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Three-dimensional Landau theory for multivariant stress-induced martensitic phase
transformations. III. Alternative potentials, critical nuclei, kink solutions,

and dislocation theory
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In part III of this paper, alternative Landau potentials for the description of stress-and temperature-induced
martensitic phase transformations under arbitrary three-dimensional loading are obtained. These alternative
potentials include a sixth-degree~2-4-6! polynomial in Cartesian order parameters and a potential in hyper-
spherical order parameters. Each satisfies all conditions for the correct description of experiments. The unique
features of the potentials are pointed out and a detailed comparison of the potentials is made for NiAl alloy.
Analytic solutions of the one-dimensional time-independent Ginzburg-Landau equations for the 2-3-4 and
2-4-6 potentials for a constant-stress tensor and invariant-plane strain are obtained and compared. Solutions
include martensitic and austenitic critical nuclei and diffuse martensite-austenite and martensite-martensite
interfaces. The widths and energies of the nuclei and interfaces are functions of the thermodynamic driving
force, the gradient energy coefficient, and a parameter that characterizes the stability of austenite. The splitting
of a martensite-martensite interface into two austenite-martensite interfaces is interpreted as a potentially new
mechanism—namely, barrierless austenite nucleation—which might be observed experimentally at the inter-
face between two invariant-plane-strain variants. The widths, energies, and gradient energy coefficients of the
martensite-martensite and austenite-martensite interfaces are estimated for NiAl. Finally, we outline a version
of phase field theory for dislocations based on our theoretical framework for phase transformations.
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I. INTRODUCTION

In parts I ~Ref. 1! and II ~Ref. 2! we developed a fifth-
degree polynomial~2-3-4-5! Gibbs~Landau! potential for the
description of multivariant stress- and temperature-indu
martensitic phase transformations~PT’s! in three dimensions
Our approach was a phenomenological one; that is, the
4-5 potential was constructed by requiring that it respects
experimentally observed features of martensitic PT’s
shape memory alloys and steels, specifically, constant tr
formation strain, weakly temperature dependent, or const
stress hysteresis, and transformation at nonzero tangent
tic moduli. However, the 2-3-4-5 potential is by no mea
the only Landau potential that satisfies these basic requ
ments. In this paper, we develop three alternative potent
namely, a 2-4-6 polynomial in Cartesian order parame
~Sec. II! and two potentials in hyperspherical order para
eters ~Sec. III!. The symmetry requirements for the Gibb
potential~see Sec. IV in Ref. 2! are satisfied for the poten
tials derived in this paper. The phase equilibrium and tra
formation conditions for all potentials, including the 2-3-4
potential, are identical. Consequently, the geometric rep
sentations of the phase equilibrium and transformation c
ditions introduced in part II Ref. 2 can be used for the alt
native potentials as well.

The distinguishing feature of the 2-4-6 polynomial is th
its curvature at the martensitic (M) minimum is 4 times
larger than at the austenitic (A) minimum, while both curva-
tures are the same for the 2-3-4-5 polynomial derived
Refs. 1 and 2. This difference in the curvatures significan
0163-1829/2003/68~13!/134201~24!/$20.00 68 1342
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modifies the profiles of 2-4-6 critical martensitic nuclei rel
tive to the corresponding profiles for the 2-3-4-5 potential.
contrast to the 2-3-4-5 and 2-4-6 potentials, the hypersph
cal potentials have no unphysical local minima and have
constants that do not appear in the phase equilibrium
transformation conditions. Variant-variant transformatio
occur along the unit hypersphere, whereas the variant-var
transformation paths are much more complicated for the 2
4-5 and 2-4-6 polynomial potentials.

It is shown for all potentials that the number of ord
parameters can be reduced by a factor of 2 if transforma
strains for pairs of martensitic variants decompose into t
components: one that is the same for both variants and
that is equal in magnitude but of opposite sign for the t
variants. This allows us to reduce the number of order
rameters by a factor of 2. Examples of applications inclu
cubic-orthorhombic, cubic-monoclinic-I, and cubic
monoclinic-II PT’s and PT’s of invariant-plane-strain~IPS!
variants.

In Sec. IV, we compare the 2-3-4-5, 2-4-6, and polar 2-3
potentials for the NiAl cubic-tetragonal phase transformat
for zero stress and for two three-dimensional stress state

In Sec. V, analytical solutions of the one-dimension
static Ginzburg-Landau equations for a constant thr
dimensional stress tensor and invariant-plane strain are fo
for the 2-3-4 and 2-4-6 potentials and compared. Analyti
solutions of the Ginzburg-Landau equation for the 2-4-6 p
tential in strain for the stress-free case were found by Fa5

Jacobs6 generalized some of them to finite strain and to tw
dimensional problems that can be treated as one dimens
©2003 The American Physical Society01-1
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and also calculated displacements. However, the physica
terpretation of some of the solutions, such as solitons oA
andM and soliton splitting, was unclear. In Ref. 7, numeric
solutions for criticalM nuclei of the 2-3-4 potential were
analyzed in detail under prescribed displacements. It
used in Ref. 7 to model the nonclassical nucleation of
ellipsoidal region.

In contrast to Refs. 5 and 6, our theory incorporates
mogeneous multiaxial stresses and we provide physica
terpretations of the solutions of the Ginzburg-Landau eq
tions. Despite the significant differences between our the
and Falk’s,5 the dimensionless forms of the Ginzbur
Landau equations for our 2-4-6 potential and Falk’s stra
based potential coincide. This enables us to borrow som
Falk’s analytical solutions for the stress-free case and a
lyze their counterparts in relevant variables and unde
constant-stress tensor, which is significantly different fro
Falk’s results. Analytical solutions for the 2-3-4 potential a
found. All solutions depend on three parameters:s1, which
characterizes the stability of austenite;s2, which is propor-
tional to the thermodynamic driving force for theM→A PT
~both s1 and s2 are stress and temperature dependent!; and
the gradient energy coefficientb. Phase and transformatio
diagrams ins1-s2 coordinates are analyzed. It is proven
numerical solution of the time-dependent Ginzburg-Land
equation that a stationaryM soliton onA and anA soliton on
M are in fact martensitic and austenitic critical nuclei. T
structure and energetics of theM and A critical nuclei, as
well as diffuseA-M and M1-M2 interfaces, are studied in
detail. In particular, the widths of theM andA critical nuclei,
and the thicknesses of their interfaces, and the energies o
nuclei, and their interfaces are determined in terms of
aforementioned three parameters. A relation between the
ergy and the width of the equilibriumA-M interface and
stress hysteresis is found. Two types ofM1-M2 interfaces
are considered: a simple kink connectingM1 to M2 and an
exotic splitM1-M2 interface comprised of juxtaposedM1-A
andA-M2 interfaces. This splitting is interpreted as a pote
tially new mechanism: barrierlessA nucleation. Nucleation
occurs in the region of stability ofM near the equilibrium
M-A line. Such nucleation might be found experimentally
the interface between two IPS variants.

In Sec. VI, the gradient energy coefficients, energies,
widths of theM1-M2 andA-M interfaces are estimated fo
NiAl alloy.

In Sec. VII, a phase field theory of dislocations is dev
oped. The known theory3 is based on a formalism similar t
phase field theory of martensitic PT’s~Ref. 4! and has a
similar shortcoming; namely, the equilibrium value of th
Burgers vector and the plastic strain depend on stress.
extend our approach developed for PT’s to dislocations
eliminate this drawback.

II. SIXTH-DEGREE POLYNOMIAL GIBBS POTENTIAL

In this section we obtain a sixth-degree polynomial Gib
potential G that describe PT’s between austenite (A) and
martensitic variants (Mi , i 51,2, . . . ,n) and between mar
tensitic variants. One of the requirements ofG is that it de-
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scribe PT’s with transformation strains that differ only
sign. This is usually done by means of an even polynom
potential in the strain.8,6 The only strain appearing in ou
Landau potentials is the transformation strain«t , but it can-
not serve as an order parameter because it does not ch
with the stress, like the strain does—the transformation st
is fixed for each martensitic variant. To describe a chang
sign of the transformation strain, the functionw @see Eqs.~1!
and~2!# must be odd in the order parameterh, but the ther-
mal part of the free energyf must be an even function ofh.
If w(h) is a 1-3-5 polynomial andf (h) is a 2-4-6 polyno-
mial, thenG(h) is a complete~contains all powers! sixth-
degree polynomial that cannot be studied analytically a
may have additional unwanted extrema. There is, howe
an alternative to including odd powers ofh: «tsgn(h) is
substituted for«t in a 2-4-6 polynomial Gibbs potential.

In Sec. II A we derive a 2-4-6 polynomial potential i
order parametersh iP@0,1#. In Sec. II B the range of orde
parameter values is extended from@0,1# to @21,1# for PT’s
with «t that differ only in sign and more generally for PT
where the«t for pairs of martensitic variants decompose in
two components: one that is the same for both variants
one that is equal in magnitude but of opposite sign for
two variants. This extension reduces the number of or
parameters by a factor of 2. A similar result was obtained
the 2-3-4-5 potential.

A. Positive order parameters

The 2-4-6 polynomial is subject to the same requireme
as the 2-3-4-5 polynomial Gibbs potential derived in part
~Refs. 1! and II ~Ref. 2!. Following the same steps as befo
we obtain

G52s:S l01 (
k51

n

~lk2l0! w~al ,hk!D :s/2

2s:S S l0
31 (

k51

n

~lk
32l0

3!w~a3l ,hk!D :sD :s/3

2s:S s:S l0
41 (

k51

n

~lk
42l0

4!w~a4l ,hk!D :sD :s/4

2s:(
k51

n

«tkw~a,hk!2s:S «u01 (
k51

n

~«uk2«u0!w~au ,hk!D
1 (

k51

n

f ~u,hk!1 (
i 51

n21

(
j 5 i 11

n

Fi j ~h i ,h j !; ~1!

w~a,hk!5ahk
2/21~32a!hk

41~a24!hk
6/2, 0<a<6; ~2!

f ~u,hk!5Ahk
2/21~3DGu2A!hk

41~A24DGu!hk
6/2; ~3!

Fi j ~h i ,h j !5Bh i
2h j

21~Zi j 2B!h i
4h j

21Ch i
3h j

3

1~Zji 2B!h i
2h j

4 ; ~4!
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Zi j 5
a

2
s:«t j2

3

2
s:~«t j2«t i !

