; plasticity and incoherence effect on a variation
of stresses in the course of PT and, hence, on the
value of the work integral ¢ [6,7]. To calculate the
variation of local stress distributions as function of
the growing transformation strain we solve numeri-
cally by FEM the standard elastoplastic contact prob-
lem with given volumetric transformation strain and
contact condition at the interface [10]. Quadratic
triangular finite displacement elements are used.

lrl=7 = &2 —al#0, a’=a

s ne
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3. Progress of PT (layer by layer) in a cylindrical
sample (moving coherent and incoherent inter-
faces)

In the case where k is a function of temperature
only, at given temperature the values of &k and Ay°
are known and, hence, the value of the work integral
¢ (due to the PT condition in Eq. (7) and the
extremum principle in Eq. (10)) gives full informa-
tion to evaluate the possibility of PT. We will also
analyze the more complicated case of when k is a
function of yield stress [11], averaged over the trans-
forming volume and temperature.

Let us consider the problem of PT progress
through a cylindrical sample with a moving straight
interface. Fig. 1 shows the cross section of a cylin-
drical sample divided into layers. The following
boundary conditions are applied:

+ Along CD and DE boundaries u, =0, 7, =0.

- Along EF boundary g, = 7, = 0 (free surface).

+ Along CF boundary g, = P =100 MPa, 1, =0
(prescribed compressive stress P).

The elastic properties are: Young’s modulus E =
2 - 10° MPa and Poisson ratio = 0.3. The moving
interface is modeled by a number of intermediate
predefined interface positions. For this example we

X
4
N NININ NN,

2
{ [
* > Boundary conditions
EE>A5 n| CD, DE: uy=1,=0
i A, v B, CF- On =P', Tn=0
}>1 W ] EF: o, =1,=0
’ ; A . o By,
PN E‘_ a
o " s.
QR B RNEREER

9]

l
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P

Fig. 1. Half of the cross section of a cylindrical sample. A,B,, A, B,, A;B;, A4B,, AsBs are the positions of the interface at different
time instants (I, II, HI, IV, V are the regions where PT occurs after corresponding displacement of the interface). X, is the rotation axis.
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consider the inverse problem, i.e. we specify a priori
the sequence of the interface positions during PT
progress. For every interface position the PT condi-
tion is calculated as nucleation condition Eq. (6) or
Eq. (7) for the corresponding layer (where PT occurs
for one interface displacement). We specify 5 differ-
ent sequential positions of the interface. At the be-
ginning PT occurs in the 1st layer with interface
A B, then in the 2nd layer with interface A, B, and
so on (Fig. 1). We assume that sliding can occur at
the current interface position between a transforming
layer and the matrix only (critical value of shear
stress at the interface 7, = 200 MPa is accepted). The
interface between a transforming layer and the layers
of a new phase is coherent.

The PT in a layer is simulated by the growth of
compressive transformation strain g, from 0 to
—0.01. To obtain the value of work integral ¢ the
elastoplastic contact problems are solved incremen-
tally with a transformation strain increment |gy| =
0.002 under fixed P. In the finite element code the
transformation strain can be taken into account as a
fictitious thermal strain. After determination of the
PT condition for one layer calculations continue for
the next layer with new position of the interface. The
local stresses in whole volume due to the PT in the
ransformed layers are used as initial data for the
calculation of the PT condition of the subsequent
layer.

3.1. Coherent interface (elastic and elastoplastic ma-
terial)

Let us consider at first the case of elastic material.
Fig. 2 shows the variation of hydrostatic pressure (a),
averaged over the layer and the variation of the work
integral ¢ (b) in the course of PT (as a function of
growing transformation strain) for different layers.
We obtained linear variation of &, with the growth
of the transformation strain for every layer (due to

linear elasticity). Therefore, variation of &, and ¢
for every layer i can be presented as

