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In part 11l of this paper, alternative Landau potentials for the description of stress-and temperature-induced
martensitic phase transformations under arbitrary three-dimensional loading are obtained. These alternative
potentials include a sixth-degré2-4-6) polynomial in Cartesian order parameters and a potential in hyper-
spherical order parameters. Each satisfies all conditions for the correct description of experiments. The unique
features of the potentials are pointed out and a detailed comparison of the potentials is made for NiAl alloy.
Analytic solutions of the one-dimensional time-independent Ginzburg-Landau equations for the 2-3-4 and
2-4-6 potentials for a constant-stress tensor and invariant-plane strain are obtained and compared. Solutions
include martensitic and austenitic critical nuclei and diffuse martensite-austenite and martensite-martensite
interfaces. The widths and energies of the nuclei and interfaces are functions of the thermodynamic driving
force, the gradient energy coefficient, and a parameter that characterizes the stability of austenite. The splitting
of a martensite-martensite interface into two austenite-martensite interfaces is interpreted as a potentially new
mechanism—namely, barrierless austenite nucleation—which might be observed experimentally at the inter-
face between two invariant-plane-strain variants. The widths, energies, and gradient energy coefficients of the
martensite-martensite and austenite-martensite interfaces are estimated for NiAl. Finally, we outline a version
of phase field theory for dislocations based on our theoretical framework for phase transformations.
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[. INTRODUCTION modifies the profiles of 2-4-6 critical martensitic nuclei rela-
tive to the corresponding profiles for the 2-3-4-5 potential. In
In parts | (Ref. 1) and Il (Ref. 2 we developed a fifth- contrast to the 2-3-4-5 and 2-4-6 potentials, the hyperspheri-
degree polynomial2-3-4-5 Gibbs(Landay potential for the  cal potentials have no unphysical local minima and have no
description of multivariant stress- and temperature-inducedonstants that do not appear in the phase equilibrium and
martensitic phase transformatio#&I's) in three dimensions. transformation conditions. Variant-variant transformations
Our approach was a phenomenological one; that is, the 2-Zccur along the unit hypersphere, whereas the variant-variant
4-5 potential was constructed by requiring that it respects th&ransformation paths are much more complicated for the 2-3-
experimentally observed features of martensitic PT's in4-5 and 2-4-6 polynomial potentials.
shape memory alloys and steels, specifically, constant trans- It is shown for all potentials that the number of order
formation strain, weakly temperature dependent, or constanparameters can be reduced by a factor of 2 if transformation
stress hysteresis, and transformation at nonzero tangent eladrains for pairs of martensitic variants decompose into two
tic moduli. However, the 2-3-4-5 potential is by no meanscomponents: one that is the same for both variants and one
the only Landau potential that satisfies these basic requirdhat is equal in magnitude but of opposite sign for the two
ments. In this paper, we develop three alternative potentialszariants. This allows us to reduce the number of order pa-
namely, a 2-4-6 polynomial in Cartesian order parametersameters by a factor of 2. Examples of applications include
(Sec. 1) and two potentials in hyperspherical order param-cubic-orthorhombic,  cubic-monoclinic-l, and  cubic-
eters(Sec. Il). The symmetry requirements for the Gibbs monoclinic-1l PT's and PT’s of invariant-plane-straiiPS)
potential(see Sec. IV in Ref. Rare satisfied for the poten- variants.
tials derived in this paper. The phase equilibrium and trans- In Sec. IV, we compare the 2-3-4-5, 2-4-6, and polar 2-3-4
formation conditions for all potentials, including the 2-3-4-5 potentials for the NiAl cubic-tetragonal phase transformation
potential, are identical. Consequently, the geometric reprefor zero stress and for two three-dimensional stress states.
sentations of the phase equilibrium and transformation con- In Sec. V, analytical solutions of the one-dimensional
ditions introduced in part Il Ref. 2 can be used for the alter-static Ginzburg-Landau equations for a constant three-
native potentials as well. dimensional stress tensor and invariant-plane strain are found
The distinguishing feature of the 2-4-6 polynomial is thatfor the 2-3-4 and 2-4-6 potentials and compared. Analytical
its curvature at the martensitid) minimum is 4 times solutions of the Ginzburg-Landau equation for the 2-4-6 po-
larger than at the austenitié) minimum, while both curva- tential in strain for the stress-free case were found by Falk.
tures are the same for the 2-3-4-5 polynomial derived inJacob8 generalized some of them to finite strain and to two-
Refs. 1 and 2. This difference in the curvatures significantlydimensional problems that can be treated as one dimensional
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and also calculated displacements. However, the physical irscribe PT’s with transformation strains that differ only in
terpretation of some of the solutions, such as soliton®\on sign. This is usually done by means of an even polynomial
andM and soliton splitting, was unclear. In Ref. 7, numerical potential in the straift® The only strain appearing in our
solutions for criticalM nuclei of the 2-3-4 potential were Landau potentials is the transformation strajn but it can-
analyzed in detail under prescribed displacements. It waBot serve as an order parameter because it does not change
used in Ref. 7 to model the nonclassical nucleation of awith the stress, like the strain does—the transformation strain
ellipsoidal region. is fixed for each martensitic variant. To describe a change in
In contrast to Refs. 5 and 6, our theory incorporates hosign of the transformation strain, the functigrisee Eqs(1)
mogeneous multiaxial stresses and we provide physical inand(2)] must be odd in the order parametgr but the ther-
terpretations of the solutions of the Ginzburg-Landau equamal part of the free energymust be an even function of.
tions. Despite the significant differences between our theor¥f ¢(7) is a 1-3-5 polynomial and(#) is a 2-4-6 polyno-
and Falk's} the dimensionless forms of the Ginzburg- mial, thenG(#7) is a complete(contains all powepssixth-
Landau equations for our 2-4-6 potential and Falk’s straindegree polynomial that cannot be studied analytically and
based potential coincide. This enables us to borrow some ahay have additional unwanted extrema. There is, however,
Falk’s analytical solutions for the stress-free case and anan alternative to including odd powers af &sgn(y) is
lyze their counterparts in relevant variables and under &ubstituted fore, in a 2-4-6 polynomial Gibbs potential.
constant-stress tensor, which is significantly different from In Sec. IIA we derive a 2-4-6 polynomial potential in
Falk’s results. Analytical solutions for the 2-3-4 potential areorder parameters; [0,1]. In Sec. Il B the range of order
found. All solutions depend on three parametess:which  parameter values is extended fr¢®1] to [ —1,1] for PT’s
characterizes the stability of austenisg; which is propor-  with g, that differ only in sign and more generally for PT’s
tional to the thermodynamic driving force for thé—A PT  where thes, for pairs of martensitic variants decompose into
(both 's; ands, are stress and temperature dependemd two components: one that is the same for both variants and
the gradient energy coefficieft. Phase and transformation one that is equal in magnitude but of opposite sign for the
diagrams ins;-s, coordinates are analyzed. It is proven by two variants. This extension reduces the number of order
numerical solution of the time-dependent Ginzburg-Landawparameters by a factor of 2. A similar result was obtained for
equation that a stationaiy soliton onA and anA soliton on  the 2-3-4-5 potential.
M are in fact martensitic and austenitic critical nuclei. The
structure and energetics of ti and A critical nuclei, as
well as diffuseA-M and M, -M_ interfaces, are studied in
detall. In particular, the widths of tHd andA critical nuclei, The 2-4-6 polynomial is subject to the same requirements
and the thicknesses of their interfaces, and the energies of tlas the 2-3-4-5 polynomial Gibbs potential derived in parts |
nuclei, and their interfaces are determined in terms of théRefs. 2 and Il (Ref. 2. Following the same steps as before
aforementioned three parameters. A relation between the eme obtain
ergy and the width of the equilibriurA-M interface and
stress hysteresis is found. Two typesMf -M_ interfaces
are considered: a simple kink connectiblg to M_ and an G=—o:
exotic splitM, -M_ interface comprised of juxtaposédl, -A
andA-M_ interfaces. This splitting is interpreted as a poten-
tially new mechanism: barrierless nucleation. Nucleation -0
occurs in the region of stability ol near the equilibrium

A. Positive order parameters
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M-A line. Such nucleation might be found experimentally at n
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In Sec. VI, the gradient energy coefficients, energies, and k=1

widths of theM, -M_ and A-M interfaces are estimated for n

NiAl alloy.
In Sec. VII, a phase field theory of dislocations is devel-
oped. The known theofyis based on a formalism similar to

n
-0 kzletk@(a, MK — 0| €goF kzl(eek_ €g0)p(ay, ﬂk))

n n-1 n
phase field theory of martensitic PT(Ref. 4 and has a IV
similar shortcoming; namely, the equilibrium value of the +;(§=:1 f(e’nk)+i=21 j:izil FisCnim); @
Burgers vector and the plastic strain depend on stress. We
extend our approach developed for PT’'s to dislocations to ) . .
eliminate this drawback. e(a,p)=an/2+(3—a)p+(a—4)p/2, Osas6; (2
IIl. SIXTH-DEGREE POLYNOMIAL GIBBS POTENTIAL f(0, m)=Anp/2+ (3AG = A) ne+(A—4AG ) 92, (3)
In this section we obtain a sixth-degree polynomial Gibbs
potential G that describe PT's between austenit) (and Fij(m . m)=Bn’n’+(Z;—B)n/n’+Cnin’
martensitic variantsNJ;, i=1,2,...n) and between mar- _
tensitic variants. One of the requirements®is that it de- +(Zji—B)ni 7 ; (4)
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Here o is the stress tensog,; and e, are the transformation
RN J

and thermal strains of thgh variant,i=0 corresponds té, M;
£0=0, )\ is the elastic compliance tensor of ordeifor

variant i ()\ A?), andAG’ is the difference between the 9°G(o, 6, 771) _
———— = —60(g;— &) —60:(gy— &)

thermal parts of the Gibbs energiesMfandA. The param- ‘7’71

etersA and A characterize the thresholds fé«—M; and s 3
M, M; transformations, while8 and C control the Gibbs —30:(N\j=N):o—2(0: (N - N):0):0
energy away from both thé\ and M; minima and the 3

minimum-energy paths between the minima; therefore, they —Zo(:(N* = NY:0):0+2A<0. (7)
do not affect phase equilibrium and transformation condi- 2 b

tions. The material parametess a,, a4, azy, and ayy
govern the variations of;; , €4, and the elastic compliances
between théA and M; minima.