1s:Fau

2
~«u j2«u0!2

3

2
~«u j2«u i !G

1s:Fal

4
~lj2l0!2

3

4
~lj2li !G :s

1S s:Fa3l

6
~lj

32l0
3!2

1

2
~lj

32li
3!G :sD :s

1s:S s:Fa4l

8
~lj

42l0
4!2

3

8
~lj

42li
4!G :sD :s

1Ā/22A/2. ~5!

Heres is the stress tensor,«t i and«u i are the transformation
and thermal strains of thei th variant,i 50 corresponds toA,
«t050, li

k is the elastic compliance tensor of orderk for
variant i (li[li

2), and DGu is the difference between th
thermal parts of the Gibbs energies ofM andA. The param-
eters A and Ā characterize the thresholds forA↔Mi and
Mj↔Mi transformations, whileB and C control the Gibbs
energy away from both theA and Mi minima and the
minimum-energy paths between the minima; therefore, t
do not affect phase equilibrium and transformation con
tions. The material parametersa, au , a2u , a3u , and a4u
govern the variations of«t i , «u i , and the elastic compliance
between theA andMi minima.

Defineĥ i5(0, . . . ,0,h i51,0, . . . ,0), thevector from the
origin to Mi . The Gibbs potential was constructed to ha
local minima at the origin and at the pointsĥ i , i
51, . . . ,n, but no constraints were placed onG at the points
ĥ i1ĥ j , ĥ i1ĥ j1ĥk , etc. Consequently,G may be smaller
at such points that at theA and Mi local minima; i.e., non-
physical phases can appear. The relative values ofG at A,
Mi , ĥ i1ĥ j , etc., are controlled by the parametersB andC.
SinceFi j (1,1)5Zi j 1Zji 2B1C, the elimination of minima
at ĥ i1ĥ j , ĥ i1ĥ j1ĥk , etc., can be achieved by choosin
B<0 andC.0.

Define 0̄5(0, . . . ,0), which corresponds toA, and h ī
5(0, . . . ,0,h i ,0, . . . ,0). Thephase transformation cond
tions are as follows:

A→Mi :

]2G~s,u,0̄!

]h i
2

<0

⇒as:«t i1aus:~«u i2«u0!1
al

2
s:~li2l0!:s

1
a3l

3
s:„~li

32l0
3!:s…:s

1
a4l

4
s:„s:~li

42l0
4!:s…:s>A;
13420
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Mi→A:

]2G~s,u,h î !

]h i
2

<0

⇒~62a!s:«t i1~62au!s:~«u i2«u0!

1
62al

2
s:~li2l0!:s

1
62a3l

3
s:„~li

32l0
3!:s…:s

1
62a4l

4
s:„s:~li

42l0
4!:s…:s

<6DGu2A; ~6!

Mi→Mj :

]2G~s, u, h î !

]h j
2

526s:~«t j2«t i !26s:~«u j2«u i !

23s:~lj2li !:s22„s:~lj
32li

3!:s…:s

2
3

2
s:„s:~lj

42li
4!:s…:s12Ā<0. ~7!

The transformation strain is equal to2]G(0, u,h i)/]s at
zero thermal strain:

«t5(
i 51

n

«t iw~a,h i !2
1

2 (
i 51

n21

(
j 5 i 11

n

h i
2h j

2@3~h i
2«t i1h j

2«t j !

1~a23!~h j
2«t i1h i

2«t j !#. ~8!

It is easily verified that«t satisfies all requirements:«t(0̄)
50, «t(h î)5«t i , «t(h ī)5«t iw(a,h i).

The thermodynamic equilibrium conditions]G/]h i50
( i 51, . . . ,n) haven11 solutions corresponding toA and
theMi : h50̄ andh5h î , i 51, . . . ,n. There are other solu
tions of ]G/]h i50 that correspond to maxima or sadd
points. In the case of a single variant, there is, in addition
the extrema ath150 andh251, an extremum at

h35A@A2as:«t1aus:~«u02«u1!1L#/3h,

Lªals:~l02l1!:s/21a3ls:„~l0
32l1

3!:s…:s/3

1a4ls:~s:„~l0
42l1

4!:s…!:s/4,

hªA24DGu2~a24!s:«t1~au24!s:~«u02«u1!

1~al24!s:~l02l1!:s/2

1~a3l24!s:„~l0
32l1

3!:s…:s/3

1~a4l24!s:„s:„~l0
42l1

4!:s……:s/4, ~9!
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which corresponds to a maximum inG if h3,1. The height
of the activation barrier for theA→M PT can be calculated
by substitutingh3 in Eq. ~1!:

G~s,u,h3!2G~s,u,0!5@2A29DGu2~2a29!s:«t

1~2au29!s:~«u02«u1!

1~2al29!s:~l02l1!:s/2

1~2a3l29!s:~l0
32l1

3!:s:s/3

1~2a4l29!s:s:~l0
4

2l1
4!:s:s/4#h3

4/3. ~10!

The activation barrier for theM→A PT is G(s,u,h3)
2G(s,u,1), which can be obtained by addingG(s, u, 0)
2G(s, u, 1)5s:«t2DGu to Eq. ~10!.

It is a good approximation over a modest range of te
peratures to takeDGu and A to be linear functions of the
temperature,1

DGu5z~u2ue!, A5A0~u2uc!, z.0, A0.0,
~11!

whereue is the equilibrium temperature for stress-freeA and
M, 2z is the jump in specific entropy at the equilibriu
temperature, anduc is the critical temperature at whic
stress-freeA loses its thermodynamic stability. Then

f 5A0~u2uc!h
2/21@3z~u2ue!2A0~u2uc!#h

4

1@A0~u2uc!24z~u2ue!#h
6/2. ~12!

Designating the critical temperature at which stress-freeM
loses its thermodynamic stability asūc , one obtainsūc5uc
16z(ue2uc)/(6z2A0) with A0,6z from Eq. ~6!. The in-
equalityA0,6z was assumed in the derivation of the equ
tion for ūc and it follows from the evident inequalitiesūc
.ue.uc that it is not contradictory. For equal deviations
the critical temperatures from the equilibrium temperat
one obtainsA053z and further simplification of Eq.~12!.
For PT’s that can be treated as one dimensional, i.e.,s:«t
5s« t , where s and « t are scalar measures of stress a
transformation strain,1 Eq. ~9! for h3 provides us with the
unstable equilibrium-stress–transformation-strain curve.
glecting the differences between the compliances and t
mal strain tensors ofA andM we find

s5
3~A24DGu!h22A

« t@3~a24!h22a#
. ~13!

In the approximation~11!, thes-h curve depends linearly on
temperature,

s5
3@A0~u2uc!24z~u2ue!#h

22A0~u2uc!

« t@3~a24!h22a#
, ~14!

and for the stress hysteresisHªs(h50)2s(h51) one
obtains
13420
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H5
6

« t

~A02za!u1zaue2A0uc

a~62a!
. ~15!

This expression forH is the same as for the 2-3-4-
potential.1 For A0.za (A0,za) the hysteresis grows~de-
creases! with temperature and forA05za it is independent
of temperature.

The equation«52]G/]s gives the relation between
strain and order parameters for any actual transforma
path at constants. Consider a single martensitic variant.
thermodynamic equilibrium,«(s,h)52]G/]s and ~9! for
h3(s) constitute a parametric relation between strain a
order parameter withs as the parameter. This«-h relation
simplifies considerably in a linear elastic material for whi
Eq. ~13! holds:

«5« tw~a,h!1l
3~A24DGu!h22A

« t@3~a24!h22a#
. ~16!

This equation is valid for 0<h<1, i.e., for lA/(« ta)<«
<« t1l(A26DGu)/@« t(a26)#.

In Fig. 1, we plotG̃ªG1 1
2 s:l:s versush for two tem-

peratures and various stresses in the approximation~11! for
A053z, which corresponds toue5(uc1u c̄)/2; the exten-

FIG. 1. G̃(h) for equal deviations of the critical temperature
from the equilibrium temperature at various stresses for~a! u
5200 K and~b! u5250 K. The same parameter values—name
« t50.1, a53, uc5100 K, ue5200 K, andA053 MPa/K—were
used for both plots.
1-4
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sion to negativeh will be considered in Sec. II B. In contras
to the 2-3-4-5 polynomial~see Fig. 6 in Ref. 1!, the curvature
~second derivative with respect toh) at the martensitic mini-
mum is significantly larger than at the austenitic minimu
Indeed, the ratio@]2G(1)/]h2#/@]2G(0)/]h2# for the 2-4-6
potential is 4 times greater than for the 2-3-4-5 polynom
~Note that the curvatures of theA and M minima are the
same for the 2-3-4-5 potential at thermodynamic equi
rium.! This difference is not related to differences in t
elastic moduli or to the conditions for the loss of stability
homogeneous phases. This difference in curvature lead
significant differences between the profiles and energie
the critical martensitic nuclei for the 2-4-6 and 2-3-4 pote
tials ~see Sec. V!. It also leads to convergence of the sol
tions of the time-dependent Ginzburg-Landau equations
different equilibrium domain wall configurations for th
same thermodynamic, initial, and boundary conditio
which will be described in detail elsewhere.

The stress-strain curve for the 2-4-6 polynomial is simi
to that of the 2-3-4-5 polynomial, but there are differenc
see Fig. 5 in Ref. 1. First, fora53, s is a linear function of
h for the 2-3-4-5 polynomial, buts is a nonlinear function
of h for the 2-4-6 polynomial. The absolute value of th
tangent elastic modulus ath51 is much larger for the 2-4-6
polynomial than for the 2-3-4-5 polynomial, a consequen
of the greater curvature ofG(h) at h51.

B. Continuation of the 2-4-6 order parameters
to negative values

Continuation of the order parameters to negative val
requires that the termCh i

3h j
3 in Fi j be replaced by

Cuh i u3uh j u3. Then Fi j is invariant under h i→2h i or
h j→2h j and spurious minima at6ĥ i6ĥ j , 6ĥ i6ĥ j

6ĥk , etc., can be eliminated by choosingB<0 andC.0,
as is the case for positive order parameters.