Oy =a; +bey, ¢;=3a,60+ l.Sb‘-(so)z, (13)

where a;, b; can be calculated using, for example,
values of 7, at £,=0 and &,= gy, (gq, is the
transformation strain after PT). PT for a coherent
interface at k& = constant is unstable (according to the
maximum principle, Eq. (10)), i.e. if PT occurs in
the 1st layer, then at the same temperature and
external stresses, PT should occur in all the remain-
ing layers, because the value of work integral ¢
(and, hence, driving forces X) at transformation
strain |go| = 0.01 is larger for the remaining layers
than for the 1st one. Consequently, to describe the
stable phase equilibrium we should assume heteroge-
neous k distribution, or assume that k grows with
increasing total volume fraction ¢ of new phase in a
specimen. As the final value of ¢ is almost constant
from the third layer, the interface can be arrested in
position A;B; or A B,.

Now consider the case of elastoplastic material
with yield stresses for matrix o, =2.5- 10> MPa
and for nucleus o,” =1~ 10° MPa (for simplicity we
assume that the yield stress for the nucleus changes
instantaneously to the value of phase 2 after the
beginning of PT). As we can see from Fig. 2a almost
linear variation of the averaged hydrostatic pressure
&, with the growth of PT strain takes place for 2-5
layers. For these layers we can also use the analytical
relation Eq. (13). But plasticity increases consider-
ably the values of averaged hydrostatic pressure o
at the beginning of PT. It causes an essential de-
crease in the value of the work integral ¢ (and,
hence, driving force X) for 2—5 layers with respect
to the case of elastic material. Therefore, at k=
constant according to the maximum principle (Eq.
(10)), the PT in the second layer will occur immedi-
ately after the PT in the first layer at the same
external condition (temperature and loading), be-

Fig. 2. Variation of hydrostatic pressure @, (a), averaged over the layer and variation of the work integral ¢ (b) for ith layer in the course

of PT in ith layer for moving coherent interface, i = L, I, 1§, IV, V ((O) elastic matrix; (

) elastoplastic matrix).
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Fig. 3. Isobands of radial displacement distribution for incoherent interface at different values of transformation strain in course of PT within

the first layer (a—e) and at the interface motion until the middle of a sample ).
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cause the value of work integral ¢ for the second
layer is higher than the value of ¢ for the first one.
But for the PT in 3-5 layers it is necessary to change
the external condition to enforce PT (the values of
work integral ¢ for the 3-5 layers are less than for
the first one), i.e. due to plasticity it is possible to get
stable interface motion.

3.2. Incoherent interface (elastic and elastoplastic
material)

Let us consider an incoherent interface. Fig. 3
(elastic material) shows isobands of radial (along X,
axes) displacement distributions at different values
of transformation strain in the course of PT of the
layer I (Fig. 3a—e) and at the motion of the interface
until the middle of a sample (Fig. 3f). With the
increase of the transformation strain the growth of
the sliding zone takes place (different shades across
interface correspond to the jump of displacements).
The greatest amount of sliding at the interface takes
place for PT in the 1st layer. For subsequent posi-
tions of interface the sliding zone size decreases. Fig.
4 shows the variation of hydrostatic pressure (Fig.
4a), averaged over the layer and the variation of the
work integral ¢ (Fig. 4b) in the course of PT for
every transforming layer (moving incoherent intet-
face). For elastic materials nonlinear change of o,
with the growth of the transformation strain within
the layer (due to variation of sliding zone) takes
place (curve for layer I, Fig. 4a). The more linear
character of the curves for layers II-V in Fig. 4a is
connected with the influence of the region where PT
has already occurred (because at the interface be-
tween the layer of new phase and the layer where PT
is still occurring, there are no additional displace-
ment discontinuities). Comparison of Figs. 2 and 4
shows that the incoherence significantly stimulates
the PT condition in the first layer (¢ increases). The
PT condition in the second layer for incoherent
interface is worse than for the coherent interface, but
a little bit better than for the first layer of incoherent
interface. That is why at k= constant or slightly
growing k (c) the incoherent PT in the second layer
can occur immediately after the PT in the first layer
at the same external condition {(temperature or load-
ing). The value ¢ for incoherent PT in the third
layer is smaller than for the first and the second

layers and much smaller than for the third layer for
coherent PT. If the value & (c) is large enough to
stop coherent interface motion at fixed external pa-
rameters in positions A, B,, A;B; or A;B, (¢=0
MPa), then it is necessary to very significantly change
the external parameters to shift the incoherent inter-
face (¢ = —12 MPa). But at such a change of
external parameters the PT can occur in other places
of a sample.