Define7,=(0, . ..,07=1,0, ... ,0), thevector from the n 1 n-1 n
origin to M;. The Gibbs potentlal was constructed to have . _2 eio(a,m) z 2 W nl13(nfeq+ niey)
local minima at the origin and at the pomt&, , =
=1, ..., but no constraints were placed Grat the points +(a—3)(nley+ 7728'[')]- ®)
i+ ;;j, ;7i+ j+ 7., etc. Consequentlyz may be smaller e

at such points that at th& and M; local minima; i.e., non- ¢ js easily verified thate, satisfies all requirementsz,(0)
physical phases can appear. The relative valueG at A, =0, () =2y, € (7]) eao(a, 7).
- t I ti t I ti I

The transformation strain is equal tedG(0, 6,7;)/do at
zero thermal strain:

M, 7+ 7;, etc., are controlled by the paramet&randC. The thermodynamlc equilibrium conditionsG/d7;=0

SinceF;(1,1)=2;;+Z;; =B+ C, the elimination of minima  (j= .n) haven+1 solutions corresponding t& and

at 7+ ;. 7+ n;+ 7, etc., can be achieved by choosing theM n=0andy=7;, i=1,...n. There are other solu-

B=<0 andC>0. ___ tions of 9G/d7;=0 that correspond to maxima or saddle
Define 0:(0, ...,0), which corresponds t&, and »; points. In the case of a single variant, there is, in addition to

=(0,...,0%.,0,...,0). Thephase transformation condi- the extrema at;;=0 and#,=1, an extremum at

tions are as follows:

n=\[A—ao:g+a,o:(g-0—£4)+A]/3N,

A—>Mi .

, B A=a,0:(Ag—\y): 012+ ag, o:(A3— \)): 0): 073
J°G(o,6,0)
o <0 +tagn o (o (M- 0)):0l4,

=ao g tayo(gy— 800)+ 0'(}\ N):o
h‘ZA_4AGa_(a_4)0':8t+(a0_4)0':(890_891)

+—0'(()\3 Ad):o):o +(ay—4)o:(Ng—\y): 072
+(ag —4) o (N3—A3):0):073
+_"( (N = Rg) 0) 0= A; + (A — 4 o (@ (N —\D: 0)): o4, 9)
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which corresponds to a maximum @if 7»3<1. The height (N;
of the activation barrier for th&d—M PT can be calculated s ;Ziggo
by substitutingz; in Eq. (1): - 3o=0
4.6 =-500
G(0,6,7m3)—G(0,0,00=[2A—9AG’—(2a—9) 0 & 5.0 =-2000
+(2a,—9) o (ggo— &p1) 7
+(2ag,—9) 0:(A3—A)):0:0/3
+(2a4—9)0:0: (NG
—\Y): 0 al4] 7413, (10) a
The activation barrier for theM—A PT is G(o,6,73) N
—G(o,0,1), which can be obtained by addig( o, 6, 0) G o — 3000
~G(o, 0, 1)= 05— AG’ to Eq.(10. oo 1500
It is a good approximation over a modest range of tem- 3 & = 1000
peratures to takeAG’ and A to be linear functions of the 4.0 =500
temperaturé, 5.0 =-1000
AGo=2z(0—6,), A=Ay(0—6;), z>0, Ay>0,
(11) 7
whered, is the equilibrium temperature for stress-frie@nd
M, —z is the jump in specific entropy at the equilibrium

temperature, and); is the critical temperature at which
stress-freeA loses its thermodynamic stability. Then

f=Ao(0— 0c) 7*12+[32(6— ) — Ag( 6= 6) 17" FIG. 1. G(#) for equal deviations of the critical temperatures
6 from the equilibrium temperature at various stresses (8r 6
A0~ 0c) = 42(0= 0 17°/2. (12) =200 K ang(b) 6=250 K.pThe same parameter values@namely
Designating the critical temperature at which stress-fvee &:=0.1, a=3, 6.=100 K, 6,=200 K, andA,=3 MPa/K—were
loses its thermodynamic stability @, one obtaingg,= 9,  USed for both plots.
+62(0.— 0.)/ (62— Ag) with Ag<6z from Eq. (6). The in-
equality Ay<6z was assumed in the derivation of the equa-
tion for 6. and it follows from the evident inequalitie, &t a(6—a)
> 0> 0 that it is not contradictory. For equal deviations of This expression forH is the same as for the 2-3-4-5
the critical temperatures from the equilibrium temperaturegtentiall For Ag>za (Ag<za) the hysteresis grow&e-
one obtainsA,=3z and further simplification of Eq(12).  creasepwith temperature and foh,=za it is independent
For PT's that can be treated as one dimensional, aree;  of temperature.
=oe, whereo and e, are scalar measures of stress and  The equatione=—dG/de gives the relation between
transformation straif,Eq. (9) for 7; provides us with the irain and order parameters for any actual transformation
unstable equilibrium-stress—transformation-strain curve. Nepath at constane. Consider a single martensitic variant. In
glecting the differences between the compliances and thethermodynamic equilibriume( e, 7) = — 9G/da and (9) for

6 (Ag—za)0+zalb.—Ayb,

(15

mal strain tensors oA andM we find ns3(0) constitute a parametric relation between strain and
X order parameter witlo as the parameter. This » relation
3(A—4AG") n*—A simplifies considerably in a linear elastic material for which
o= : 19 Eq. (13 holds:
ef3(a—4)n’~a] q: 0las-
In the approximatiorill), the o-% curve depends linearly on 3(A—4AGH p?—A
temperature e=ewp(a,n)+\ 2 : (16)
’ g3(a—4)n°—a]
3[Ao(6— 0c) —4z(0— 6)17°— Ao(6— 6) This equation is valid for & <1, i.e., forAA/(sa)<e
o= = c T (149 =g +N(A-6AG")/[e(a—6)].

)2 3
ed3(a-4)n°-al In Fig. 1, we plotG:=G+ 3 o=\ o versusy for two tem-

and for the stress hysteresi$:=c(7=0)—o(n=1) one Peratures and various stresses in the approximéfitnfor
obtains Ap=3z, which corresponds t@.=(6.+ 6;)/2; the exten-
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sion to negativey will be considered in Sec. I B. In contrast rium conditiondG/d»n=0 gives, in addition to the rootg,
to the 2-3-4-5 polynomidaisee Fig. 6 in Ref. 1 the curvature =0, 5,=0, and#; [see Eq.{9)], the negative roots
(second derivative with respect i) at the martensitic mini-
mum is significantly larger than at the austenitic minimum.

=-1, N5= — \/

Indeed, the rati§d2G(1)/d72]/[ 3°G(0)/a7?] for the 2-4-6 ao g +A _
potential is 4 times greater than for the 2-3-4-5 polynomial. 3[(a—4)0:g—4AG+A]
(Note that the curvatures of th& and M minima are the (17
same for the 2-3-4-5 potential at thermodynamic equilib-
rium.) This difference is not related to differences in the The PT conditions, which follow fromy;=0,1 and7s=0,
elastic moduli or to the conditions for the loss of stability of —1, are
homogeneous phases. This difference in curvature leads to
significant differences between the profiles and energies of A A
the critical martensitic nuclei for the 2-4-6 and 2-3-4 poten- A—Mi: og=—; A=M_: ogs=—_;
. a a
tials (see Sec. Y It also leads to convergence of the solu-
tions of the time-dependent Ginzburg-Landau equations to
different equilibrium domain wall configurations for the 6AG’—A
same thermodynamic, initial, and boundary conditions, Mi—AL oie s —p———
which will be described in detail elsewhere.
The stress-strain curve for the 2-4-6 polynomial is similar P
to that of the 2-3-4-5 polynomial, but there are differences; M DA oe=— 6AGT-A (18)
see Fig. 5 in Ref. 1. First, fa= 3, o is a linear function of - ' ot 6—a
7y for the 2-3-4-5 polynomial, bu#r is a nonlinear function
of # for the 2-4-6 polynomial. The absolute value of the For AG?>A(a—3)/3a, the M_—A PT occurs at smaller
tangent elastic modulus at=1 is much larger for the 2-4-6 stresses than does the—~M, PT; for a=3 this occurs at
polynomial than for the 2-3-4-5 polynomial, a consequenced> 6. In this caseM_ first transforms toA and then, after
of the greater curvature @(») at n=1. an increase in stress or a decrease in temperadut@ns-
forms toM, . In the opposite cas®]_ transforms directly to
M, becausé is unstable.
A volume preserving IPS is a simple shear in direction
in the habit plane with normat, &= 3y,(mn+nm), o &,
Continuation of the order parameters to negative values 7y;, 7:=m-o-n; here r and y, are the shear stress and
requires that the termC 771377,'3 in Fj; be replaced by strain. The one-dimensional treatment presented in Ref. 1 is
Cl#l% n)® Then Fy; is invariant under ——7 or  applicable. ~
7= — 7] and Spurious minima at+ Anii ;]J , * Anii ;] - In Flg 1, the.dependence of:=G+ %0’:)\:0‘ onn in the -
+ ;7k, etc., can be eliminated by choosiBg=0 andC>0, interval [ —1,1] is presented for two temperatures and vari-

as is the case for positive order parameters. ous stresses fok,=3z. _ o

We start with the special case of martensitic variants with I part &; of the transformation strain is the same for the
transformation strains that differ only in sign. This can be theM, andM _ variants and another pas}; is of opposite sign,
case only if the transformation strain is purely deviatoricthen bothM, andM_ can be described by the single order
since the volumetric strains must be of the same sign. Th'ﬁarametemi upon substitutings; + e;sgn(z;) for &, in Egs.
condition is approximately met for the IPS variants in, for(l) and (5). For IPS g =enin ande. =1 (myn +nmy)
example, CuAINi, CuZnGa, Cuzn, CuAlZn, AgCd, and NiAl : 2 & = el & = 2 YA T,