We start with the special case of martensitic variants w
transformation strains that differ only in sign. This can be
case only if the transformation strain is purely deviato
since the volumetric strains must be of the same sign. T
condition is approximately met for the IPS variants in, f
example, CuAlNi, CuZnGa, CuZn, CuAlZn, AgCd, and NiA
alloys.8 These pairs of IPS variants with«t of opposite sign,
M1 and M2 , have equal elastic compliances. The therm
strain tensors will be treated below. Our 2-4-6 Landau pot
tial, Eqs. ~1!–~5!, can be modified to describe transform
tions betweenA andn IPS variants and amongn IPS variants
with n/2 order parameters. A single order parameter is as
ciated withM1 andM2 ; the variants are located at6ĥ i for
somei. The modified form of the 2-4-6 potential is obtaine
by substituting«t isgn(h i) for «t i and n/2 for n. The sign
function sgn(h i)5h i /uh i u is always multiplied by h i

m ,
where 2<m<6. The second derivatives of the quadra
terms include terms of the form 2 sgn(h i); therefore,
]2G/]h i

2 is discontinuous at the origin;G and ]G/]h i are
continuous at the origin.

Let us consider for simplicityh-independent elastic com
pliances. For just two IPS variantsM1 andM2 , the equilib-
13420
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rium condition]G/]h50 gives, in addition to the rootsh1
50, h250, andh3 @see Eq.~9!#, the negative roots

h4521, h552A as:«t1A

3@~a24!s:«t24DGu1A#
.

~17!

The PT conditions, which follow fromh350,1 andh550,
21, are

A→M1 : s:«t>
A

a
; A→M2 : s:«t<2

A

a
;

M1→A: s:«t<
6DGu2A

62a
;

M2→A: s:«t>2
6DGu2A

62a
. ~18!

For DGu.A(a23)/3a, the M2→A PT occurs at smaller
stresses than does theA→M1 PT; for a53 this occurs at
u.ue . In this caseM2 first transforms toA and then, after
an increase in stress or a decrease in temperature,A trans-
forms toM1 . In the opposite case,M2 transforms directly to
M1 becauseA is unstable.

A volume preserving IPS is a simple shear in directionm
in the habit plane with normaln, «t5

1
2 g t(mn1nm), s:«t

5tg t , tªm"s"n; here t and g t are the shear stress an
strain. The one-dimensional treatment presented in Ref.
applicable.

In Fig. 1, the dependence ofG̃ªG1 1
2 s:l:s on h in the

interval @21,1# is presented for two temperatures and va
ous stresses forA053z.

If part «̄t i of the transformation strain is the same for t

M1 andM2 variants and another part«̄̄t i is of opposite sign,
then bothM1 andM2 can be described by the single ord

parameterh i upon substituting«̄t i1 «̄̄t isgn(h i) for «t i in Eqs.

~1! and ~5!. For IPS,«̄t i5«nini and «̄̄t i5
1
2 g t(mini1nimi),

where«, the strain normal to the habit plane, is equal to t
volumetric strain. The thermal strain tensor may be simila
decomposed,«u i5«u i

devsgn(h i)1«u i
vol , where«u i

dev and «u i
vol

are the deviatoric and volumetric parts of«u i .
For the cubic-orthorhombic PT~e.g., Cu-Ni-Al and

Au-Cd alloys! and the cubic-monoclinic-II PT~e.g., Cu-
Zn-Al alloys!, «̄t i describes the diagonal components of«t i

and «̄̄t i corresponds to the only shear component.9 Three or-
der parameters are needed to describe the six marten
variants in the first case and six order parameters are requ
to describe the 12 variants in the second case. For the cu
monoclinic-I PT ~e.g., Ni-Ti alloys!, «̄t i is associated with

one shear and the three diagonal components of«t i , and «̄̄t i
is associated with the other two shear components.

Note that a similar procedure for decreasing the num
of degrees of freedom by a factor of 2 can be followed
1-5
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the 2-3-4-5 polynomial. In addition to substituting«̄t i

1 «̄̄t isgn(h i) for «t i , one needs to substituteuh i u for h i for
all odd powers ofh i .

III. POTENTIALS IN HYPERSPHERICAL COORDINATES

In the n-dimensional space of order parameters, all m
tensitic variants are located on the unit hypersphere; thus
natural to construct Gibbs potentials using the hypersphe
order parametersr andck , k51, . . . ,n. Herer is the radial
coordinate in order-parameter space andpck/2 is the angle
between the radius vectorr and thehk axis:

r 5S (
i 51

n

h i
2D 1/2

, 0<ck5
2

p
cos21

hk

r
<1,

~19!

(
k51

n

cos2S p

2
ckD51.

The third equation is a constraint that can be eliminated
expressingG in terms of thehk . New Gibbs potentials inr
and ck can be derived from our 2-3-4 and 2-4-6 potenti
G(r ) for a single martensitic variant by allowing forck de-
pendence in the transformation strain and including a te
that introducesck-dependent barriers between all varian
We emphasize that the potentials in hyperspherical coo
nates are not simply reparametrizations of the 2-3-4
2-4-6 potentials in Cartesian coordinates but rather new
tentials with somewhat different physics. In contrast to
2-3-4 and 2-4-6 potentials, the Gibbs potentials inr and the
ck have the following desirable features.

~i! They have no unphysical minima and have no co
stants that do not appear in the phase equilibrium and tr
formation conditions.

~ii ! The paths of minimum free energy between varia
are great circles on the unit hypersphere. Variant-var
transformations occur along these paths and can be pa
etrized by a single angle. This property of a potential
hyperspherical coordinates makes it possible to obtain
analytical kink solution of the time-independent Ginzbur
Landau equation that connects martensitic variants with
passing through an austenitic minimum. Similar solutio
cannot be obtained for the potentials in Cartesian order
rameters.

A. Two martensitic variants

We now consider the casen52 for h-independent elastic
compliances and thermal strain tensor. A polar coordin
system can be used and all derivations are quite simple.
Gibbs potential is given by

G~s,u,r ,c!52s:l:s/22s:@«t11~«t22«t1!P~c!#wp~r !

1 f p~u,r !1ĀQ~c!qp~r !, ~20!

wherep54 corresponds to the 2-3-4 polynomial,p56 cor-
responds to the 2-4-6 polynomial, andc[c1512c2. For
p54 we have1
13420
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w4~r !5ar21~422a!r 31~a23!r 4, 0,a,6,

f 4~u,r !5Ar21~4DGu22A!r 31~A23DGu!r 4, ~21!

and forp56 see Eqs.~2! and~3! with r substituted forhk .
The functionsP, Q, andq are to be determined. The require
ment thatG give the free energies ofM1 andM2 at c50 and
c51, respectively, implies the conditions

P~0!50, P~1!51, Q~0!5Q~1!50. ~22!

Without loss of generality we assumeq(1)51. We require
the radial derivative ofG(r ,c) to vanish at the origin and a
r 51 for 0<c<1:

]G~0,c!

]r
5

]G~1,c!

]r
50⇒ dq~0!

dr
5

dq~1!

dr
50. ~23!

Similarly, thec derivative ofG(r ,c) is forced to vanish at
all r for c50,1:

]G~r ,0!

]c
5

]G~r ,1!

]c
50⇒ dP~0!

dc
5

dP~1!

dc
50,

~24!
dQ~0!

dc
5

dQ~1!

dc
50.

These conditions include the equilibrium conditio
]G(h ĵ )/]h i50 (i , j 51,2) and also impose additional con
straints on the form of the potential. Requiring that the
equality

]2G~1,c!/]c252s:~«t22«t1!d2P/dc21Ād2Q/dc2<0
~25!

for c50 (c51) coincide with Eq.~6! in part II ~Ref. 2!—
i.e., it give the sameM1→M2 (M2→M1) PT criterion as Eq.
~7! or ~5! in ~Ref. 2!—results in

]2P~0!/]c252]2P~1!/]c256,
~26!

]2Q~0!/]c25]2Q~1!/]c252.

We also require limr→0(q/w)5 limr→0(q/r 2)50, which
eliminates the barrier to theM1↔M2 PT in the vicinity of the
origin. Otherwise, followingM1,2→A, the A remembers the
variant from which it came. Restricting our attention to 2-3
and 2-4-6 polynomials, we obtain the following function
which satisfy the above requirements:

Q5c2~12c!2, P5c2~322c!,
~27!

q454r 323r 4, q653r 422r 6.

The polynomialsq, f, andw must be of the same degree.
this were not the situation, then additional unphysical e
trema might appear and an analytical study would not
possible. The polynomials inc can be used with both fourth
and sixth-degree polynomials inr. Note thatQ can be written
in the formQ5c1

2c2
2. For n martensitic variants, this gener

alizes toQ5c1
2
•••cn

2 ; see next section.
1-6
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Variant-variant transformations can be studied anal
cally by puttingr 51 in the above equations. For example
solution of the equation]G(1,c)/]c50 is c351/2
2(3S)/(2Ā) with Sªs:(«t22«t1), which is the location of
the barrier for theM1→M2 PT. The corresponding activatio
barriers are

G~1,c3!2G~1,0!5~123S/Ā!3~Ā1S!/16,
~28!

G~1,c3!2G~1,1!5~113S/Ā!3~Ā2S!/16.

A variant-variant kink solution of the time-independe
Ginzburg-Landau equation for ther 51 potential will be ob-
tained in Sec. V.

B. n martensitic variants

We assumeh-independent elastic compliances and th
mal strain. Equations~20! and ~27! generalize to

G1
1

2
s:l:s52s:(

k51

n

«tk~123ck
212ck

3!wp~r !

1 f p~u,r !1Ā)
k51

n

ck
2qp~r !. ~29!

It is easy to check usingc11c251 that, forn52, Eq.~29!
reduces to Eq.~20! with P andQ given by Eq.~27!.

We now verify the equilibrium conditions—namely
]G/]h i50—at the points 0̄5(0, . . . ,0) and ĥ j , j
51, . . . ,n, as well as the phase instability conditions:

Mi→A: s:«t i<
6DGu2A

62a
; ~30!

A→Mi : s:«t i>
A

a
; ~31!
13420
i-

-

Mj→Mi : 3s:~«t j2«t i !1Ā<0. ~32!

These conditions are most easily verified by first expand
the potentials~29! around the pointsĥ j and 0̄ to second
order in the order parameters and then calculating the der
tives.

In the neighborhood ofĥ j the potential is

G5DGu2
1

2
s:l:s2s:«t j1

4

p2 (
iÞ j

n

@3s:~«t j2«t i !1Ā#h i
2

1vp@~62a!s:«t j1A26DGu#~h j21!21O~h3!,

~33!

where v451 and v652. This always has an extremum
at ĥ j :

]G~ ĥ j !