The reason for the decreasing value ¢ for a
moving incoherent interface is the change of internal
stresses. So the initial negative internal stresses in
the transforming layer (due to transformation strain
in the previous layer), which promote the PT, de-
crease (in absolute value) considerably due to stress
relaxation during the sliding at the interface (com-
pare initial values &, for layers in Fig. 2a and Fig.
4a). The effect of the incoherent interface is similar
to the effect of plastic deformation during PT pre-
sented above. The slight difference of results for
elastic and elastoplastic materials (difference only
seen for PT in layers 3-5, Fig. 4) is explained by the
fact that with the chosen mechanical properties slid-
ing at the interface is more important than plastic
deformation. Thus, incoherence changes PT condi-
tions considerably.

3.3. Possible reasons of formation of discrete mi-
crostructure

For an elastic material with a coherent interface
field, the initial pressure promoting PT is larger for
the layer adjoining the interface than for a layer
remote from the interface. Therefore, in this case PT
occurs sequentially layer by layer (a single con-
nected region of new phase is formed). But incoher-
ence and plasticity considerably change the distribu-
tion of the stress—strain state during PT.

Let us consider the influence of incoherence for
an elastic material. We have investigated the prob-
lem for the following sequence of PT in layers for
coherent and incoherent interfaces: (a) after PT in
the first layer, PT occurs in the second layer; (b)
after PT in the first layer, PT occurs in the third
layer. For the coherent interface the work integral ¢
in the transforming layer is bigger for case (a) than
for case (b). For the incoherent interface at some
small value of critical shear stress 7,, the value of
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work integral ¢ for the transforming layer was
bigger for case (b) than for case (a), i.e. PT can be
more favorable in the layer which is not in contact
with a transformed one.

Now we consider this problem with P =0 and
7, = 0 (limit case). Then for any layer, if it is not in
contact with a transformed layer (the interface be-
tween matrix and transforming layer is incoherent),
the work integral ¢ is zero (because stresses are zero
due to 7,=0). But if the transforming layer is in
contact with a transformed one (interface between
these layers is coherent according to the problem
formulation), the work integral ¢ is negative (be-
cause of the jump of the negative transformation
strain across the interface we have a positive average
pressure in the transforming layer). Thus, incoher-
ence relaxes the stresses and can enforce the compli-
cated kinetics of a new phase, i.e. variation of the
critical shear stress 7, can change the kinetics of PT.

These results explain the known experimental ob-
servation that incoherent interfaces have low mobil-
ity or cannot move at all [13].

Another possible reason for formation of discrete
microstructure for a plastically hardening material is
related to the linear dependence of k on yield stress
o,, averaged over the transforming layer at the be-
ginning of PT [11}:

k=3L3,e,. (14)

where the value L is equal to 7.48 for steel [11]. For
linear hardening materials it is equivalent to the
dependence k(7) on accumulated plastic strain g,
averaged over the transforming layer at the begin-
ning of PT. For example, we have solved the prob-
lem for hardening elastoplastic matrix with a,(¢) =
250 +2000g and elastic nucleus with a coherent
interface. The results are such that after PT in the
first layer the value of g for the second layer is
§=0.17-107", for the third layer §=0.1-10"2,
for the fourth layer g = 0.48 - 10™* and for the fifth
layer 3 =0.55-107°. Hence according to Eq. (14)
for the second layer the value k(g) is 7.18 MPa
larger than for the third one and 7.63 MPa larger
than for the fourth one. It can cause the PT in the

third layer after PT in the first one, i.e. we can obtain
a multiple connected region of the new phase.