wheree, the strain normal to the habit plane, is equal to the

alloys® These pairs of IPS variants with of opposite sign, . . . .
M, andM_, have equal elastic compliances. The thermalvolumetnc strain. The thermal stvr(:)illn tensor may be S|Ur13||larly

strain tensors will be treated below. Our 2-4-6 Landau potend€cOmpPosede ;= &5 san(n) + €5 . Where £5 and &
tial, Egs. (1—(5), can be modified to describe transforma- &€ the deviatoric and volumetric parts &f . ,
tions betweerA andn IPS variants and amonglPS variants For the cublc-orthorhomblc P'I(e_.g_., Cu-NI-Al and
with n/2 order parameters. A single order parameter is assd>U"Cd alloys and the cubic-monoclinic-Il PTe.g., Cu-
ciated withM, andM_ ; the variants are located at7; for Zn-A=I alloys), #; describes the diagonal componentsegf
somei. The modified form of the 2-4-6 potential is obtained @nd &; corresponds to the only shear comportefibree or-
by substitutinge,;sgn(»;) for &; and n/2 for n. The sign der' parqmeters are needed _to describe the six marten_smc
function sgng)= /|7 is always multiplied by 7", variants in the first case ano! six order parameters are requw_ed
where 2<m<6. The second derivatives of the quadraticto describe the 12 variants in the seﬁond case. For the cubic-
terms include terms of the form 2sgpi; therefore, monoclinic-l PT(e.g., Ni-Ti alloys, & is associated with
#°Glan? is discontinuous at the origirG and 9G/dz; are  one shear and the three diagonal components; ofand g
continuous at the origin. is associated with the other two shear components.

Let us consider for simplicityy-independent elastic com- Note that a similar procedure for decreasing the number
pliances. For just two IPS variantd, andM_, the equilib- of degrees of freedom by a factor of 2 can be followed for

B. Continuation of the 2-4-6 order parameters
to negative values
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the 2-3-4-5 polynomial. In addition to substituting; ea(r)=ar’+(4—2a)r3+(a-3)r*, 0<a<s,

+ £,sgn(»;) for g;, one needs to substitutey;| for 7; for 5 o 3 B o4
all odd powers ofy. . f4(0,r)=Ar +(4AG=2A)r>+(A—-3AG"r*, (21)

and forp=6 see Eqs(2) and(3) with r substituted forz,.

ll. POTENTIALS IN HYPERSPHERICAL COORDINATES The functionsP, Q, andq are to be determined. The require-

) ) ment thatG give the free energies &, andM, at =0 and
In the n-dimensional space of order parameters, all mar-;— 1 respectively, implies the conditions

tensitic variants are located on the unit hypersphere; thus it is

natural to construct Gibbs potentials using the hyperspherical P(0)=0, P(1)=1, Q(0)=Q(1)=0. (22
order parametensand i, , k=1, ... n. Herer is the radial _ ) _
coordinate in order-parameter space anfi/2 is the angle  Without loss of generality we assunggl)=1. We require
between the radius vectorand thez, axis: the radial derivative o&5(r, ) to vanish at the origin and at
r=1 for O<sy=<1:
ST 2 s G(0y) 4G(1y) _ dg(0) do(l)
= 2 < = _1_s d y d y q q
r (iEln') - Os WCOS r b o o =0= dr  dr =0. (23
n - (19 - o . .
E co§(—¢k) -1 Similarly, the ¢ derivative ofG(r, ) is forced to vanish at
k=1 2 all r for y=0,1:
The third equation is a constraint that can be eliminated by dG(r,00 dG(r,1) dP(0) dP(1)

expressings in terms of thern,. New Gibbs potentials im

= =
d d d d '
and ¢ can be derived from our 2-3-4 and 2-4-6 potentials 4 v v 4

G(r) for a single martensitic variant by allowing far, de- dQ(0) dQ(1) (24)
pendence in the transformation strain and including a term B AP A
that introducesy,-dependent barriers between all variants. dy dy

We emphasize that the potentials in hyperspherical coordithese conditions include the —equilibrium conditions
nates are not simply reparametrizations of the 2-3-4 an G(A-)/a =0 (i,j=1,2) and also impose additional con-
2-4-6 potentials in Cartesian coordinates but rather new po- IO =2 ) IMPose a .

. ; . : straints on the form of the potential. Requiring that the in-
tentials with somewhat different physics. In contrast to thee Lalit
2-3-4 and 2-4-6 potentials, the Gibbs potentials i#nd the quaiity
¥ have the following desirable features. 2 o 2 2 a2 >

(i) They have no unphysical minima and have no con- ¢ C(1¥)/9¢"= = 0(£,= &) d"PIdy~+ Ad"Qldys g(z%)
stants that do not appear in the phase equilibrium and trans-
formation conditions. for y=0 (¢y=1) coincide with Eq.6) in part Il (Ref. 2—
(i) The paths of minimum free energy between variants.e., it give the samél;— M, (M,— M) PT criterion as Eq.
are great circles on the unit hypersphere. Variant-variant7) or (5) in (Ref. 2—results in
transformations occur along these paths and can be param-

etrized by a single angle. This property of a potential in *P(0)/ dyp*=— 3*P(1)/ dy*=86,
hyperspherical coordinates makes it possible to obtain an (26)
analytical kink solution of the time-independent Ginzburg- 9%Q(0)/ay?=9?Q(1)/ > =2.

Landau equation that connects martensitic variants without ) ) ) ) )
passing through an austenitic minimum. Similar solutionsV& also require lim.o(a/ @) =lim,_o(q/r?)=0, which

cannot be obtained for the potentials in Cartesian order pagliminates the barrier to the, M, PT in the vicinity of the

rameters. origin. Otherwise, followingM; ,— A, the A remembers the

variant from which it came. Restricting our attention to 2-3-4

A Two martensitic variants anq 2-4-6 polynomials, we thain the following functions
: which satisfy the above requirements:

We now consider the case=2 for »-independent elastic

compliances and thermal strain tensor. A polar coordinate Q=y¢*(1-¢)? P=y*3-2y),
system can be used and all derivations are quite simple. Our (27)
Gibbs potential is given by qs=4r3-3r% qgg=3r*—2r".

N _ The polynomialgg, f, and ¢ must be of the same degree. If
Clonb.r)=—oNol2=oilent (o= 2P0 s’ ere not the situation, then additional unphysical ex-
+1,(0,1)+AQ(¥)qu(r), (200  trema might appear and an analytical study would not be
P P possible. The polynomials it can be used with both fourth-
wherep=4 corresponds to the 2-3-4 polynomigk=6 cor-  and sixth-degree polynomials imNote thatQ can be written
responds to the 2-4-6 polynomial, awd= ;=1—,. For  inthe formQ= Y25, Forn martensitic variants, this gener-
p=4 we havé alizes toQ=¢?- - - y2; see next section.
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Variant-variant transformations can be studied analyti-
cally by puttingr =1 in the above equations. For example, a
solution of the equationdG(1,4)/dy=0 is ¢3=1/2 These conditions are most easily verified by first expanding
—(39)/(2A) with S:= 0 (&,— &), which is the location of the potentials(29) around the points;yj and 0 to second
the barrier for theM;— M, PT. The corresponding activation order in the order parameters and then calculating the deriva-
barriers are tives.

In the neighborhood ofy; the potential is

M—M;: 30:(g;—&;)+A<0. (32)

G(1,43)—G(1,00=(1—3S/A)3(A+S)/186,
L (28) oL A 2

G(l,lﬂg)_G(1,1)=(1+3S/A)3(A—S)/16 G=AG _Ea.h.a_a.eu-i_?iz;&j [30.(8tj—8ti)+A]7]i

A variant-variant kink solution of the time-independent

+w[(6—a)o.e;+A—6AG](7,— 1)+ 0O(7>),
Ginzburg-Landau equation for thie= 1 potential will be ob- @pl( Joey 1m=1) (7)

tained in Sec. V. (33
where w,=1 and wg=2. This always has an extremum
B. n martensitic variants at ;7 .
j:
We assumey-independent elastic compliances and ther- .
mal strain. Equation§20) and (27) generalize to JIG(n; o
a g i')=0, ihj=1,...n. (34)

an;
1 n
G+ 5oNo=— a:gl eud 1= 39+ 2¢7) (1) The mixed derivatives?G/a7;an; (i #]) of Eq. (33) vanish
at all 7. It follows that the conditions®G( 7;)/d7°<0 and
#*G(7;)/dn?<0 are the conditions foM;—~A and M

+fp(ev,r)+ijj1 YEap(r). (29)

It is easy to check using, + ¢»=1 that, forn=2, Eq.(29)
reduces to Eq(20) with P andQ given by Eq.(27).

We now verify the equilibrium conditions—namely,

dGlam=0—at the points €(0,...,0) and 7, j
=1,...n, as well as the phase instability conditions:

6AG’—A
M,— A ogi= ?, (30)
A
A—>Mi: O &= a, (31)
M2 N2

—M;, respectively. Thev;— A PT condition is given by

P*G(7) _
ﬁnjz

which coincides with Eq(30). Similarly, the M;—M; PT
condition is

2wy[(6—a)oie; +A—-6AG”]<0, (35

#G(7n) 8 _
- =—[30:(g;— &) +A]=<0,
an;

)

(36)

in agreement with Eq.32).
In the neighborhood of the origin we have

N2

7/

&
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1
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N

(@)
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1 m

(b) (©

FIG. 2. Level curves ofs for NiAl at #=0 and normal stresses,= ,=03=0: (a) 2-3-4 polynomial in polar coordinatet) 2-3-4
polynomial in Cartesian coordinates, afwl 2-4-6 polynomial in Cartesian coordinates.
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FIG. 3. Level curves of5 for NiAl at =0 and normal stresses, = 1000, o, = —1000, 03=—3000: (a) 2-3-4 polynomial in polar
coordinates(b) 2-3-4 polynomial in Cartesian coordinates, gofi2-4-6 polynomial in Cartesian coordinates.