]h i
50, i , j 51, . . . ,n. ~34!

The mixed derivatives]2G/]h i]h j ( iÞ j ) of Eq. ~33! vanish
at all ĥk . It follows that the conditions]2G(ĥ j )/]h j

2<0 and

]2G(ĥ j )/]h i
2<0 are the conditions forMj→A and Mj

→Mi , respectively. TheMj→A PT condition is given by

]2G~ ĥ j !

]h j
2

52vp@~62a!s:«t j1A26DGu#<0, ~35!

which coincides with Eq.~30!. Similarly, the Mj→Mi PT
condition is

]2G~ ĥ j !

]h i
2

5
8

p2
@3s:~«t j2«t i !1Ā#<0, ~36!

in agreement with Eq.~32!.
In the neighborhood of the origin we have
FIG. 2. Level curves ofG̃ for NiAl at u50 and normal stressess15s25s350: ~a! 2-3-4 polynomial in polar coordinates,~b! 2-3-4
polynomial in Cartesian coordinates, and~c! 2-4-6 polynomial in Cartesian coordinates.
1-7
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FIG. 3. Level curves ofG̃ for NiAl at u50 and normal stressess151000,s2521000,s3523000: ~a! 2-3-4 polynomial in polar
coordinates,~b! 2-3-4 polynomial in Cartesian coordinates, and~c! 2-4-6 polynomial in Cartesian coordinates.
1
n

e
e
d

e

2

t-

re-
G52
2

s:l:s1vp
21F2as:(

k51
«tk~123ck

212ck
3!1AG r 2

~37!

to second order inr. Obviously,G has an extremum at th
origin for any stress or temperature. Unlike the mixed d
rivatives at the martensitic extrema, the mixed derivatives
not vanish at the origin, but as we shall see, theA→Mi PT is
unaffected. TheA instability must be determined from th
first fulfillment of the condition]2G/]r 2<0 in some radial
direction. Since the minima of]2G(0̄)/]r 2 are along the
coordinate axes, one gets
13420
-
o

A→Mj :
] G~r 50,c j50,c i51 for iÞ j !

]r 2

5~2/vp!~2as:«t j1A!<0, ~38!

for the variant with the maximum value ofs:«t j , in agree-
ment with Eq.~31!.

Thus, the potential~29! in hyperspherical coordinates sa
isfies the equilibrium and PT conditions.

If «̄t i is the same forM1 and M2 variants and«̄̄t i is of
opposite sign, then the number of order parameters is

duced by a factor of 2 by substituting«̄t i1 «̄̄t isgn(h i) for «t i
in Eq. ~29!.
FIG. 4. Level curves ofG̃ for NiAl at u50 and normal stressess154051,s2522000,s3523000: ~a! 2-3-4 polynomial in polar
coordinates,~b! 2-3-4 polynomial in Cartesian coordinates, and~c! 2-4-6 polynomial in Cartesian coordinates.
1-8
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IV. COMPARISON OF POTENTIALS: THE NiAl CUBIC-
TETRAGONAL PT

In part II ~Ref. 2! we found all material parameters of th
2-3-4-5 potential for the cubic-to-tetragonal PT in NiAl. Th
relevant material constants for the 2-3-4-5 and polar 2-
potentials are

«t15$0.215;20.078;20.078%, a52.980,

Ā55320 MPa, ue5215 K,
~39!

A054.40 MPa K21, uc52183 K, B50,

D5500 MPa;

the tensors«t2 and «t3 can be obtained by permutation o
components. The constantD does not appear in the pola
potential. We choseC521000 from the condition that a
s527000 MPa, which is far outside the region of stabili
of the martensite and consequently far beyond stresse
interest, G(s,0,1,1)@G(s,0,1,0), and no unphysica
minima exist. This ensures that the same is true at sma
compressive stresses or in tension.

Plots of G̃(s,u,h1 ,h2)5G(s,u,h1 ,h2)1 1
2 s:l:s for

PT’s in NiAl for zero stress and two three-dimensional str
states atu50 K for the 2-3-4-5, 2-4-6, and polar 2-3-4 po
tentials are shown in Figs. 2–4. The normal stresses on
faces of the crystal are denoteds i ; all stresses are in MPa
We applied a large compressive stresss3 to suppress the
appearance of the third variant. Growth ofG̃ corresponds to
variation from black to white. The driving force is orthogo
nal to the level curves. There are no unphysical mini
present. This is particularly noteworthy for the polar 2-3
potential since it contains no constants that can be tune
eliminate unphysical minima. We also checked this for
three-variant case by analyzingG̃ numerically.

For zero stresses~Fig. 2!, bothM variants are stable andA
is metastable.

For s152s251000 ~pure shear in the 1-2 plane!, s3
523000, M1 is stable,M2 is metastable, andA is unstable
~Fig. 3!. Because of a barrier betweenM2 and A, A trans-
forms toM1 only.

For s154051, s2522000, and s3523000, M1 is
stable, andM2 is unstable only in the direction ofM1 because
the barrier betweenM2 andA still exists ~Fig. 4!.

The energy variation along the coordinate axes is ident
for the 2-3-4-5 potential and the polar 2-3-4 potential. T
differences between these potentials are most pronounce
the stress-free case. Because the 2-4-6 potential has a
larger curvature at theM minimum than at theA minimum,
there are significant differences in local values between
2-4-6 and the other two potentials near the stableM mini-
mum. As will be shown in Sec. V, such local differenc
result in different profiles for the criticalM nuclei.
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V. CRITICAL NUCLEI AND DIFFUSE INTERFACES

In this section we will obtain and interpret some spatia
one-dimensional analytical solutions of the time-independ
Ginzburg-Landau equations for the 2-3-4, 2-4-6, andr -ck
potentials. As was shown in Ref. 6, some two-dimensio
problems for the cubic-rectangular PT can be treated as
dimensional, which is the case for our models as well. O
one-dimensional results on critical nuclei and diffuse int
faces hold for IPS variants—that is, for transformati
strains of the form«t5

1
2 g t(mn1nm)sgn(h)1«nn, where

21<h<1 for the 2-4-6 potential and 0<h<1 for the 2-3-4
potential. The order parameter is a function of the coordin
x along then axis. Despite the restriction to one spatial d
mension, our solutions are valid for an arbitrary thre
dimensional homogeneous stress tensors in a rectangular
parallelepiped with corresponding homogeneous traction
its faces. In order to impose the usual boundary condition
the order parameter@see Eq.~55!#, the faces of the parallel
epiped must be orthogonal and parallel ton ~Fig. 5!. In the
following subsections the parallelepiped is actually infinite
the x direction.

A. Governing equations

We write the 2-4-6 and 2-3-4 potentials in terms of tw
parameters

G̃65s1h2@12~42P!h2/21~32P!h4/3#/2, ~40!

G̃45s1h2@12~62P!h/31~42P!h2/4#, ~41!

s1ªA2as:«t , s2ª12~DGu2s:«t!, Pªs2 /s1 .
~42!

Here and later the subscripts 4 and 6 refer to 2-3-4 or 2-
potentials, respectively. We have

]G6 /]h52s1h~12h2!@~32P!h221#,

]G4 /]h5s1h~12h!@22~42P!h#;

]2G6~0!/]h25~1/2!]2G4~0!/]h25s1 ,

]2G6~1!/]h252]2G4~1!/]h252s1~22P!;

h635A 1

32P
, G̃6~h63!5

s1

12

823P

~P23!2
;

~43!

h435
2

42P
, G̃4~h43!5

4

3

s1~32P!

~42P!3
.

Hereh63 andh43 correspond to the maxima ofG̃, as in Eq.
~9!.

For a single order parameterh that depends only on the
coordinate x along the normal to the habit plane, th
Ginzburg-Landau energyGGL5G1“h"b"“h reduces to
GGL5G1b(]h/]x)2, where the scalarb is a linear combi-
nation of components of the second-rank tensorb in the
crystal coordinates. Thus, even for a highly anisotropicA
1-9
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lattice, the one-dimensional case under consideration
quires only a single gradient parameterb. The Ginzburg-
Landau energyGGL leads to the time-dependent Ginzbur
Landau equation

]h

]t
52l

dGGL

dh
52lS ]G

]h
22b

]2h

]x2 D . ~44!

Herel.0 is the kinetic coefficient. We rescale variables
cast Eq.~44! in dimensionless form. The dimensionless p
tentials and order parameters are

g65m6G̃65B6j6
22j6

41j6
6 , j65k6h; ~45!

g45m4G̃45B4j4
22j4

31j4
4 , j45k4h. ~46!

The parameters are defined and related as follows:

B65
4~32P!

3~42P!2
, k65A2

3
A32P

42P
,

m65
16~32P!2

9s1~42P!3
5

2k6
2B6

s1
;

~47!

B45
9~42P!

4~62P!2
, k45

3

4

~42P!

~62P!
,

m45
81~42P!3

64s1~62P!4
5

k4
2B4

s1
.

It is easy to check thatk can be determined by the conditio
dg/dj50 at the martensitic minimum. Plots ofB(P), k(P),
and s1m(P) in the region of coexistence ofA and M (P
,2) for both potentials are presented in Fig. 6. We a
definej61, j62, j41, andj42:

FIG. 5. Scheme for solution of the Landau-Ginzburg equati
h(x) represents critical nuclei and kink solutions. The crystal latt
transforms from state 1 to 2 by invariant-plane strain.
13420
e-
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o

g65j6
2~j6

22j61
2 !~j6

22j62
2 !, j615A0.5~12A124B6!,

j625A0.5~11A124B6!;
~48!

g45j4
2~j42j41!~j42j42!, j4150.5~12A124B4!,

j4250.5~11A124B4!.

.
e

FIG. 6. Plots of~a! B(P), ~b! k(P), and ~c! s1m(P). Solid
~dashed! lines correspond to the 2-4-6~2-3-4! potential.
1-10
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We will analyze all results in terms ofP, because it is the
same for both polynomials, and in terms of 0<B4<9/32 and
0<B6<1/3, which vary over narrow ranges and allow mo
vivid comparisons. It is also convenient to use the param
aªP/(42P): a50 for thermodynamic equilibrium,a51
when M loses its stability, anda521 when A loses its
stability. Dimensionless order parameters and potentials
convenient for intermediate steps in calculations but our
lutions of the time-independent Ginzburg-Landau equati
are always presented in terms of the physical order param
h(x) for two reasons: first, there is no direct scaling betwe
w(j) and w(h), and second, the dimensionless parame
for the two potentials—k4 and k6, for example—differ sig-
nificantly for the same thermodynamic state.

