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FUNDAMENTALS OF STRENGTH AND DURABILITY CALCULATIONS FOR HIGH-
PRESSURE APPARATUS ELEMENTS
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The high-pressure apparatus for the synthesis of materials are devices of repeated application. They comprise many
elements made of materials with different elasticity, plasticity and thermal conductivity characteristics.

The dependence of the mechanical characteristics of these materials on the stressed state mode and temperature causes
problems in analyzing their stressed—strained state.

Theoretical aspects of the mechanics of deformable bodies have been considered and an example of numerical calculation
has been presented for the fields of temperature and mechanical stresses in load-bearing elements for different models of high
pressure apparatus. In this case the pressure and temperature dependence of metals and non-metals properties, substantial
thermoplastic deformations and contact interaction of separate elements in high-pressure apparatus have been taken into
account. The thermoplastic critical state of the reaction cell container made of natural stone has been investigated. The
selection of critical mechanical characteristics (strength and durability) taking into account the scale effect has been

theoretically proved.

The distribution of equivalent stresses and the durability of the elements of different modes of the high-pressure apparatus
has been considered. The effect of the scale factor has been investigated. Estimated values have been compared with
experimental ones obtained for the models of elements of the high-pressure apparatus.

The problem has been considered concerning
the numerical determination of temperature and
stress fields in an axisymmetric high-pressure
apparatus (HPA) of the recessed anvil type used
to synthesize superhard materials. The possibility
has been examined of estimating the strength and
durability of HPA elements under repeated heat-
ing and loading.

The temperature distribution is determined by
the finite element method (FEM) applied to the
solution of a coupled nonlinear and nonstationary
problem of the electrical and thermal conduct-
ivities of HPA elements under heating the reac-
tion cell by the direct passage of the low voltage
current [1]. The high-pressure apparatus of con-
ventional type, one quarter of the axial section of
which is shown in fig. 1, comprises inhomogene-
ous elements.

The reaction cell container is made from differ-
ent rock materials, e.g. lithographic stone. The
model of ideally plastic isotropic material [2] is
used to determine its limiting state due to high
plastic compression strain. Using the hypothesis
of complete plasticity {3] we consider the problem

to be statically determinable and apply the slip
line method for its solution. We use the methods
for a determination of constants in the equations
of the limiting surface of ideal plasticity described
by Coulomb’s law [4]. Making use of the tempera-
ture field obtained and the temperature depen-
dence of the constants included in the condition
of Coulomb’s plasticity limiting state the problem
for a container of predetermined shape and size
has been numerically solved by means of a “plas-
ticity”” program package for computer-aided cal-
culations [3, 4]. The calculations resulted in ob-
taining the distribution of contact normal o, and
tangential 7, stresses at the container—matrix
interface (fig. 2). These data are the initial ones
for calculating the matrix strength. The value of
stress jump at the media interface is influenced by
a number of factors. Thus, allowing for the
temperature dependence of the container materi-
al properties results in a considerable reduction of
the calculated value for stress jump approximat-
ing the calculated model of straining to the real
one which is physically valid.

The obtained characteristics of the container
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Fig. 1. Axial section of the high-pressure apparatus of reces-
sed anvil type: 1, hard alloy matrix; 2, reaction cell container;
3, reaction mixture; 4, heater; 5, supporting plate insert; 6,
backing plate insert; 7,8,9, steel rings fitted-on.
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Fig. 2. Distribution of contact normal o, and tangential 7,
stresses on the matrix operating surface which is obtained (1)
without and (2) with the temperature dependence of container
material properties.

limiting state make it possible to define the
following criterion of the container failure: o,
stresses in the reaction mixture should be less
than the calculated value of radial stresses at the
K-point of the container (o, < o). Besides, it is
evident that the o value is influenced by geomet-
ric parameters not for the whole surface of the
lune, but only for a region adjacent to the recess
edge. The friction value in this region [3] is also of
great importance for the results of calculation.

Special programs have been composed for the
computer-aided calculation of the stressed state
of metal elements in the HPA of widely known
types (“lentil”, belt, toroid, etc.). Contact prob-
lem of stress determination when joining steel
binding rings by fitting them one upon another
and upon a hard alloy matrix has been solved by
the finite element method reported in ref. [S]. In
the calculated example the region investigated
was divided into 1444 trianglar elements joined in
809 nodes with a linear approximation of dis-
placements, the matrix was divided into 500
elements. The final stress—strained state of HPA
elements under loading was determined by the
summation of operating and residual stresses
caused by fitting separate elements into a single
block. Vertical displacement of the lower end of
the backing plate was considered to be absent.

Consider the results of the matrix limiting state
calculation. Laboratory tests on samples of BK-6
tungsten—cobalt alloy with different types of the
stressed state have shown that the limiting surface
for the strength of this alloy is described in the
most complete manner by the surface correspond-
ing in its shape to the Pisarenko-Lebedev criter-
ion [6]. The calculations were carried out taking
into account the type and nonuniformity of the
matrix stressed state as well as BK-6 alloy sen-
sitivity to scale effect [7]. The following values of
the material mechanical constants included in the
criterion have been found experimentally: the
ultimate tensile, compression and torsion
strengths are found to be 1.39 GPa, 4.91 GPa and
1.36 GPa, respectively.

Fig. 3 shows isolines for equivalent stresses in
the matrix under the conditions of fitting into
rings and loading with operating pressure (the
value “1”’ corresponds to the failure). The S-point
in the matrix recess should be recognized to be
the most unsafe under loading and unloading.
This conclusion corresponds to the data obtained
when analyzing the most frequent cases of matrix
failure in experiments. In some cases, however,
the matrix failure occurs in the region of A- and
G-points, though the safety factor under single
loading for these points is considerably higher
than that for the S-point. Therefore, additional
estimation of the matrix strength under multiple
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Fig. 3. Isolines of equivalent stresses in the matrix under

conditions of (a) fitting rings into the block and (b) loading
with operating pressure.

loading is necessary. Here the durability, i.e. the
number of loading cycles to failure can be used as
its criterion.

Assume the stress changes at each point of the
matrix volume to be cyclic. Considering the line
section to be limited in the stress space by the
ends of the stress vectors in the state subsequent
to fitting and under operating loading we find the
durability criterion for hard alloy matrix [7]:

71 (- 5 oo
k= (14 ) oy M

Here, o, and g, are, the vectors of amplitude
and average stresses, respectively. |A|=
(A-A)'"? |a,] and |&_| are the ultimate static
strengths for the two types of stressed state
corresponding to the line considered;

n=(d, 0,)/|0, -0,

is the parameter which takes into account the
direction of the o, vector; Q(N)=1-0.111g N
(for BK-6 alloy). From the two equations in eq.
(1) we obtain two values N, and N, for each point
of the matrix volume, the minimum one corres-
ponds to the estimated value for the number of
loading cycles N to failure. The results of the
calculation are shown in fig. 4 as durability iso-
lines.

The most probable location of failure fits the
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Fig. 4. Isolines for loading cycles.

S-point (N =490). Note the conditionality of the
number given which is obtained from the calcul-
ation example. If the failure at this point does not
occur due to local strengthening or due to the
effect of other unaccounted factors, then the
points G (N = 530) and A (N = 550) appear to be
weak. This conclusion, drawn from the example
of calculation, corresponds to the types of matrix
failure observed experimentally.

The above method of durability calculation
makes it possible to determine correctly the most
probabile locations of failure. The efficiency of the
calculation procedure is testified to the satis-
factory agreement of the calculated results with
the known experimental data [8] on the volume
dependence of durability for geometrically similar
matrices.
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