. _ n PG(r=04;=04=1 for i#j)
G=—§0':)\10'+wp1 _ao.:kgl en(1—3Y2+242) +A|r? A—M;: ] arzl
(37 =(2lwp)(—aoie; +A)<0,  (39)

to second order im. Obviously,G has an extremum at the for the variant with the maximum value ef. &, in agree-
origin for any stress or temperature. Unlike the mixed de-ment with Eq.(31).

rivatives at the martensitic extrema, the mixed derivatives do Thus, the potential29) in hyperspherical coordinates sat-
not vanish at the origin, but as we shall see,AheM, PTis isfies the equilibrium and PT conditions. B
unaffected. TheA instability must be determined from the If & is the same foM, andM_ variants ande;; is of

first fulfillment of the condition?®G/dr?<0 in some radial opposite sign, then the number of order parameters is re-
direction. Since the minima o#?G(0)/dr? are along the duced by a factor of 2 by substitutirg; + £,5gn(z;) for &;;
coordinate axes, one gets in Eq. (29).

N2 N2 N2

1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

1

(a) (b) (©

FIG. 4. Level curves of5 for NiAl at =0 and normal stresses; =4051,0,= — 2000, 03= —3000: (a) 2-3-4 polynomial in polar
coordinates(b) 2-3-4 polynomial in Cartesian coordinates, dof2-4-6 polynomial in Cartesian coordinates.
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IV. COMPARISON OF POTENTIALS: THE NiAl CUBIC- V. CRITICAL NUCLEI AND DIFFUSE INTERFACES

TETRAGONAL PT . . . . . .
In this section we will obtain and interpret some spatially

In part 1l (Ref. 2 we found all material parameters of the one-dimensional analytical solutions of the time-independent
2-3-4-5 potential for the cubic-to-tetragonal PT in NiAl. The Ginzburg-Landau equations for the 2-3-4, 2-4-6, and,
relevant material constants for the 2-3-4-5 and polar 2-3-$otentials. As was shown in Ref. 6, some two-dimensional
potentials are problems for the cubic-rectangular PT can be treated as one

dimensional, which is the case for our models as well. Our
one-dimensional results on critical nuclei and diffuse inter-
faces hold for IPS variants—that is, for transformation
strains of the forme,= 3 y,(mn+nm)sgn(») + enn, where
—1=< =1 for the 2-4-6 potential andQ =1 for the 2-3-4
potential. The order parameter is a function of the coordinate
(39 x along then axis. Despite the restriction to one spatial di-
mension, our solutions are valid for an arbitrary three-
dimensional homogeneous stress tengoin a rectangular
parallelepiped with corresponding homogeneous tractions at
D=500 MPa: its faces. In order to impose the usual boundary condition on
' the order parametdsee Eq.55)], the faces of the parallel-
epiped must be orthogonal and parallelntgFig. 5). In the

the tensorse;, and &3 can be obtained by permutation of following subsections the parallelepiped is actually infinite in
components. The constait does not appear in the polar the x direction.

potential. We chos€ = —1000 from the condition that at
o=—7000 MPa, which is far outside the region of stability
of the martensite and consequently far beyond stresses of . L
interest, G(0,0,1,1%G(0,0,1,0), and no unphysical We write the 2-4-6 and 2-3-4 potentials in terms of two
minima exist. This ensures that the same is true at smalldfarameters

compressive stresses or in tension.

Plots of G(0,60,71,7,)=G(0,6,71,7,) + 20:\: o for
PT’s in NiAl for zero stress and two three-dimensional stress
states atV=0 K for the 2-3-4-5, 2-4-6, and polar 2-3-4 po-
tentials are shown in Figs. 2—4. The normal stresses onthe _ _, _ . . o_ . .
faces of the crystal are denotegl; all stresses are in MPa. Su=A-aoie, S=12A0GT-0ie), P=s/s 42)
We applied a large compressive stress to suppress the

appearance of the third variant. Growth®fcorresponds to

variation from black to white. The driving force is orthogo-
nal to the level curves. There are no unphysical minima
present. This is particularly noteworthy for the polar 2-3-4

£,={0.215;-0.078,-0.07§, a=2.980,
A=5320 MPa, 6,=215 K,

A,=4.40 MPaK?!, 6,=-183 K, B=0,

A. Governing equations

Ge=s,7°[1— (4—P) 5?12+ (3—P) *3]/2, (40

G,=s,7°[1— (6—P) 5/3+(4—P)5%/4],  (41)

Here and later the subscripts 4 and 6 refer to 2-3-4 or 2-4-6
potentials, respectively. We have

dGgldn=—s;n(1—7*)[(3—P)n*—1],

otential since it contains no constants that can be tuned to _ .
gliminate unphysical minima. We also checked this for the 9Galdn=sm(1=m)[2=(4=P)n];
three-variant case by analyziitg numerically. ?Gg(0)/d9?=(112)9?G,4(0)] dn*=s,,

For zero stressd§ig. 2), bothM variants are stable ardl
is metastable. I*Ge(1)1dn?*=20°G4(1)]dn?=25,(2—P);
For o= —0,=1000 (pure shear in the 1-2 plaphess
=—3000, M, is stable,M, is metastable, and is unstable 1 _ s, 8—-3P
(Fig. 3. Because of a barrier betwed, and A, A trans- 763~ \3—p Csl76d =75 5
forms toM; only. (P=3)
For o,=4051, o,=—2000, andos=—3000, M, is (43
stable, andVl, is unstable only in the direction ™, because _ 2 & _45(3-P)
the barrier betweeM, andA still exists (Fig. 4). 3= 4 " pe 4(43) = 3 (4—P)%"

The energy variation along the coordinate axes is identical _
for the 2-3-4-5 potential and the polar 2-3-4 potential. TheHere 743 and 7,43 correspond to the maxima &, as in Eq.
differences between these potentials are most pronounced f(8).
the stress-free case. Because the 2-4-6 potential has a muchFor a single order parameter that depends only on the
larger curvature at th® minimum than at théd minimum,  coordinate x along the normal to the habit plane, the
there are significant differences in local values between th&inzburg-Landau energfg =G+ V 5-8-V 5 reduces to

2-4-6 and the other two potentials near the stadlenini-  Gg, =G+ B(d7/x)?2, where the scalaB is a linear combi-
mum. As will be shown in Sec. V, such local differencesnation of components of the second-rank tengoim the
result in different profiles for the criticayl nuclei. crystal coordinates. Thus, even for a highly anisotrofic
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FIG. 5. Scheme for solution of the Landau-Ginzburg equation.
7(x) represents critical nuclei and kink solutions. The crystal lattice
transforms from state 1 to 2 by invariant-plane strain.
lattice, the one-dimensional case under consideration re-
quires only a single gradient paramej@er The Ginzburg-
Landau energyGg, leads to the time-dependent Ginzburg-
Landau equation
d 6G 9G 92
&_:/:_ 5GL=—>\(——23—727). (44) ‘ol
7 an X \
1
Here\>0 is the kinetic coefficient. We rescale variables to L p
cast Eq.(44) in dimensionless form. The dimensionless po- "¢ %0 -4 =30 =20 -10 0
tentials and order parameters are
06=MeGe=Boée— st 88, &c=kemi (45
9a=MyGy=B,&—£a+ €5, Ea=kan. (46)
The parameters are defined and related as follows:
5 43P _\F [3—P
® 3a-p2" 0 V3 V4-P
16(3—P)2  2k3Bg
m6:9 41_p)3 = S ; P
Sl( ) ! -60 -50 -40 -30 =20 -10 0
(47)
B _ 9(4—-P) _3(4-P) ()
* 46-p)?’ ‘T4 (6—-P)" FIG. 6. Plots of(a) B(P), (b) k(P), and (c) s;m(P). Solid
(dashedl lines correspond to the 2-44@-3-4) potential.
81(4—-P)® KkiB
M= _— 00— (- (- &), n=\OH1-1-4By),
64s,(6—P) S1
It is easy to check thdt can be determined by the condition 862~ \/O'al’L V1-4Bg);
dg/dé=0 at the martensitic minimum. Plots B{P), k(P), (48)
and s;m(P) in the region of coexistence & and M (P g4:§§(§4—§41)(§4—§42), £,1=0.51—+1-4B,),
<2) for both potentials are presented in Fig. 6. We also
defineéey, €62, a1, aNdEyy: §40=0.5(1+V1-4By).
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re deep potential well. Fag, <0 andP<2, whereA andM are
hB=Bs =14 unstable, there is an artificial minimum a&0y;<1.
These drawbacks do not affect the properties of the sys-
tem in the coexistence region or along instabili®T) lines,
Stable M Stable A P but problems can arise when thermomechanical loading
Metastable A Metastable M By =9/32 moves the pointg; ,s,) too close to the unphysical wedge in
the s;-s, plane. If the initial phase is metastable, then rapid
loading toward the unphysical wedge can result in a trans-
> Bi=Bs=0 formation to a spurious phase. On the other hand, if the rate
3 of thermomechanical loading is sufficiently low, then the
transition will be into the stable phase. In general, however,
A & M are |unstable the rate will not be low enough to ensure transformation to
=032 the stable phase, but even if this is the case or if the initial
Bs=13 phase is stable, the poirg(,s,) must not move too close to
the unphysical wedge or else the small potential barrier sepa-
rating the stable phase from the spurious phase will be sur-
FIG. 7. Phase equilibrium and transformation diagrams in themounted by thermal fluctuations. These shortcomings in the
$1-S; plane for the 2-3-4 and 2-4-6 potentials. potentials can be circumvented by modifying them outside
the region of phase coexistence. The only requirements for
such a modification are that it be continuous on the instabil-
ity lines and that it have only one minimum in the region of
eM instability at =0 and a single minimum in the region of
A instability at»=1. So, for example, foP>2 we can put

51 4

-] B
o
8] =8
v
Il

By=Bs=0
Stable M

—_ N

We will analyze all results in terms d?, because it is the

same for both polynomials, and in terms cE8,<9/32 and

0=Bg=1/3, which vary over narrow ranges and allow more

vivid comparisons. It is also convenient to use the paramet

a:=P/(4—P): =0 for thermodynamic equilibriumg=1

when M loses its stability, andv=—1 when A loses its = . 2D 1. .2, 4

stability. Dimensionless order parameters and potentials are Ce=s1n(P=1=n"+n'13)/2,

convenient for intermediate steps in calculations but our so- ~ 2 .

lutions of the time-independent Ginzburg-Landau equations Ga=s1n{P=1= (43 9+ 77/2], $,>0;

are always presented in terms of the physical order parameter ~ 4 2 (49)

7(x) for two reasons: first, there is no direct scaling between Ge=s1(1=s)P 7 (7°/3-1/2)/2,

¢(&) and ¢(7), and second, the dimensionless parameters ~ 5

for the two potentials—k, andkg, for example—differ sig- G4=s1(1—8))P7*(1/3—75/4), $,<0.

nificantly for the same thermodynamic state. With such a modification, regions where only one phase ex-
Equilibrium and PT lines in the,-s, plane are shown in ists can be correctly described in termsRfand B. For P

Fig. 7. The lines,=0 (P=0 andB,=Bs=1/4) fors;=0is > (0<B,<9/32, 0<Bg<1/3), only A exists fors;>0

the equilibrium line betweeA andM. Fors,>0 (P>0 and  and onlyM exists fors;<0.