Equilibrium and PT lines in thes1-s2 plane are shown in
Fig. 7. The lines250 (P50 andB45B651/4) for s1>0 is
the equilibrium line betweenA andM. For s2.0 (P.0 and
B.1/4) ands1.0, A is stable~relative toM), and for s2
,0 (P,0 and 0,B,1/4) ands1.0, M is stable. Marten-
site is also stable~relative toA) for s1,0 and P.2. The
line s150 for s2<0 (P52` andB50) is the line of loss
of stability of A; i.e., for s1<0 ands2<0 (P>0), only M
can exist, though not everywhere in this region. The lineP
52 (B459/32, B651/3) for s1>0 is the line of loss of
stability of M; i.e., for P.2 ands1>0, only A can exist.
Consequently, both phases coexist in the sector2`,P,2
(0,B4,9/32, 0,B6,1/3) for s1.0. The sector2`,P
,2 (0,B4,9/32, 0,B6,1/3) for s1,0 is an unphysical
region because bothM andA are unstable. In fact our poten
tials were designed to describe material behavior in the
existence region and at instability lines. Our potentials
not applicable outside this region. Some of the above
equalities cannot be expressed in terms ofB becauseB is a
nonmonotonic function ofP.

Austenite is stable relative toM in the wedges1.0, P
.2, but forP.Pc

A , whereP6c
A 58/3 andP4c

A 53, there is an
artificial minimum more stable thanA at h.1 @see Eq.
~43!#. For s1,0 andP.2, M is stable relative toA, but for
2,P,Pc

M , where P6c
M 53 and P4c

M 54, a finite barrier at
h.1 separates the martensitic minimum from an infinite

FIG. 7. Phase equilibrium and transformation diagrams in
s1-s2 plane for the 2-3-4 and 2-4-6 potentials.
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deep potential well. Fors1,0 andP,2, whereA andM are
unstable, there is an artificial minimum at 0,h3,1.

These drawbacks do not affect the properties of the s
tem in the coexistence region or along instability~PT! lines,
but problems can arise when thermomechanical load
moves the point (s1 ,s2) too close to the unphysical wedge
the s1-s2 plane. If the initial phase is metastable, then rap
loading toward the unphysical wedge can result in a tra
formation to a spurious phase. On the other hand, if the
of thermomechanical loading is sufficiently low, then th
transition will be into the stable phase. In general, howev
the rate will not be low enough to ensure transformation
the stable phase, but even if this is the case or if the ini
phase is stable, the point (s1 ,s2) must not move too close to
the unphysical wedge or else the small potential barrier se
rating the stable phase from the spurious phase will be
mounted by thermal fluctuations. These shortcomings in
potentials can be circumvented by modifying them outs
the region of phase coexistence. The only requirements
such a modification are that it be continuous on the insta
ity lines and that it have only one minimum in the region
M instability ath50 and a single minimum in the region o
A instability ath51. So, for example, forP.2 we can put

G̃65s1h2~P212h21h4/3!/2,

G̃45s1h2@P212~4/3!h1h2/2#, s1.0;
~49!

G̃65s1~12s1!Ph4~h2/321/2!/2,

G̃45s1~12s1!Ph2~1/32h/4!, s1,0.

With such a modification, regions where only one phase
ists can be correctly described in terms ofP and B. For P
.2 (0,B4,9/32, 0,B6,1/3), only A exists for s1.0
and onlyM exists fors1,0.

As an alternative to modifying the potential, the ord
parameters can be constrained in numerical simulation
the interval@0,1# or @21,1# for the extended 2-4-6 potentia
In other words, reflective boundary conditions can be i
posed at the ends of these intervals.

Introducing new spatial and time variables by the eq
tions

y65
k6

Abm6

x5A s1

2bB6
x5

A6

4
As1

b

42P

A32P
x, z65

lk6
2

m6
t;

~50!

y45
k4

Abm4

x5A s1

bB4
x5

2

3
As1

b

62P

A42P
x, z45

lk4
2

m4
t,

we obtain the dimensionless form of the Ginzburg-Land
equation

]j

]z
52S ]g

]j
22

]2j

]y2D . ~51!

Henceforth we consider only time independent solutions
i.e., ]j/]z50. The resulting equation 2d2j/dy25dg/dj is

e

1-11
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the equation of motion of a material point with mass equa
2 in the potential field2g(j). An energy integral reads

dj/dy5Ag2g0, ~52!

where g0 is the integration constant. At points whe
dj/dy50, e.g., at the center of a nucleus,g5g0. Designat-
ing

gGL* 5gGL2g05g2g01~dj/dy!2 ~53!

and taking into account Eq.~52!, one finds that the contribu
tions togGL* from g2g0 and the gradient of the order param
eter j are the same, hencegGL* 52(g2g0). Generally, Eq.
~52! has periodic solutions withn diffuse interfaces. The to
tal energy per unit area ofn diffuse interfaces is given by

eªE
2 l

l

gGL* dy52nE Ag2g0dj, ~54!

wherelªAs1 /(bB)L, 2L is the length of a parallelepiped i
the x direction, and the integration limits of the second in
gral depend on the type of interface. The energye is finite
even for an infinite slab. The total energy of the system
infinite for an infinite parallelepiped in the caseg0Þ0.

Falk5 found periodic solutions forn domain walls in finite
regions, but claims that the separation between domain w
must be infinite in an infinite region. However, all of h
finite-l solutions depend onl only through the combination
l /n. Consequently, the finite-l solutions can be used forl
→` providedn→`, keeping the ratiol /n, the distance be-
tween the domain walls, finite.

Imposing the usual boundary conditions at the ends of
slab

dj~2 l !/dy5dj~ l !/dy50, ~55!

one obtains

g~2 l !5g~ l !5g0 . ~56!

Using Eq.~45!, one derives

y4~j4!5E dj4

AB4j4
22j4

31j4
42g40

,

~57!

y6~j6!5E dj6

AB6j6
22j6

41j6
62g60

.

Despite the significant differences between our theory
Falk’s5 and completely different variables and paramete
Eq. ~57! 2 is of the same form as Eq.~14! in Ref. 5. This
means that we can use all of Falk’s formal periodic analyti
solutions and analyze them in terms of our governing par
eters for the 2-4-6 potential. The same procedure can
followed for the calculation of the total energy of the syste
13420
o

-

s

lls

e

d
,

l
-

be
.

B. Critical martensitic nucleus: M soliton in A

Let us start with the case whenA exists asx→6`, hence
g050. The solutions below are valid in the region of stab
ity of M and metastability ofA, i.e., s1.0 and P<0 (0
<B<1/4). One has

j4
M~y4!5

j41

11S 12
j41

j42
D sinh2@AB4~y42y04!/2#

,

~58!

j6
M~y6!5

j61

A11S 12
j61

2

j62
2 D sinh2@AB6~y62y06!#

,

h4
M~x!5

j4SA s1

bB4
xD

k4

56$62P1AP223Pcosh@As1 /b~x2x0!#%21,
~59!

h6
M~x!5

j6SA s1

2bB6
xD

k6

52$42P1AP228P/3cosh@A2s1 /b~x2x0!#%21/2.

The energies are given by

e4
M5~328B4!AB4/61~B421/4!ln

112AB4

A124B4

,

e6
M5AB6/21~B621/4!ln

112AB6

A124B6

,

~60!

E4
M5

1

k4
2
Abs1

B4
e4

M5
32

27

~62P!3

~42P!5/2
Abs1e4

M ,

E6
M5

1

k6
2
Abs1

2B6
e6

M5
3A6

8

~42P!2

~32P!3/2
Abs1e6

M .

The solution j6
M(y6) formally coincides with Falk’s

solution.5 Falk did not provide a physical interpretation o
his solution, but we do so here. At first sight, the soluti
~58! looks contradictory: the smallerB ~more negativeP)
and the greater the stability ofM, the smaller the magnitude
of the order parameter of theM nucleus. This apparent con
tradiction disappears if we interpret the above solution a
critical martensitic nucleus in austenite. We verified by nu-
merically solving the Ginzburg-Landau equation~51! that
this solution corresponds to unstable thermodynamic equ
rium. An initial profile slightly larger ~or smaller! than
1-12
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FIG. 8. ~a! Growth of a supercriticalM nucleus (B50.2, w51.1). ~b! Disappearance of a subcriticalM nucleus (B50.24,w50.9). ~c!
Growth of a supercriticalA nucleus (B50.3, w51.1). ~d! Disappearance of a subcriticalA nucleus (B50.26,w50.9). All plots are for the
2-4-6 potential.
e

g-
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in

rg
;
m
s
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it

e,
j6
M(y6) converges toM ~or A) everywhere; see Fig. 8. Th

smallerB, the smaller the size and energy@see Eq.~60!# of
the critical nucleus. Numerical solution of the Ginzbur
Landau equation for the 2-3-4 potential confirms thatj4

M(y4)
is also a criticalM nucleus.

Only for thermodynamic equilibrium,P50 or B51/4,
does the magnitude of the order parameterj415j61

2 51/2 cor-
respond to completeM (h51); otherwise, it is smaller. Note
that for homogeneous stresses and temperature, there
solution for a stableM nucleus that grows with an increase
the thermodynamic driving force for theA→M PT.

Let us designate the solution of the stationary Ginzbu
Landau equation asjs . We will consider the 2-4-6 potential
the derivations and results for the 2-3-4 polynomial are si
lar. We can estimate]j/]z at the instant when the nucleu
wjs appears from Eq.~51!; w is a constant multiplicative
factor:
13420
no

-

i-

]j

]z
52S ]g~wjs!

]j
22w

]2js

]y2 D
52

]g~wjs!

]j
1w

]g~js!

]j

52js
3w~w221!@223js

2~11w2!#. ~61!