4. Progress of PT (element by element) in a cylin-
drical sample (coherent interface)

Let us consider the same sample as in the previ-
ous problem for elastic material and coherent inter-
face after PT in the first two layers (interface has
position A, B,, Fig. 1). The boundary conditions are
also the same. Now we will not prescribe the next
interface position, but investigate further PT progress
(finite element by finite element) in the remaining
region of the matrix. The internal stresses in the
sample (due to PT in the first two layers) are used as
initial conditions. For example, the axial stress and
the pressure are shown in Fig. 5; axial stress (Fig.
5a) is continuous with large regions of positive and
negative values; hydrostatic pressure (Fig. 5b) is
discontinuous across the interface with positive val-
ues in almost all of the new phase (layers I and 1I)
and negative values in almost all of the matrix and
has maximum positive value at the right side of the
interface and a maximum negative value at the cen-
ter of the interface.

The following assumption is used for calculation
of PT progress: PT occurs at any time instant in one
finite element (FE) only. For this state, the variation
of stress—strain state due to PT in the FE has to be
computed. Every FE in the remaining region of
matrix is considered as a possible new nucleus. To
choose the FE where PT can occur, we should find
the FE for which the functional ¢ has maximum
value (see Eq. (10)). Only after finishing PT in one
element can the PT start in another one. The solution
afgorithm for this problem is described briefly in
Ref. {5]. In contrast to the paper by Marketz and
Fischer [3] where the place of subsequent transform-
ing region is determined using initial stress—strain
state before PT (without solving boundary value
problem) we should solve boundary value problems
for all admissible positions of subsequent transform-

Fig. 4. Variation of hydrostatic pressure &, (a), averaged over the layer, variation and of the work integral ¢ (b) in the course of PT in

different layers for moving incoherent interface ((O) for elastic matrix; (

) elastoplastic matrix).



74 A.V. Idesman et al. / Computational Materials Science 9 (1997) 64-75

ing region (finite elements in our case) because of
the stress history dependent value of work integral
¢. Then we choose the actual position of the subse-
quent transforming region according to the ex-
tremum principle, Eq. (9) or Eq. (10).

To investigate the dependence of the solution on
the FE mesh we use two meshes: the first one is
shown in Fig. 6e and includes 673 finite elements
and 1408 nodes, the second mesh (Fig. 6a) has 284
finite elements and 599 nodes. Fig. 6 shows the PT
progress in the matrix. The first nucleus appears in
the matrix near the middle of the interface where the
negative value of initial pressure reaches a maxi-
mum. Then the PT region extends to the axes of

SY XMiN=-.364 ¥MIN=-.360 ¥HAX= 18.3

XMAX= 18.4

1- -975.7
2- -635.4
3- -395.2
4- ~154.5
G- 85.36
6~ 325.6
7- 565.9
8- 886.2
S~ 1846.
18- 1287,
11~ 1527,
12- 1767,

S0 XMIN=-.364 YHIN=-.368 XNAX= 18.4 YHAX= 18.3

-997.2
~802.3
-607.4
-412.5
-217.6
-22.1
172.2
367.1
562.8
6.8
951.7
1147,

Fig. 5. Isobands of axial stress o, (a) and hydrostatic pressure oy,
(b) distribution in a sample after PT in layers [ and I

Fig. 6. Progress of PT (element by element) in an elastic sample
for two different finite element (FE) meshes. Transformed FEs are
shaded. The numbers in the left figures indicate the sequence of
FEs where PT occurs.

rotation. Further PT progress proceeds in a such way
that the thickness of the transformed region increases
to the center of the sample (to the axes of rotation).
During PT progress the interface has a complicated
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shape. We can consider the assumption that the
interface is a straight line (which is used for problem
solution in Section 3 as the first approximation or an
additional constraint). Analysis of the driving forces
of PT has shown that the value of work integral is
minimal for the first transformed finite element. This
means that at & = constant after PT in the first
element, PT should occur in the other elements, i.e.
phase equilibrium is unstable. Consequently, to de-
scribe the stable phase equilibrium we should as-
sume that k grows with an increasing total volume
fraction ¢ of the new phase in a specimen.