B>1/4) ands,;>0, A is stable(relative toM), and fors, As an alternative to modifying the potential, the order

<0 (P<0 and 0<B<1/4) ands; >0, M is stable. Marten-  parameters can be constrained in numerical simulations to

site is also stablérelative toA) for s;,<0 andP>2. The the interval[0,1] or [ —1,1] for the extended 2-4-6 potential.

line s;=0 for s,<0 (P=—% andB=0) is the line of loss | other words, reflective boundary conditions can be im-

of stability of A; i.e., fors;<0 ands,<0 (P=0), onlyM  posed at the ends of these intervals.

can exist, though not everywhere in this region. The khe Introducing new spatial and time variables by the equa-

=2 (B,=9/32, Bg=1/3) for s;=0 is the line of loss of tions

stability of M; i.e., for P>2 ands;=0, only A can exist.

Consequently, both phases coexist in the seeter<P<2 Ke S; V6 [s; 4—P )\két
(0<B4<9/32, 0<Bg<1/3) for s;>0. The sector—~<P Yo~ X" N2 X" 2 V3 75 % m.°
<2 (0<B4<9/32, 0<Bg<1/3) for s;<0 is an unphysical Ame FBe Fy3-Pp °
region because botid andA are unstable. In fact our poten- (50
tia!s were desjgned to dgscribg _mat_erial behavior in.the co- ko s 2 \/;1 6—P B )\kﬁt
existence region and at instability lines. Our potentials are y4_\/,8_m4x_ \ ,BB4X_ 3V 4—PX' Zy= my

not applicable outside this region. Some of the above in-
equalities cannot be expressed in term$8dfecauseB is @  we obtain the dimensionless form of the Ginzburg-Landau

nonmonotonic function oP. equation
Austenite is stable relative t™ in the wedges,;>0, P
>2, but forP>P%, wherePg.=8/3 andP}.=3, there is an g€ g 5%
artificial minimum more stable thai at 7>1 [see Eq. T (9—y2 : (51

(43)]. Fors;<0 andP>2, M is stable relative td\, but for
2<P<PY, wherePg.=3 and P}.=4, a finite barrier at Henceforth we consider only time independent solutions—
»>1 separates the martensitic minimum from an infinitelyi.e., 9¢/9z=0. The resulting equationd?¢/dy?=dg/d¢ is
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the equation of motion of a material point with mass equal to B. Critical martensitic nucleus: M soliton in A

2 in the potential field-g(¢). An energy integral reads Let us start with the case wheexists asc— =+ o, hence

0o=0. The solutions below are valid in the region of stabil-
dé/dy=+g—do, (52 ity of M and metastability ofA, i.e., s;>0 and P<0 (0

. . . ) <B=1/4). One has
where gy is the integration constant. At points where

dé/dy=0, e.g., at the center of a nuclegss go. Designat- ur
ing E(Ya)= i
. , 1+ (1— 5—) S\ Ba(Ya—yoa/2]
goL=9cL—Jo=9g—Jot (d&/dy) (53 58
and taking into account E@52), one finds that the contribu- I
tions togg, from g—go and the gradient of the order param- §2{'(y6) = ,
eter ¢ are the same, henag, =2(g—9go). Generally, Eq. gél .
(52) has periodic solutions with diffuse interfaces. The to- 1+ 1-— Sint[ VBo(Ye— Yoo ]
tal energy per unit area of diffuse interfaces is given by &6o
[ S1
e:= LgéLdy= 2nj Vg~ god¢, (54) y AT
74(X)= Tk
wherel :=y/s; /(BB)L, 2L is the length of a parallelepiped in
the x direction, and the integration limits of the second inte- —6/6— P+ P2—3Pcoshi /s, /B(x—x.) ]}~ 1
gral depend on the type of interface. The eneegg finite { v sy /B( ol} £59)
even for an infinite slab. The total energy of the system is
infinite for an infinite parallelepiped in the cagg+0. Ee( S1 x)
Falk® found periodic solutions fon domain walls in finite 2PBg
regions, but claims that the separation between domain walls76 6(x)= Ke
must be infinite in an infinite region. However, all of his )
finite-] solutions depend ohonly through the combination =2{4—P+P?—8P/3cosli\2s,/B(Xx—xo) ]} 2
I/n. Consequently, the finite-solutions can be used fdr 11 energies are given by
—oo providedn— oo, keeping the ratid/n, the distance be-
tween the domain walls, finite. 1+2\/B_
Imposing the usual boundary conditions at the ends of the el'=(3-8B,) VB4/6+(Bs— 1/4)In——2
slab V1-4B,
dé(—1)/dy=dé&(l)/dy=0, (55 1+2yB
¢l y=dehrdy el \/8—6/2+(Be—l/4)ln—\/—6,
one obtains V1—-4Bs
(60)
9(_|)=g(|)=go (56) M le M_ 32 (6 P)3 M
Es= C4 Bs:€4,
. . k 27 (4 P)5/2
Using Eq.(45), one derives 4
() dé, M_ ﬁslgﬂ 36 (4-P)°
a\S4) = f L2 3/2
VBiEG— E4+ E4— a0 Ks 8 (3-P)
(57) Y - _
The solution &g'(ye) formally coincides with Falk’s
(£6)= dés solution® Falk did not provide a physical interpretation of
Yol & VBot2— £+ £8— gy his solution, but we do so here. At first sight, the solution

(58) looks contradictory: the smalleB (more negativeP)

Despite the significant differences between our theory anend the greater the stability &, the smaller the magnitude
Falk’ss and completely different variables and parameterspf the order parameter of tHd nucleus. This apparent con-
Eq. (57), is of the same form as Eq14) in Ref. 5. This tradiction disappears if we interpret the above solution as a
means that we can use all of Falk’s formal periodic analyticakritical martensitic nucleus in austenit&/e verified by nu-
solutions and analyze them in terms of our governing parammerically solving the Ginzburg-Landau equati¢sl) that
eters for the 2-4-6 potential. The same procedure can b#ais solution corresponds to unstable thermodynamic equilib-
followed for the calculation of the total energy of the system.rium. An initial profile slightly larger (or smallej than
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FIG. 8. (a) Growth of a supercriticaM nucleus B=0.2,w=1.1). (b) Disappearance of a subcritiddl nucleus B=0.24,w=0.9). (c)
Growth of a supercritical nucleus 8=0.3,w=1.1). (d) Disappearance of a subcritic&lnucleus B=0.26, w=0.9). All plots are for the
2-4-6 potential.

52"(y6) converges taM (or A) everywhere; see Fig. 8. The 9€ g(Wég) 9Es
smallerB, the smaller the size and energgee Eq.(60)] of 9z —( € —2w oy2
the critical nucleus. Numerical solution of the Ginzburg-
Landau equation for the 2-3-4 potential confirms nf%([y4) ag(wés) dg(&s)
is also a criticalM nucleus. Y- tw 9E
Only for thermodynamic equilibriumP=0 or B=1/4,
does the magnitude of the order paramétgr £2,= 1/2 cor- =2&w(w? = 1)[2-3&5(1+w?)]. (61)

respond to complet®l (7=1); otherwise, it is smaller. Note

that for homogeneous stresses and temperature, there is gonsider a supercritical nucleus, i.e>1, for which we

solution for a stablé/ nucleus that grows with an increase in €xpectdé/dz>0. However, this is true only whegs max

the thermodynamic driving force for the&—M PT. satisfies£Z < 2[3(1+w?)]<1/3, which is the case for
Let us designate the solution of the stationary GinzburgB<2/9. For a small thermodynamic driving force /8

Landau equation a&;. We will consider the 2-4-6 potential; =<1/4, the inequality§§< 23(1+w?)] is violated in the

the derivations and results for the 2-3-4 polynomial are simicentral part of the nucleus. Consequently, the magnitude of

lar. We can estimatéé/dz at the instant when the nucleus initially decreases near the center of the nucleus while it

wé appears from Eq(51); w is a constant multiplicative grows in the rest of the nucleus. After a short initial stage,

factor: growth occurs throughout the nucleus.
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For a subcritical nucleusy<1, 9&/9z<0 if the same m
inequality is satisfied. In this case, the central region of the
nucleus grows during a brief initial stage, after whiglile- )
creases throughout the nucleus until it disappears. /

The above analytical estimates provide important insights®-8 /
into the behavior of the nuclei but, of course, detailed, quan- ,
titative results on the growth or shrinkage of the nuclei can©-6 /
only be obtained from numerical simulations, for example, e
Fig. 8. 0.4 -7

As was mentioned, for the 2-4-6 potential we can use e
Falk’s periodic, multinuclei solutions for a finite regfthe 0.2 -
energy of such solutionghe activation energy for nucle- -
ation) is roughly proportional to the number of nuclel2. - ‘ ‘ ‘ ‘ B
However, the physical interpretation of multinuclei solutions 0.05 0.1 0.15 0.2 0.25
is unclear. Is this a stable solution or an unstable one? If it is
a metastable configuration, can it be reached under som a
dynamic process and how high is the energy barrier that
separates it from a lower-energy state with a smaller numbel o)
of nuclei or from a completd state? These problems will
be studied elsewhere.