Consider a supercritical nucleus, i.e.,w.1, for which we
expect ]j/]z.0. However, this is true only whenjs,max

satisfiesjs,max
2 ,2/@3(11w2)#,1/3, which is the case for

B,2/9. For a small thermodynamic driving force 2/9<B
<1/4, the inequalityj1

2,2/@3(11w2)# is violated in the
central part of the nucleus. Consequently, the magnitudej
initially decreases near the center of the nucleus while
grows in the rest of the nucleus. After a short initial stag
growth occurs throughout the nucleus.
1-13
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For a subcritical nucleus,w,1, ]j/]z,0 if the same
inequality is satisfied. In this case, the central region of
nucleus grows during a brief initial stage, after whichj de-
creases throughout the nucleus until it disappears.

The above analytical estimates provide important insig
into the behavior of the nuclei but, of course, detailed, qu
titative results on the growth or shrinkage of the nuclei c
only be obtained from numerical simulations, for examp
Fig. 8.

As was mentioned, for the 2-4-6 potential we can u
Falk’s periodic, multinuclei solutions for a finite region5 the
energy of such solutions~the activation energy for nucle
ation! is roughly proportional to the number of nuclein/2.
However, the physical interpretation of multinuclei solutio
is unclear. Is this a stable solution or an unstable one? If
a metastable configuration, can it be reached under s
dynamic process and how high is the energy barrier
separates it from a lower-energy state with a smaller num
of nuclei or from a completeM state? These problems wi
be studied elsewhere.

The amplitudes of the physical order parameters of
critical M nuclei are

h415
j41

k4
5

4~12A124B4!

31A9232B4

,

~62!

h615
j61

k6
5A3

2

12A124B6

11A123B6

.

From now on, a subscript ‘‘1’’ on an order parameter w
indicate the amplitude of that order parameter. The functi
h1 andw(h1) vs B are shown in Fig. 9. The amplitudeh61 is
significantly larger thanh41 except at the end pointsB50
and B51/4. Note thatdh1 /dB is infinite at the end points
for the 2-4-6 potential and only atB51/4 for the 2-3-4 poly-
nomial.

Figure 10 showsEM/Abs1 as a function ofa5P/(4
2P). The energy of the 2-3-4 criticalM nucleus is smaller
than the energy of the criticalM nucleus for the 2-4-6 poten
tial. The activation energy in thermodynamic equilibriu
(a50) is finite, in contrast to the infinite energy of a cla
sical nucleus with a sharp interface. WhenA loses its stabil-
ity, E6

M5E4
M50, while the activation energy is finite in clas

sical nucleation theory.
The profilesh(As1 /bx,P) andw(As1 /bx,P) of the criti-

cal nuclei are shown in Fig. 11 for variousP andB. The w
profiles are essentially strain profiles because« tw@h(x)# is
the transformation strain. Thew and h profiles are quite
different, especially for smallh and 12h where the stron-
gest nonlinearities of the functionw are located. Thew pro-
files are narrower than theh profiles. ForP521 the 2-4-6
and 2-3-4 nuclei are almost indistinguishable. At largerP the
2-4-6 and 2-3-4 nuclei have the same amplitudes but
2-3-4 nucleus is wider. At smallerP, w6@h6(x)# is signifi-
13420
e

ts
-

n
,

e

is
e

at
er

e

s

e

cantly greater thanw4@h4(x)# everywhere. WhenP→0, the
entire region is martensite.

The effective widthW of the nucleus can be defined a
W52u(`)/«w(h1), whereu(`) is the displacement at in
finity and« is the volumetric strain. Thus a nucleus of wid
W with a sharp interface and constant volumetric str
«w(h1) produces the same displacement increment as
critical nucleus. The displacement at infinity due to volum
ric strain can be calculated by integrating

«w@h~x!#5
du

dx
, ~63!

where u(0)50. The total displacement contains an ad
tional contribution due to constant elastic strain,ue
52lnn:l:s, which we neglect here. The effective widths
the nuclei are

FIG. 9. The amplitudes of the criticalM nuclei vs B: ~a! the
function h1(B), ~b! the functionsw@h1(B)# for severala. Solid
~dashed! lines correspond to the 2-4-6~2-3-4! potential.
1-14
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W6
M~P!5

3

8~32P!2w6~h61!
A b

2s1
H 1

6
A 3

32P
tanh21S 1

4
A 3

32P
~42P2AP228P/3! D

3@576224~a114!P1~11a136!P2#112a1~1227a!PJ ,

~64!

W4
M~P!5

8

9~42P!3w4~h41!
Ab

s1
H 2

3A42P
tanh21S 62P2AP223P

3A42P
D

3@864236~a115!P118~a15!P22~a16!P3#224~32a!112~62a!P2~a16!P2J .

We define the interface thickness as

DM
ª

w~h1!

udw@h~xm!#/dxu
, ~65!

where xm corresponds to the maximum of the derivativedh(x)/dx. The ideal definition would beDM

ªw(h1)/udw@h(x)#/dxumax but this cannot be analyzed analytically. The interface thicknesses are

D4
M5

~31I 4!5@12B42~ I 423!~J421!#

96AB4~11J4!2~11I 412J4!@3~31I 4!232B4#A~ I 423!~11J4!112B4

Ab

s1
,

D6
M5

~11J6!4@4B62~ I 621!~J621!#

2AB6~11I 6!~11I 612J6!~11J623B6!A~11I 6!~J621!14B6

Ab

s1
, ~66!

I 4ªA9232B4, J4ªA124B4, I 6ªA124B6, J6ªA123B6.

FIG. 10. The energyE/Abs1 vs a5P/(42P) for the criticalM nuclei, the criticalA nuclei, theA-M interfaces for the 2-3-4 (AM4) and
2-4-6 (AM6) potentials, and theM-M interface for the 2-4-6 potential. Solid~dashed! lines correspond to the 2-4-6~2-3-4! potential.
s
-
ni-
ic

-6
The dimensionless widthWMAs1 /b and dimensionless
thicknessDMAs1 /b are plotted as functions ofB in Fig. 12.
The widthWMAs1 /b tends to infinity for both potentials a
the PT equilibrium line (B51/4, P50) is approached, while
the interface thicknessDMAs1 /b remains finite. AsB→0
13420
(s1→0), WMAs1 /b andDMAs1 /b go to finite values; there-
fore, WM and DM tend to infinity. Excluding the neighbor
hood ofB51/4, both parameters are of comparable mag
tude; the interface is sharp only near thermodynam
equilibrium. The width of the nucleus is larger for the 2-4
1-15
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FIG. 11. Profiles of critical martensitic nuclei for variousP anda52.98. Solid~dashed! lines are for the 2-4-6~2-3-4! potential.
es

f.

efi
potential than for the 2-3-4 potential. The interface thickn
is significantly larger for the 2-3-4 potential forB.0.17 and
almost the same for both potentials for smallerB.

The interface thicknessesD4
M andD6

M are given to within
0.4% by the cubic polynomial approximations

D4
M5~1.94211.779B4212.80B4

2168.56B4
3!Ab

s1
,

~67!

D6
M5~2.00010.732B610.381B6

2110.66B6
3!Ab

s1
.

The effective surface energy of a nucleus is defined in Re
asGM

ª@EM2G(h1)W#/2, soG(h1)W is the effective bulk
energy of the nucleus. However,G(h1)50 by definition of
h1 @see Eq.~52! for dj/dy50 andg050]; i.e., the energy of
the nucleus is localized at its surface according to this d
nition. For our theory, a better definition isGM

ª$EM2G@w(h1)#W%/2 sinceG@w(h1)#Þ0.

C. Kink solutions: A-M diffuse interfaces

We consider the case where the phase isA asx→2` and
M as x→1`. Then, g(2`)5g(A)5g050 and g(1`)
13420
s

7

-

5g(M)5g0, i.e.,g(A)5g(M)50, which is the case whenA
and M are in thermodynamic equilibrium:s25P50, B
51/4, j415j425j61

2 5j62
2 51/2, g65j6

2(j6
221/2)2, g4

5j4
2(j421/2)2. The solutions of Eq.~52! read

j4
AM~y4!5@2~11e2(y42y04)/2!#21,

j6
AM~y6!5@2~11e2(y62y06)!#21/2, e6

AM53e4
AM51/8;

~68!

h4
AM~x!5$11exp@2As1 /b~x2x0!#%21,

h6
AM~x!5$11exp@2A2s1 /b~x2x0!#%21/2.

The solutionh4
AM(x) is symmetric aroundx5x0 but h6

AM is
not ~see Fig. 13! because theA andM minima of the 2-4-6
potential have different curvatures@note, however, that
(h6

AM)2 is symmetric aroundx5x0]. In Fig. 13 we used
x0450 and x0652 ln 3 so that h6(0)5h4(0)51/2. The
strain profilesw4@h(x)# and w6@h(x)# are very close and
exhibit smaller interface thicknesses than theh(x) profiles.

A and M are in thermodynamic equilibrium, thuss25P
50, and consequently,DGu5s:«t , B51/4, andk6

251/2.
The interface energy densities are
1-16
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E6
AM5

3

4
A2E4

AM5
A2bs1

4
5

A2b

4
AA2s:«ta

5
A2b

4
AA0~u2uc!2DGua

5
A2b

4
A~A02za!u1zaue2A0uc

5
1

4
Aa~62a!b« tH

3
;

E6
AM53A3bG̃6~h63!/4, E4

AM54AbG̃4~h43!/3, ~69!
e
t

13420
whereG̃6(h63)52s1/27 andG̃4(h43)5s1/16 are the energy
barriers betweenA and M at thermodynamic equilibrium
Equation~69! expresses theA-M interface energy in terms o
the material parameters and temperature~or stress, which is
related to temperature via the equilibrium conditions2
50), the stress hysteresis, or the energy barrier betweeA
andM at thermodynamic equilibrium.

The interface thickness is defined by

DAM
ªS dw@h~x!#

dx D
max

21

, ~70!

which results in
D4
AM5

~2125a1K4!5

32~a26!3@11a3281~91K4!25a2~241K4!1a~486139K4!#
Ab

s1
,

D6
AM5

~72215a1K6!4

128A2~a26!3@227a2224~241K6!15a~481K6!#
Ab

s1
, ~71!

K4ªA81230a15a2, K6ªA5762240a133a2.
-
nifi-

y

Both D4
AM andD6

AM are complicated functions ofa but they
are accurately approximated by the polynomials

1.88<p651.8810.179a10.00065a220.0035a3<2.386,

2.411<p4520.028~a23!212.667<2.667. ~72!