Comparison of the transformed region during PT
progress for two different meshes (Fig. 6) shows that
for the problem under consideration the variation of
interface shape is practically insensitive to mesh
refining.

5. Conclusions

(1) A numerical study of martensitic PT progress
in elastic and elastoplastic materials, based on a
recently proposed thermomechanical approach [6,7)
is presented, using the finite element method. PT
condition based on the second law of thermodynam-
ics and the related maximum principle are used.
Stress history dependence during the transformation
process is a characteristic feature of new PT crite-
rion. A simple way for incorporating incoherence at
the interface is proposed.

(2) The problem of progress of the PT with a
layer-by-layer technique in a cylindrical sample with
moving both coherent and incoherent interfaces is
simulated. The driving force for PT in elastic materi-
als grows during the coherent interface propagation
and, consequently, at £ = constant PT should occur
in the whole sample for fixed external parameters. It
is shown that an incoherent interface has low mobil-
ity or cannot move at all, which agrees with known
experiments. In the problem under consideration,
plastic deformation produces a similar effect as inco-
herence. Possible reasons of formation of discrete

microstructure (due to plasticity, incoherence and
dependence of threshold value k on yield stress) are
discussed.

(3) The elastic problem of PT progress with an
element-by-element technique in a cylindrical sam-
ple with a coherent interface is computed, as well as
the shape variation of the transformed region during
PT. It is shown that the solution obtained is practi-
cally insensitive to mesh refining.

Acknowledgements

We gratefully acknowledge the support of the
Volkswagen Foundation, grant 1/70283.

References

[1] J.F. Ganghoffer, S. Denis, E. Gautier, A. Simon, K. Simons-
son, S. Sjostrom, J. Phys. IV 1 (Cotloque C4) (1991) 83.

[2] F. Marketz, F.D. Fischer, in: W.C. Johnson, J. M. Howe, D.E.
Laughlin, W.A. Soffa (Eds.). Solid-Solid Phase Transforma-
tions, TMS, Warrenlade, 1994, p. 78S.

[3] F. Marketz, F.D. Fischer, Modelling Simul. Mater. Sci. Eng.
2 (1994) 1017.

[4] F. Marketz, F.D. Fischer, K. Tanaka, J. Phys. IV 5 (Colloque
C2) (1995) 537.

[5) V.I Levitas, A.V. Idesman, E. Stein, in: J.-A. Desideri. P. Le
Tallec, E. Onate, J. Periaux, E. Stein (Eds.), Numencal
Methods in Engineering ’96, Proceedings of the Second
ECCOMAS Conference on Numerical Methods in Engineer-
ing, Paris, France, 1996, p. 374.

[6) V.1 Levitas, Mech. Res. Commun, 22 (1995) 87.

(7] V.1 Levitas, J. Phys. IV 5 (Colloque C2) (1995) 41.

[8] V.1 Levitas, E. Stein, A.V. ldesman, J. Phys IV 6 (Colloque
C1) (1996) 309, Suppl. to J. Phys. HI.

[9] A.V. Idesman, V.I. Levitas, E. Stein, in: D.R.J. Owen, E.
Onate, E. Hinton (Eds.), Computational Plasticity. Funda-
mentals and Applications, CIMNE, Barcelona, 1997, p. 1323.

[10] A.V. Idesman, V.I. Levitas, Comp. Methods Appl. Mech.
Eng. 126 (1995) 39.

[11] V.L Levitas, J. Mech. Phys. Solids, 45 (1997) Part I, p. 923,
Part I1, p. 1203.

[12] V.1 Levitas, Int. J. Eng. Sci. 33 (1-11) (1995) 921.

[13] Ya.S. Umanskiy, Yu. A. Skakov, Metal Physics, Atomisdat,
Moskow, 1978 (in Russian).