The amplitudes of the physical order parameters of the
critical M nuclei are 0.

L=
QR R
W W

& 4(1-V1-4By)
TN, T 31 Jo-3m, | 0.

(62

tw  [31-\1-4B,
7"k~ V214138,

From now on, a subscript “1” on an order parameter will
indicate the amplitude of that order parameter. The function?
71 ande(n4) vs B are shown in Fig. 9. The amplitudg;; is un
significantly larger thany,; except at the end point8=0
andB=1/4. Note thatd»,/dB is infinite at the end points
for the 2-4-6 potential and only &= 1/4 for the 2-3-4 poly-
nomial.

Figure 10 showsEM/\/Bs; as a function ofa=P/(4 can_tly gre_ziter_tha@4[7;4(_x)] everywhere. Whel?—0, the
—P). The energy of the 2-3-4 critica¥l nucleus is smaller ©€Ntre region is martensite. ,
than the energy of the criticall nucleus for the 2-4-6 poten- ' e effective widthw of the nucleus can be defined as
tial. The activation energy in thermodynamic equilibrium W=2u(*)/e (), whereu(x) is the displacement at in-

(a=0) is finite, in contrast to the infinite energy of a clas- '

finity and ¢ is the volumetric strain. Thus a nucleus of width
sical nucleus with a sharp interface. Wheroses its stabil- W With a sharp interface and constant volumetric strain
ity, Ef=EY=0, while the activation energy is finite in clas-

e@(n,) produces the same displacement increment as the
sical nucleation theory.

critical nucleus. The displacement at infinity due to volumet-
The profilesp(+/s,/8x,P) ande(ys,1Bx,P) of the criti- ric strain can be calculated by integrating

cal nuclei are shown in Fig. 11 for variotsandB. The ¢

profiles are essentially strain profiles becadse[ 7(x)] is du

the transformation strain. The and » profiles are quite SQD[W(X)]:&, (63

different, especially for small and 1- » where the stron-

gest nonlinearities of the functiop are located. The pro-

files are narrower than the profiles. ForP=—1 the 2-4-6 where u(0)=0. The total displacement contains an addi-

and 2-3-4 nuclei are almost indistinguishable. At larBehe  tional contribution due to constant elastic straiog

2-4-6 and 2-3-4 nuclei have the same amplitudes but the=2Inn:A: o, which we neglect here. The effective widths of

2-3-4 nucleus is wider. At smalle?, ¢g[ 76(X)] is signifi-  the nuclei are

FIG. 9. The amplitudes of the criticdl nuclei vsB: (a) the
ction 7,(B), (b) the functions¢[ 7,(B)] for severala. Solid
(dashedl lines correspond to the 2-44@-3-4) potential.
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E

FIG. 10. The energ$/+/Bs, vs = P/(4—P) for the criticalM nuclei, the criticalA nuclei, theA-M interfaces for the 2-3-4AM,) and
2-4-6 (AMg) potentials, and th#-M interface for the 2-4-6 potential. Solidlashedl lines correspond to the 2-4&-3-4) potential.

My 3 NELSENER (E 3 4P (P8P )
We(P)—8(3_P)2%(7]61) 25:|6 3_Ptanh14 3—p4-P P2—8P/3)

X[576—24(a+ 14)P+ (11a+36)P?]+ 12a+ (12— 7a) P} ,

(64)
8 B[ 2 _,[6-P—PT 3P
Wy(P)= \ﬁ — 2 _tanht
A =P eaman 81[3J4—Pta” ( 3Va—p )
><[864—36(a+15)P+18(a+5)P2—(a+6)P3]—24(3—a)+12(6_a)p_(a+6)|32]_
We define the interface thickness as (7)
M:: CAR/A]
A T (X VX (65)

where x, corresponds to the maximum of the derivativey(x)/dx. The ideal definition would beAM
:=@(n1)/|de[ 7(X)]/dX|max but this cannot be analyzed analytically. The interface thicknesses are

AN (3+14)°[12B4— (15— 3)(Ja—1)] \@
4 2 - —
96\B4(1+J3,)2(1+1,+23,)[3(3+1,)—32B,](1,—3)(1+J,)+12B, ¥ S1

(66)

N (1+J36)'[4Bs—(Ie— 1)(J—1)] \E
® 2\Bg(1+1g)(1+1g+236)(1+Js—3Bg) V(1+1g)(Jg—1)+4Bg Y St

|4:=\9_3ZB4, \]432\1_484, |65=\/1_4BG, ‘]6::\1_386'

The dimensionless widthwMys;/8 and dimensionless (s;—0), WMs, /B andAM\/s, /B go to finite values; there-
thicknessA™ s, /8 are plotted as functions @& in Fig. 12.  fore, WM and AM tend to infinity. Excluding the neighbor-
The widthWM/s; /B tends to infinity for both potentials as hood of B=1/4, both parameters are of comparable magni-
the PT equilibrium line B=1/4, P=0) is approached, while tude; the interface is sharp only near thermodynamic
the interface thicknesaM\/s,/B remains finite. AsB—0 equilibrium. The width of the nucleus is larger for the 2-4-6
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FIG. 11. Profiles of critical martensitic nuclei for varioRsanda=2.98. Solid(dashedl lines are for the 2-4-§2-3-4) potential.

potential than for the 2-3-4 potential. The interface thickness=g(M)=g,, i.e.,g(A) =g(M) =0, which is the case whek

is significantly larger for the 2-3-4 potential f&>0.17 and
almost the same for both potentials for smaber

The interface thicknesses) andAY are given to within
0.4% by the cubic polynomial approximations

ANM=(1.942+1.77B,— 12.8B2+ 68.567) \@
1
7)

(6
M 2 3 B
A= (2.000+0.73B¢+0.381B2+10.662) \E
1

The effective surface energy of a nucleus is defined in Ref. 7
asT™™:=[EM—G(#7,)W]/2, soG(75,)W is the effective bulk

energy of the nucleus. Howeveg(7,)=0 by definition of

7, [see Eq(52) for dé/dy=0 andg,=0]; i.e., the energy of

and M are in thermodynamic equilibriums,=P=0, B
=14, én=én=E=E=12, de=Ea(6— 127, s
= £3(£,— 1/2)%. The solutions of Eq(52) read

AM(y ) =[2(1+e Ve ¥0d2)] 1

£6M(ye)=[2(1+e Vo Y09)] 7112 M= 3efM=1g;
(68)

M) ={1+exd — Vs /B(x—xo) I} %,
76" () ={1+exy — 25,/ B(x—xo) ]} 2

The solution7,™(x) is symmetric arouna=x, but 75" is
not (see Fig. 13 because thé andM minima of the 2-4-6

the nucleus is localized at its surface according to this defipotential have different curvaturefnote, however, that

nition. For our theory, a better definition ™

={EM—G[ ¢(71)IW}/2 sinceG[ ¢(7,)]#0.

C. Kink solutions: A-M diffuse interfaces

We consider the case where the phask &sx— — and
M as x— +oo. Then,g(—«)=g(A)=g0=0 and g(+)

(7/@"")2 is symmetric arounk=xg]. In Fig. 13 we used
X04=0 and Xgg=—IN3 so that n5(0)= 74(0)=1/2. The
strain profilesey[ 7(x)] and ¢g[ 7(x)] are very close and
exhibit smaller interface thicknesses than tj{e) profiles.

A and M are in thermodynamic equilibrium, thiss=P
=0, and consequenthpAG’= o, B=1/4, andk3=1/2.
The interface energy densities are
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whereGg( 762 = 25,/27 andG,( 743 =s,/16 are the energy
barriers betweerA and M at thermodynamic equilibrium.

Equation(69) expresses thA-M interface energy in terms of
\/ﬁ . the material parameters and temperatlarestress, which is
= T\/Ao(‘g_ fc)—AG"a related to temperature via the equilibrium conditisp
=0), the stress hysteresis, or the energy barrier between
\/ﬁ andM at thermodynamic equilibrium.
= T\/(AO_Za)‘9+Za0e_A09c The interface thickness is defined by

1 [a(6—a)BeH d )|
BN NSREEEEIRS .
EsM=3V3BGg(763)/4, ERM=4VBG4(743/3, (69  which results in

v (21-5a+K,)8 ﬁ
* 32a-6)Y11a3—81(9+K,) —5a%(24+K,) +a(486+39K,)] ¥ St

NS (72— 15a+Kg)* \/E 70
6 128/2(a—6)3 —27a2— 24(24+ K ) +5a(48+Kg)] Y 1’

K,:=81—30a+5a2, Kg:=\576—240a+ 33aZ.

Both A4™ and Ag™ are complicated functions @ but they EAM V2 V2
. . 6 _ AMA AM_ V<& .
are accurately approximated by the polynomials W —31—4 , Eg A= 7 PeB;
Ag Ps
(74
1.88<pg=1.88+0.17%+ 0.0006%>— 0.003:°><2.386, EAM
4 S1 EAMAAM:&’B'

2.411<p,=—0.028a—3)2+2.667<2.667. (72
The differences in thé&-M interface profiles and energy den-
sities between the 2-4-6 and 2-3-4 potentials are not signifi-

The interface thicknesses are given by cant

Ps B B
AAM_T6 A Am_ \/:: \/
5 pat PN, PN (99 )—AGla
B
pe\/(Ao—za)GJrzaHe—AoHc

_ ./ B . 94— 0a0= (Ka—&4) (4= éa) (E4— €n2),
= \/Epe m,

1
§Al=§(l_2k4+ \/1_2k4)20,

Ps \ / = (75)
7763 P 1

(7743) Ena=7 (1= 2ks— V1-2k,) <0,

D. Critical austenitic nuclei: A solitons on M

In this section we consider the case where dvlexists
asx— *o, The integration constargy must be a function
of the parameterkg or k, in order to satisfy the boundary
conditionsdé(+0)/dy=0:

If Ag=za, then the stress hysteresis, interface energy den-  gg—geo=(ki— £3)2(£2— £3), éa=+1—2K3.
sity, and interface thickness are temperature independent. It
follows from Eqgs.(69)—(73) that The solutions of Eq(52) are
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©

FIG. 12. The dimensionless effective Widm@"@ of the critical martensitic nuclei vB for various values of for (a) the 2-4-6
potential andb) the 2-3-4 potential(c) The dimensionless thicknedd"\/s, /B of the interface of a critical martensitic nucleus and half of
the dimensionless effective width, ®W&'\/s, /B, of a critical martensitic nucleus, both Bsfor a=3. Solid(dashedllines correspond to the
2-4-6 (2-3-4) polynomial.