The interface thicknesses are given by

D6
AM5

p6

p4
D4

AM5p6Ab

s1
5p6A b

A0~u2uc!2DGua

5p6A b

~A02za!u1zaue2A0uc

5A6p6A b

a~62a!«H
;

D6
AM5

2

3A6
p6A b

G̃6~h63!
, D4

AM5p4A b

G̃4~h43!
.

~73!

If A05za, then the stress hysteresis, interface energy d
sity, and interface thickness are temperature independen
follows from Eqs.~69!–~73! that
n-
. It

E6
AM

D6
AM

5s1

A2

4p6
, E6

AMD6
AM5

A2

4
p6b;

~74!

E4
AM

D4
AM

5
s1

3p4
, E4

AMD4
AM5

p4

3
b.

The differences in theA-M interface profiles and energy den
sities between the 2-4-6 and 2-3-4 potentials are not sig
cant.

D. Critical austenitic nuclei: A solitons on M

In this section we consider the case where onlyM exists
as x→6`. The integration constantg0 must be a function
of the parametersk6 or k4 in order to satisfy the boundar
conditionsdj(6`)/dy50:

g42g405~k42j4!~j42jA1!~j42jA2!,

jA15
1

2
~122k41A122k4!>0,

~75!

jA25
1

2
~122k42A122k4!<0,

g62g605~k6
22j6

2!2~j6
22jA

2 !, jA5A122k6
2.

The solutions of Eq.~52! are
1-17
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FIG. 12. The dimensionless effective widthsWMAs1b of the critical martensitic nuclei vsB for various values ofa for ~a! the 2-4-6
potential and~b! the 2-3-4 potential.~c! The dimensionless thicknessDMAs1 /b of the interface of a critical martensitic nucleus and half
the dimensionless effective width, 0.5WMAs1 /b, of a critical martensitic nucleus, both vsB for a53. Solid~dashed! lines correspond to the
2-4-6 ~2-3-4! polynomial.
s
-

-
r
j6

A~y6!5
jA

A12
3k6

221

k6
2

tanh2~k6A3k6
221y!

,

j4
A~y4!5

k4~224k41H !

2114k41H
, ~76!

H5A122k4

3coshS 1

2
y4
A12A122k424k4

A11A122k424k4D .

The parametersk6 and k4 are restricted to the interval
@1/A3,1/A2# and @3/8,1/2#, respectively. It was proved nu
merically ~as was done for the martensitic nucleus! that the
13420
solutionsj6
A(y6) and j4

A(y4) describe critical austenitic nu
clei ~see Fig. 8!. From Eq.~76! we obtain the physical orde
parameters as functions ofP:

h6
A~x!5

AP

A2~32P!23~22P!tanh2S 1

2
As1

b
xD

,

~77!

h4
A~x!51

2
6~22P!

4~32P!1A2P~62P! coshSA s1

2b
~22P!xD ,
1-18
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where 0<P<2. The total energies per unit area of the cri
cal nuclei are

E4
A5

32

27
Abs1

~62P!3

~42P!5/2
e4

A ,

e4
A54E

jA1

k4
~j42k4!A~j42jA1!~j42jA2!dj4

5
1

4~62P!3 F3

2
~1226P1P2!A2~42P!~22P!

2P~32P!~62P!lnS 4~32P!13A2~42P!~22P!

A2P~62P!
D G

.0.08320.086P10.024P220.001P3;

E6
A5

3

8
A6bs1

~42P!2

~32P!3/2
e6

A ,

FIG. 13. Austenite-martensite diffuse interface profiles. So
~dashed! lines correspond to the 2-4-6~2-3-4! polynomial.
13420
e6
A54E

jA

k6
~k6

22j6
2!Aj6

22jA
2dj

5
1

2~42P! FA2

3
~32P!~22P!

2
P~823P!

3~42P!
lnS A2~32P!1A3~22P!

AP
D G

.0.24820.227P10.046P210.003P3. ~78!

As was done for the martensitic nucleus, expressions for
width and interface thickness can be obtained for the au
nitic nucleus.

Figure 10 shows the energies of the criticalA nuclei for
the 2-4-6 and 2-3-4 potentials versusa, and Fig. 14 shows
profiles of the criticalA nuclei for these two potentials. Th
results for the two potentials are very similar except for t
widths in the neighborhood ofP50 where the 2-3-4 nucleu
is significanlty narrower than the 2-4-6 nucleus.

E. Kink solutions: M-M interfaces and barrierless nucleation
of austenite

In this section we present twoM-M kink solutions of the
static Ginzburg-Landau equations. The first is a solution
the potentials in hyperspherical coordinates, and the sec
is a M1-M2 solution of the extended (hP@21,1#) 2-4-6
Landau potential that exhibits barrierless nucleation of a
tenite.

The minimum-energy paths between stable martens
variants for the potentials in hyperspherical coordinates
great circles on the unit hypersphere,r 51. Kink solutions
between martensitic variants exist when both variants h
the same energy, which implies zero stress or zero trans
mation work. The potential along the great circle fromMi to
any other variant isG5Āc2(12c)21DGu for both poten-
tials. Both variants are twin-related IPS variants,«t(c)
5 1

2 g t@2112c2(322c)#(mn1nm)1«nn @see Eqs.~20!
and ~27!#; that is, the normal strain is constant, the she
strain varies from2g t to g t , and the PT does not procee
throughA. The solution of the static Ginzburg-Landau equ
tion ]G/]c52b]2c/]x2 is

c5~11exp@2AĀ/b~x2x0!# !21, ~79!

which interpolates betweenMi at 2` andMj Þ i at 1`. The
solution~79! coincides with Eq.~68! for h4

AM(x) whens1 is

substituted forĀ. For a53, P(c)5w4(c); thus the thick-
ness of the interface is given by Eqs.~72! and ~73! for D4

AM

with s1→Ā: Dc
MM52.667Ab/Ā. The total kink energy per

unit area isEc
MM5AbĀ/3.

The static Ginzburg-Landau equation for the 2-4-6 pot
tial admits a kink solution such thath(1`)511, h(2`)
521; i.e., the structure goes toM1 asx→1` and toM2

asx→2`. There is no corresponding solution for the 2-3
potential, so we can drop the subscript ‘‘6.’’ Equation~75!
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FIG. 14. Profiles of critical austenitic nuclei for variousP anda52.98. Solid~dashed! lines correspond to the 2-4-6~2-3-4! polynomial.
th

e

ra-

g

remains valid but with imaginaryjA . It is convenient to
designate an imaginary root of the equationg5g0 as jAi ;
then,

g2g05~k22j2!2~j21jA
2 !, jA5A2k221. ~80!

The solution of Eq.~52! is

j~y!5
k sinh~kA3k221y!

A3k221

2k221
1sinh2~kA3k221y!

,

~81!

h~x!5

sinhSAs1~22P!

b

x

2
D

A3S 12
2

P
D 1sinh2SAs1~22P!

b

x

2
D

.

This solution is valid forP<0, 0<B<1/4. Since s:«t
50, it follows that P512DGu/A; henceDGu<0 sinceP
<0, which implies stability ofM and metastability ofA, or
equilibrium. The profilesh(x) and w@h(x)# for various P
are shown in Fig. 15. The total energy per unit area of
M1-M2 interface is
13420
e

EMM5
1

k2
Abs1

2B
eMM,

~82!

eMM54E
0

k

~k22j2!Aj21jA
2dj

5
1

2 FkA3k2211~128k2112k4!lnS k1A3k221

A2k221
D G .

Figure 10 shows EMM/Abs1 versus a. Note that
EMM/Abs1→` when B→0 (a→21); however,
s1 /B→23s2/4 and EMM/Ab→0.901A2s253.12A2DGu

in the same limit. WhenP→0, EMM/Ab→As1/25AA/2.
The energy of theM1-M2 interface and the energies of th
critical A and M nuclei all coincide whenA and M are in
thermodynamic equilibrium.

It is convenient to introduce the dimensionless tempe
ture Tª(ue2u)/(ue2uc), 0<T<1. Then s15A5A0(ue
2uc)(12T) and P512zT/@A0(T21)#. Plots of
EMM/AbA0(ue2uc) vs T for various values of 0<A0/12z
<1/2 are shown in Fig. 16.

As was mentioned in Ref. 11 and 12, soliton splittin
occurs~Fig. 15! as theA-M equilibrium line is approached
(B→1/4,P→0); that is, theM1-M2 diffuse interface splits
into M1-A and A-M2 diffuse interfaces separated by anA
1-20
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region. As P→02 the solution~81! for h(x) assumes the
form sgn(x)/$116/@ uPusinh2(As1/2bx)#%1/2, whose magni-
tude is less than or equal tod for uxu<xd , where xd

5Ab/2s1 ln(24d2/uPu) for AuPu!d!1; the width of the
austenitic region grows logarithmically as the equilibriu
line is neared.

The thickness of theM1-M2 interface can be estimate
for P<21 by the expression

FIG. 15. M2-M1 interface profiles for variousP.

FIG. 16. M2-M1 dimensionless interface energ
EMM/AbA0(ue2uc) vs dimensionless temperatureT for various
values ofA0/12z.
13420
DMM
ª2x0.95

5Ab/s1

4

A22P
sinh21S h0.95A2

3~22P!

~12h0.95
2 !P

D ,

h0.9550.93120.011a10.003a220.000 08a3. ~83!

Here x0.95 is defined by the conditionw@h(x0.95)#50.95.
Equation ~83! 1 was obtained from the conditionh(x0.95)
5h0.95 using Eq.~81! 2. The functionh0.95(a) was deter-
mined by numerical solution of the equationw(h0.95)
50.95 and then approximated by the cubic polynomial, E
~83! 2. Plots of DMMAs1 /b vs B for various a and
DMMAA0(ue2uc)/b vs T for a52.98~NiAl value! and vari-
ous values of 0<A0/12z<1/2 are shown in Fig. 17. ForP
>21 the splitting is so pronounced that we no longer ha
an interface in the usual sense of the word. Equation~83!
then gives the width of the austenitic nucleus.

Near theA-M equilibrium line, 0,k221/2!1, and Eq.
~81! for the order parameter becomes

FIG. 17. ~a! The M2-M1 dimensionless interface width
DMMAs1 /b vs B for variousa. ~b! theM2-M1 dimensionless inter-
face widthDMMAA0(ue2uc)/b vs dimensionless temperatureT for
a52.98 and various values ofA0/12z.
1-21
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j~y!5A2 sinh~y/2!@exp~y0!14 sinh2~y/2!#21/2,

y052 ln~k221/2!. ~84!