€ solutions &5 (ye) and &4(y.4) describe critical austenitic nu-
&(Ye) = , clei (see Fig. 8 From Eq.(76) we obtain the physical order
3ki-1 — parameters as functions Bf
1- ——tankf(ke V3k2—1y)
K
: Jp
np(Xx)=
gA( )= w (76) ® 1 ; ,
S T TR 2(3—P)—3(2—P)tanr?<2\/ﬁlx)
H=11-2k, (77)

1 Ax)=1
><cosr{ 5y4\/1— V1—2k,— 4k, V1+ \/1—2k4—4k4) o T

The parameterkg and k, are restricted to the intervals

[1/4/3,1K/2] and[3/8,1/2, respectively. It was proved nu- 4(3—P)+\2P(6—P) cos}‘( \/81(2 p)x)
2p

merically (as was done for the martensitic nucletisat the

6(2—P)
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n Ks
e5=4 L (K3~ £5) V&5~ Eade
1- e )
e L N
c.8° ///’ 2(4—P) 3
. //
ce f P(8—3P) [\2(3—-P)++3(2—-P)
/ 3(4-P) G
c%—
/- =0.248-0.227P+0.046P2+ 0.00P°. (79)
V4
/// : As was done for the martensitic nucleus, expressions for the
=" : 1. width and interface thickness can be obtained for the auste-
-6 -4 -2 2 4 6 Y nitic nucleus.

Figure 10 shows the energies of the critidéahuclei for
the 2-4-6 and 2-3-4 potentials versus and Fig. 14 shows
profiles of the criticalA nuclei for these two potentials. The
results for the two potentials are very similar except for the
widths in the neighborhood ¢?=0 where the 2-3-4 nucleus

@ is significanlty narrower than the 2-4-6 nucleus.
: //’ - E. Kink solutions: M-M interfaces and barrierless nucleation
- //// of austenite
,7 In this section we present twid-M kink solutions of the
0.5,/ static Ginzburg-Landau equations. The first is a solution for
/ the potentials in hyperspherical coordinates, and the second
oV is a M,-M_ solution of the extendeds(e[—1,1]) 2-4-6
/ Landau potential that exhibits barrierless nucleation of aus-
A tenite.
//Q The minimum-energy paths between stable martensitic
= s variants for the potentials in hyperspherical coordinates are
2 ) 2 P \/:x great circles on the unit hyperspheres 1. Kink solutions
B between martensitic variants exist when both variants have

the same energy, which implies zero stress or zero transfor-
mation work. The potential along the great circle frdfnto

any other variant i$5= sz (1— )%+ AG? for both poten-
where O<P<2. The total energies per unit area of the criti- tlals Both variants are twin-related IPS variants(y)

FIG. 13. Austenite-martensite diffuse interface profiles. Solid
(dashedl lines correspond to the 2-44@-3-4) polynomial.

cal nuclei are 3y = 1+2¢%(3-2¢)](mn+nm) +enn [see Egs.(20)
and (27)]; that is, the normal strain is constant, the shear
32 (6—P)3 strain varies from— vy, to y,, and the PT does not proceed
Eﬁ=2—7\/,831—5/2eﬁ, throughA. The solution of the static Ginzburg-Landau equa-
(4-P) tion 9G/dy=2B* Yl 9x? is
k = _
e4A:4f 4(54_k4)\/(54_§A1)(§4_§A2)d§4 y=(1+exd — VAIB(x—x0)]) ™, (79)
éa1
which interpolates betweddl; at —« andM 2 at+o. The
1 3(12 6P+ P?)\2(4=P)(2=P) solution (79) coincides with Eq(68) for 74 (x) whens; is
4(6—P)3 substituted forA. Fora=3, P(1)=4(#); thus the thick-

ness of the interface is given by Eq32) and(73) for AQ™

- - - . _ . -
4(8=P)+3y2(4-P)(2—P) with s;—A: AJM=2.667yB/A. The total kink energy per
V2P(6—P) unit area |SE$'VI VBAI3.

~0.083-0.086°+0.024P2— 0.001P3; ~ The static Ginzburg-Landau equation for the 2-4-6 poten-
tial admits a kink solution such thaj(+«)=+1, 5(—«)
=—1; i.e., the structure goes td, asx— +o and toM_

S, e asx— —«, There is no corresponding solution for the 2-3-4

(3—P)32 % potential, so we can drop the subscript “6.” Equatitib)

—P(3—P)(6- P)In(

3 4-P)?
B(
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FIG. 14. Profiles of critical austenitic nuclei for varioBsanda=2.98. Solid(dashedl lines correspond to the 2-4{@-3-4) polynomial.

remains valid but with imaginarg,. It is convenient to
designate an imaginary root of the equatipa gy as éai;
then,

9-00=(K2=E)%(E+£2), £a=V2k2~1. (80
The solution of Eq(52) is
k sinh(ky3k?—1y)
&y)= - :
3kc—1
\/ +sintf(k/3k?—1y)

2k?—1

(81)

_ % sﬂ2—P)x>
SN _—
B 2

\/ ( 2 ( sﬂZ—P)x)
3| 1— —| +sink?| \| ————=
P B 2

This solution is valid forP<0, 0<B<1/4. Since o'¢,
=0, it follows thatP=12AGYA; henceAG?<0 sinceP
=<0, which implies stability oM and metastability o\, or
equilibrium. The profilesp(x) and ¢[ »(x)] for various P

EMM:i @eMM
k2 V 2B '
. (82
e [ (- ) ET B
0
1 k+y3k*—1
=—|ky3k?—1+(1-8Kk?*+ 12X In| ————| |.
2 2k2-1
Figure 10 shows EMM/\/Bs;, versus a. Note that
EMM/Bs;—> when B—0 (a——1); however,

s,/B— —3s,/4 and EMM/\[3—0.901/—s,=3.12/— AG?
in the same limit. WherP—0, EMM/\/B8— \/s,/2= JA/2.
The energy of théV, -M_ interface and the energies of the
critical A and M nuclei all coincide wherA and M are in
thermodynamic equilibrium.

It is convenient to introduce the dimensionless tempera-
ture T:=(0.— 6)/(0.—0.), O<T<1. Thens;=A=Ay(b.
—60.)(1-T) and P=12ZT/[Ao(T—1)]. Plots of
EMM/VBAG(A.— 6) vs T for various values of &Ay/12z
<1/2 are shown in Fig. 16.

As was mentioned in Ref. 11 and 12, soliton splitting
occurs(Fig. 195 as theA-M equilibrium line is approached

are shown in Fig. 15. The total energy per unit area of th§B—1/4P—0); that is, theM ,-M_ diffuse interface splits

M_-M_ interface is

into M, -A and A-M_ diffuse interfaces separated by an
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FIG. 15. M_-M, interface profiles for variouB.

region. AsP— 0"~ the solution(81) for 7(x) assumes the
form sgn)/{1+6/|P|sintP(\/s,/28x)]}*2, whose magni-
tude is less than or equal té for |x|<xs;, where x;

= \BI2s,In(245%/|P|) for \|P|<&<1; the width of the

austenitic region grows logarithmically as the equilibrium

line is neared.

The thickness of théM -M_ interface can be estimated

for P<—1 by the expression

EMM
JB4 =6,
1. 4y/12z=0.1 1
2.A/122=0.2
2.5 3.40/12z=0.3
4. 4p/12z=04
5 5.40/12z=0.5 2
3
1.5 4
5
WFA 0.6 0.8 1
T
FIG. 16. M_-M, dimensionless interface

EMM/JBA(6.— 6.) vs dimensionless temperatufe for various
values ofAy/12z.
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AMM |31
4
3 a=0
2
a=6
1
B
0.05 0.1 0.15 0.2
AMM Ao(ee_gc)
14 1. 4y/12z=0.1
1 2. 4¢/12z2=0.2
3. 4¢/12z2=0.3
10 4. 4/12z=04
8 5.4¢/12z=0.5
6
4
2
T

FIG. 17. (@ The M_-M, dimensionless interface width

AMM s,/ vs B for variousa. (b) theM_-M.. dimensionless inter-
face widthAMM\/A,(6.— 6.)/ B vs dimensionless temperatuFdor
a=2.98 and various values @fy,/12z.

AMM:=2x4 o5

- BTs,

Sinhl( s, - 3<2P>)
N 1 sher)

(83)

4
V2—P
7o.05=0.931-0.011a+0.00%2— 0.000 0&°.

Here Xq 95 is defined by the conditiorp[ 7(Xgg5 ]=0.95.
Equation (83); was obtained from the conditiom(Xq g5

= 70.95 USiNng EQ.(81),. The function 7 o{a) was deter-
mined by numerical solution of the equation(q.gs
=0.95 and then approximated by the cubic polynomial, Eqg.
(83),. Plots of AMM{s,/8 vs B for various a and
AMMUAG(0.— 6.)/B vs T for a=2.98(NiAl value) and vari-
ous values of &Ay/12z<1/2 are shown in Fig. 17. Fd?
=—1 the splitting is so pronounced that we no longer have
an interface in the usual sense of the word. Equa(&8)

energy then gives the width of the austenitic nucleus.