Now expand the hyperbolic sine aroundy0@1, sinh(y/2)
'exp(y0/2)exp@(y2y0)/2#/2, and substitute into Eq.~84!:

j~y!5@2~11e2(y2y0)!#21/2. ~85!

This is identical toj6
AM @see Eq.~68!#, theA-M diffuse inter-

face, as expected.
Austenite nucleation inside a homogeneous, thermo

namically stable martensitic phase is suppressed by the l
activation energy@see Eq.~78!# required to form an unstabl
critical nucleus. In contrast, the formation of anA region
between theM1 andM2 occurs with no cost in energy. Sol
ton splitting is a barrierless mechanism forA nucleation in
the region of M stability. A stable austenitic nucleus
formed and grows as the temperature approaches the eq
rium temperature, and expands to infinity at the equilibriu
temperature. Note that forP!0, when theA embryo is not
visible in theh(x) profile in Fig. 15, it can be seen in th
w(x) profile; this is because dh(0)/dxÞ0 but
dw@h(0)#/dx5@dw(0)/dh#@dh(0)/dx#50. We believe
that such a mechanism may be observable in experimen
three-dimensional systems when the transformation stra
an IPS~to avoid distortion along the interface!. This may be
the case for the interface between two IPS variants for
PT.

VI. NIAL CUBIC-TETRAGONAL PT: M-M AND M-A
INTERFACES

Let us estimate the parameterb for NiAl alloys. The
transformation strain for a variant-variant transformation
NiAl is an IPS and the transformation does not pass thro
A, so our results forM-M interfaces in polar coordinates a
applicable to NiAl. TakingĀ55320 MPa@Eq. ~39!# one ob-
tains

Ec
MM52.433104Ab N1/2m21,

~86!

Dc
MM56.2231025Ab N21/2m.

High-resolution electron microscopy13 of Ni65Al35 ~the data
that we used in Ref. 2 and in Sec. IV are for Ni61Al39)
brackets the width of the martensite-martensite interface
tween one and several interatomic distances~see Figs. 5 and
6 in Ref. 13!. If we assumeDc

MM50.331029 m, which cor-
responds to an interatomic distance, then we obtainb
52.33310211 N and Ec

MM50.117 J m22 from Eq. ~86!.
This value forb givesD6

AM50.24331029 m from Eq.~73!
andE6

AM50.079 J/m2 from Eq. ~74! for the stress-free cas
at u5300 K. If we take Dc

MM51029 m, then b52.588
310210 N, Ec

MM50.391 J m22, D6
AM50.80931029 m, and

E6
AM50.263 J/m2 from Eq. ~74!. If the surface energy is

known, then a more precise estimate ofb can be made using
Eq. ~86! or Eqs.~73! and ~74!.
13420
y-
ge

lib-

on
is

y

h

e-

Note that the relatively high value ofE6
AM in comparison

to 0.0120.02 Jm22 for steels is related to the very high ba
riers for stress-induced PT, i.e.,Ā andA0(ue2uc). Our Eq.
~69! for E4

AM in terms ofG̃4(h43), the energy barrier betwee
A and M at thermodynamic equilibrium, exactly coincide
with the corresponding equation in Ref. 7 because Eq.~69! is
independent of stress, and at zero stress and for oneM vari-
ant both Gibbs potentials coincide. Our value forD4

AM at a
52.98 is 0.667 of the corresponding value in Ref. 7.

VII. PHASE FIELD THEORY OF DISLOCATIONS

In this section we discuss a serious shortcoming of
present-day phase field theory of dislocations and then d
onstrate that this drawback can be eliminated by follow
an approach similar to the one we used to construct our L
dau potentials.

In the phase field theory of dislocations~see, e.g., Ref. 3!
the Burgers vector and consequently the plastic strain dep
on the applied stress even in the elastic regime—that
when dislocations are in stable equilibrium and no plas
flow occurs. Such a dependence is in conflict with the d
nition of plastic strain in macroscopic plasticity theory.
s-dependent Burgers vector is inconsistent with the w
established theory of dislocations.14 It also implies dissipa-
tion during elastic deformation of plastically deforme
material.10 The s dependence of the plastic strain in th
phase field theory is analogous to thes dependence of the
transformation strain in Landau theories of PT’s; see anal
in Ref. 1.

Consider one slip plane and one slip direction—i.e., o
Burgers vectorb. Then Eqs.~3! and ~4! in Ref. 3 for the
Burgers vector and plastic strain reduce tob(h)5bh and
«p(h)5bnh/d5«ph, where h is the density function
~phase field! for dislocations,n is the normal to the slip
plane, andd is the distance between the slip planes. The lo
potential of the crystal lattice@Eq. ~8! in Ref. 3# is f
5A sin2(ph), which leads to the Gibbs potentialG5
2s:l:s/22s:«p(h)1A sin2(ph). The corresponding equa
tion of thermodynamic equilibrium is]G/]h5052s:«p
1pA sin(2ph); hence 2ph5arcsin@s:«p /(pA)#1n,
where n50,1,2, . . . is thenumber of dislocations. There
fore, in thermodynamic equilibrium, the order parameterh,
the Burgers vectorb(h), and plastic strain«p(h) depend on
the stresss. We can avoid this unphysical dependence ons
by first breaking the order parameter into an integer p
Int(h) and a fractional parth̄ªh2Int(h)P@0,1#, and then
incorporating the dependence onh̄ through the 2-3-4 or
2-4-6 polynomialsw(h), as was done for the transformatio
strain in our Landau potentials:

b~h!5b@w~h̄ !1Int~h!#, «p~h!5bn@w~h̄ !1Int~h!#/d.
~87!

The term Int(h)5n accounts for the presence ofn disloca-
tions in the slip plane, each with Burgers vectorb. The Gibbs
potential for three shear stresses is shown in Fig. 18.
thermodynamic equilibrium condition]G/]h50 has the
1-22
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rootsh5n(n51,2,3, . . . ) corresponding to thermodynam
equilibrium of n dislocations. It also has the rootsh̄3 of the
equation

s:«p

dw~h̄3!

dh
5pA sin~2ph̄3! ~88!

corresponding to the maxima ofG(s,u,h), which represent
the activation barriers to the dislocation motion. An analy
cal solution forh̄3 cannot be found, but iff 5A sin2(ph) is
replaced by periodic 2-3-4 or 2-4-6 crystal potentials inh,
for example,

f 4~ h̄ !5Ah̄2~12h̄ !2, f 6~ h̄ !5Ah̄2~12h̄2!2/2, ~89!

then analytic solutions can be obtained. For the crystal
tentials~89! our Gibbs potential inh̄ is identical in form to
the G(h) for twinning, so we can use all of the results pr
viously obtained for twinning. In particular, fora53,

h̄435~A23s:«p!/2A, h̄635AA23s:«p/A3~A1s:«p!.

~90!

We write s:«p5tgp with t5b"s"n/ubu the resolved shea
stress andgp5ubu/d the plastic shear strain. The equilibriu
t2h̄ curve can be obtained from Eq.~90!:

t45
A

3g
~122h̄ !, t65

A

3g

123h̄2

11h̄2
. ~91!

The condition for loss of stability of a dislocation and i
barrierless motion—namely,t>A/3g ~see Fig. 18!—is the
same for both polynomials. Reverse motion occurs fort<

FIG. 18. Gibbs potentialG̃ for dislocations for three shea
stresses.
13420
-

o-

2A/3g. The generalization to multiple slip systems can
effected by means of the approach followed in Ref. 3.

VIII. CONCLUDING REMARKS

The most significant difference between the 2-3-4-5 a
2-4-6 potentials is that the ratio of the curvature of theM
minimum to the curvature of theA minimum is 4 times
greater for the 2-4-6 potential:@]2G4(1)/]h2#/@]2G4(0)/
]h2#512P/2 and @]2G6(1)/]h2#/@]2G6(0)/]h2#
54(12P/2). The criticalM nucleus is particularly sensitive
to the larger curvature at theM minimum of the 2-4-6 poten-
tial. For example, its amplitude is larger for the 2-4-6 pote
tial; especially near theM instability line, its width is larger
for the 2-3-4 potential whenB.0.17, and its energy is
greater for the 2-4-6 potential. On the other hand, the ene
and amplitude of the criticalA nucleus are nearly the sam
for both potentials, and the profiles, widths, and energies
the A-M interfaces are very similar. Despite the fact that
phase equilibrium and transformation conditions are
same for both potentials for a homogeneous distribution
order parameter, the difference in curvature does affect
energetics and relative stability of phases for a nonunifo
distribution.

Note that our potentials do not have parameters that c
trol the relative curvatures ofG(h) at theA andM minima.
We remind the reader that these curvatures are not relate
elastic moduli, as is the case for Landau potentials w
strain-based order parameters. We plan to generalize ou
tentials by introducing additional parameters that control
curvatures at theA and M minima and study the effect o
variations in these parameters on critical nuclei and in
faces. The actual values of these parameters can be d
mined from the results of atomistic calculations.

In this paper we considered only homogeneo
nucleation—that is, nucleation in defect-free crystals or pa
of crystals: nanocrystals, thin films, or nanoprecipitates. O
results can be used to approximately model the nonclass
nucleation of an ellipsoidal region, which was carried out
Ref. 7, but more precisely and with allowance for appli
stresses. Heterogeneous nucleation at various disloca
configurations~pileups, low- and high-angle boundaries!, as
well as generation of dislocations during PT’s can be stud
using a combination of the phase field theories of PT’s a
dislocations developed in this paper.

The free surface boundary conditiondh/dx50 is satis-
fied at the maxima of theA and M critical nuclei. Conse-
quently, a critical nucleus at a free surface is simply half o
critical nucleus in the bulk. Since the energy of a surfa
nucleus is half of the energy of the corresponding nucleu
bulk, the probability of its appearance is significantly high

We plan to obtain and compare analytical and numer
solutions of the time-dependent Ginzburg-Landau equati
for the 2-3-4-5 and 2-4-6 potentials. We also plan to deve
a generalization of our Landau theory for large strains a
large material rotation, a very challenging problem. Suc
generalization is essential for PT’s with components of tra
formation strain exceeding 0.1 and for loadings that are
companied by finite rotations of the crystal lattice.
1-23
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