Near theA-M equilibrium line, 0<k®—1/2<1, and Eq.
(81) for the order parameter becomes
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£(y) = V2 sinh(y/2)[explyo) +4 sinf(y/2)] 2, Note that the relatively high value &&5" in comparison
to 0.01—0.02 Jm 2 for steels is_related to the very high bar-
Yo=—In(k?*—1/2). (84) riers for stress-induceci PT, i.éd, and Ay(f.— 6;). Our Eq.
Now expand the hyperbolic sine arouygs1, sinhg/2) (69) for E4M in terms ofG,( 7,3, the energy barrier between
- _ ; L . A and M at thermodynamic equilibrium, exactly coincides
~ 2 /2]/2, and substitute into Eq84): . ) - X
expbo/2)exii(y~Yo)/2]/2, and substitute into Eq84) with the corresponding equation in Ref. 7 because(E9).is
£(y)=[2(1+e Yoy 12 (85)  independent of stress, and at zero stress and folbwari-

ant both Gibbs potentials coincide. Our value & at a

This is identical tofg" [see Eq(68)], theA-M diffuse inter-  —2.98 is 0.667 of the corresponding value in Ref. 7.
face, as expected.

Austenite nucleation inside a homogeneous, thermody-  \;; pHASE FIELD THEORY OF DISLOCATIONS
namically stable martensitic phase is suppressed by the large
activation energysee Eq(78)] required to form an unstable In this section we discuss a serious shortcoming of the
critical nucleus. In contrast, the formation of @region  present-day phase field theory of dislocations and then dem-
between thévl . andM_ occurs with no cost in energy. Soli- onstrate that this drawback can be eliminated by following
ton splitting is a barrierless mechanism frnucleation in  an approach similar to the one we used to construct our Lan-
the region of M stability. A stable austenitic nucleus is dau potentials.
formed and grows as the temperature approaches the equilib- In the phase field theory of dislocatio(eee, e.g., Ref.)3
rium temperature, and expands to infinity at the equilibriumthe Burgers vector and consequently the plastic strain depend
temperature. Note that fd?<0, when theA embryo is not on the applied stress even in the elastic regime—that is,
visible in the 7(x) profile in Fig. 15, it can be seen in the when dislocations are in stable equilibrium and no plastic
o(x) profile; this is because d7(0)/dx#0 but flow occurs. Such a dependence is in conflict with the defi-
de[ 7(0)]/dx=[d¢(0)/d7][d7(0)/dx]=0. We believe nition of plastic strain in macroscopic plasticity theory. A
that such a mechanism may be observable in experiments gfrdependent Burgers vector is inconsistent with the well-
three-dimensional systems when the transformation strain igstablished theory of dislocatiofilt also implies dissipa-
an IPS(to avoid distortion along the interfacerhis may be tion during elastic deformation of plastically deformed
the case for the interface between two IPS variants for angnaterial’® The o dependence of the plastic strain in the

PT. phase field theory is analogous to toredependence of the
transformation strain in Landau theories of PT’s; see analysis
VI. NIAL CUBIC-TETRAGONAL PT: M-M AND M-A in Ref. 1. _ o
INTERFACES Consider one slip plane and one slip direction—i.e., one

Burgers vectoth. Then Egs.(3) and (4) in Ref. 3 for the
Let us estimate the parametgr for NiAl alloys. The  Burgers vector and plastic strain reducebfay)=b» and
transformation strain for a variant-variant transformation ing,(7)=bn»n/d=g,7, where » is the density function
NiAl is an IPS and the transformation does not pass througliphase fieldl for dislocations,n is the normal to the slip
A, so our results foM-M interfaces in polar coordinates are plane, andl is the distance between the slip planes. The local
applicable to NiAl. TakingA=5320 MPa[Eq. (39)] one ob- ~ potential of the crystal lattic¢Eq. (8) in Ref. 3 is f
tains =Asir?(77), which leads to the Gibbs potentiab=
—oNol2—ogy(n) T A sir’(sr). The corresponding equa-
tion of thermodynamic equilibrium i9G/dn=0=—o:g,
+mAsin(2ry);  hence  2rp=arcsiiote,/(7A)]+n,
(86)  wheren=0,1,2 ... is thenumber of dislocations. There-
A'l},’”v'=622>< 1075 N~ ¥2m. fore, in thermodynamic equilibrium, the order parameger
the Burgers vectob(»), and plastic strairg,(») depend on
High-resolution electron microscopyof NigsAlss (the data  the stressr. We can avoid this unphysical dependenceoon
that we used in Ref. 2 and in Sec. IV are forgMilsg) by first breaking the order parameter into an integer part
brackets the width of the martensite-martensite interface bant( ;) and a fractional pariy:=5—Int(7) [0,1], and then
tween one and several interatomic distanse Figs. 5 and —
6 in Ref. 13. If we assume\)"'=0.3x 10~° m, which cor-
responds to an interatomic distance, then we obtain
=2.33x10° ' N and E%M:o.n? Jm? from Eq. (86).
This value forg givesA6M=0.243>< 10 ° m from Eq.(73) — —
andE4M=0.079 J/m from Eq. (74) for the stress-free case (%) =ble(7)+Int(7)], &x(7)=bnl¢(7)+Int(7)]/d.
at 6=300 K. If we take AM=10"9m, then 3=2.588 (87)

x1071N, EjM=0.391J rﬁg, AEM=0.809x10 °m, and  The term Int¢;)=n accounts for the presence nfdisloca-
E§M=0.263 JIm from Eq. (74). If the surface energy is tions in the slip plane, each with Burgers vedioiThe Gibbs
known, then a more precise estimate@tan be made using potential for three shear stresses is shown in Fig. 18. The
Eq. (86) or Egs.(73) and (74). thermodynamic equilibrium conditio@G/dn=0 has the

EJM=2.43x10*/8 N¥"m™?,

incorporating the dependence op through the 2-3-4 or
2-4-6 polynomialsp( %), as was done for the transformation
strain in our Landau potentials:
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FIG. 18. Gibbs potentialc for dislocations for three shear
stresses.

roots p=n(n=1,2,3 .. .) corresponding to thermodynamic
equilibrium of n dislocations. It also has the rooig of the
equation

de(73)
dn

og, = wA sin(27773) (88)

corresponding to the maxima &( o, 6, ), which represent
the activation barriers to the dislocation motion. An analyti-
cal solution forz; cannot be found, but if =A sir?(77) is
replaced by periodic 2-3-4 or 2-4-6 crystal potentialsyin
for example,

fa(n)=An2(1— )2, fe(n)=AnX(1— 7?22, (89

PHYSICAL REVIEW B 68, 134201 (2003

—A/3y. The generalization to multiple slip systems can be
effected by means of the approach followed in Ref. 3.

VIIl. CONCLUDING REMARKS

The most significant difference between the 2-3-4-5 and
2-4-6 potentials is that the ratio of the curvature of e
minimum to the curvature of thé minimum is 4 times
greater for the 2-4-6 potential:9°G,(1)/d5%]/[ 9?G4(0)/
an*]=1-PI12  and  [3°Gg(1)/99*)I[3*Ge(0)/d7%?]
=4(1-P/2). The criticalM nucleus is particularly sensitive
to the larger curvature at thd minimum of the 2-4-6 poten-
tial. For example, its amplitude is larger for the 2-4-6 poten-
tial; especially near th# instability line, its width is larger
for the 2-3-4 potential wherB>0.17, and its energy is
greater for the 2-4-6 potential. On the other hand, the energy
and amplitude of the criticah nucleus are nearly the same
for both potentials, and the profiles, widths, and energies of
the A-M interfaces are very similar. Despite the fact that alll
phase equilibrium and transformation conditions are the
same for both potentials for a homogeneous distribution of
order parameter, the difference in curvature does affect the
energetics and relative stability of phases for a nonuniform
distribution.

Note that our potentials do not have parameters that con-
trol the relative curvatures @&(») at theA andM minima.

We remind the reader that these curvatures are not related to
elastic moduli, as is the case for Landau potentials with
strain-based order parameters. We plan to generalize our po-
tentials by introducing additional parameters that control the
curvatures at théd and M minima and study the effect of
variations in these parameters on critical nuclei and inter-
faces. The actual values of these parameters can be deter-
mined from the results of atomistic calculations.

In this paper we considered only homogeneous
nucleation—that is, nucleation in defect-free crystals or parts
of crystals: nanocrystals, thin films, or nanoprecipitates. Our
results can be used to approximately model the nonclassical

then analytic solutions can be obtained. For the crystal popycleation of an ellipsoidal region, which was carried out in

tentials(89) our Gibbs potential irgis identical in form to
the G(#) for twinning, so we can use all of the results pre-
viously obtained for twinning. In particular, fa=3,

Nag=(A=30:8,)I2A, 5= A—30m g,/ 3(A+ ougy).
(90)

We write o:&,= 7y, with r=b-o-n/|b| the resolved shear
stress andy,=|b|/d the plastic shear strain. The equilibrium

7— m curve can be obtained from E(R0):

A 1-377

= s T = . 91
T 3y 1+7]2 (0)

A _
T4=5-(1-279),
3y

The condition for loss of stability of a dislocation and its
barrierless motion—namely;=A/3vy (see Fig. 18—is the
same for both polynomials. Reverse motion occursfer

Ref. 7, but more precisely and with allowance for applied
stresses. Heterogeneous nucleation at various dislocation
configurationg(pileups, low- and high-angle boundanieas
well as generation of dislocations during PT’s can be studied
using a combination of the phase field theories of PT's and
dislocations developed in this paper.

The free surface boundary conditiahy/dx=0 is satis-
fied at the maxima of thé and M critical nuclei. Conse-
quently, a critical nucleus at a free surface is simply half of a
critical nucleus in the bulk. Since the energy of a surface
nucleus is half of the energy of the corresponding nucleus in
bulk, the probability of its appearance is significantly higher.

We plan to obtain and compare analytical and numerical
solutions of the time-dependent Ginzburg-Landau equations
for the 2-3-4-5 and 2-4-6 potentials. We also plan to develop
a generalization of our Landau theory for large strains and
large material rotation, a very challenging problem. Such a
generalization is essential for PT's with components of trans-
formation strain exceeding 0.1 and for loadings that are ac-
companied by finite rotations of the crystal lattice.
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