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1. Introduction

A number of descriptions of phase transitions (PT) in elastic materials under three-dimensional
loading are known. In [1, 2] some general relations are obtained for anisotropic materials, but
results were not applied for the description of experiments. Thermodynamical theory [3] can
rather adequate describe one-dimensional experiments. Its seems to be a little oversimplified for
the description of PT under three-dimensional loading (see Section 7).

Closed to the present paper are the results obtained in [4]; detailed comparison will be made in

Section 7. The important features of our consideration are the following:

e a new PT criterion derived in [5, 6] is applied;

e new extremum thermomechanical principles and explicit formulas for jump of transformation
strain in transforming particles and macroscopic transformation strain are derived based on
a postulate of realizability [5] - [7);

o five real micromechanical mechanisms of PT (nucleation at direct austenite (4) — martensite
(M) and reverse M -+ A PT, interface motion at direct and reverse PT and reorientation of
martensitic variants) are taken into account;

e the constant in obtained expressions for stresses in A, M and transforming particle (charac-
terizing a level of internal stresses) is calibrated from experiments; known theoretical formulas
for this constant [2, 4] overestimate it in one to two orders.

Based on the above features, the thermodynamical criteria of occurrence of all five enumerated
micromechanical processes are derived. These criteria describe the evolution of five PT surfaces in
the macroscopic stress space. Comparisons of the theory with some known experimental results
show qualitative and quantitative agreement. The similarity between PT theory (for the direct PT
due to nucleation) and plasticity theory, established in Section 6, allows the application of numerical
algorithms — which were developed for the solution of elastoplastic boundary-value problems — for
the solution of boundary-value problems for materials with PT.

Note that some preliminary results were published in [8]-{10].
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310 V.I. LEVITAS and E. STEIN

2. Phase transitions criterion and extremum principle

Nucleus, V,

S

v, At
FIG. 1. Volume with PT FIG. 2. Scheme of averaging over volume with PT

Consider the volume V' of A + M mixture. During the time At some PT occurs in a volume
Vo €V, Vo «V with a boundary £ (Fig.1) (A & M and M — A due to nucleation or interface
motion or reorientation of M particles). The following conditions for the driving force X,

1 2 ; ;
Xn = -/ /é G:dEdV, — (Y2 — 1) = kn; Xn = ka 1
ol A (¥2 - 1) 1)

are substantiated in [5, 6] as PT criteria. Here & and & are the local stress and strain tensors, ¢
the Helmholtz free energy, X,, the dissipation inctement per unit volume of V,, (driving force of
PT), k, the threshold value of X, , related to the actual dissipative processes in the course of PT
(e.g. emission of acoustic waves, lattice friction, microplasticity); the indices 1 and 2 correspond
to the value before and after PT. Eq.(1) means that the calculated value of dissipation increment
in the course of PT reaches its actual value, and this equality will not be violated at the next time
instant. Eq.(1); is a counterpart of a consistency condition in plasticity theory. For macroscopically
homogeneous boundary conditions on L the Mandel-Hill relation

(@80 = 0niEn,  where  0n=(8)n, En=(E)ns (wdu= Vi / ) dVe (2
is valid [2] and Eq.(1); is equivalent to
€,
X, = /; 0, :de, — (11’2 - "/)l) = kn . (3)
1

Here o, and €, are the mean stress and strain tensors in V,. The rate of dissipation per
unit volume of V due to PT is defined by D = X,é, > 0, where ¢, = V,/(AtV). For
the determination of changes of ¢, and &, in the course of PT due to nucleation, the method
developed in [1, 2] is used. It allows us to determine explicitly stress and strain in each (isotropic or
anisotropic) phase of n-phase material under the assumption of homogeneity of stress and strain in
each phase. For compactness we shall consider phases with equal isotrapic tensors of elastic moduli
E; = E and neglect the volumetric transformation strain. Assume that

€ =e+et  and P =9l (0)+ 0SB = +yf  (i=1,2), (4)

where the superscripts e and ¢t mean the “elastic” and “transformation” strains, 6 the tempera-
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ture, 1¢ the thermal part of ¥; (at €5 = 0), ¢ the elastic part of ¥;. As
€3 €52
/ee 0n.:des =E /E €8 det = 0.5¢5,: Eies, — 0565, 1 Eies, = ¥f — 9F, )
1 ni

then from Eq.(3) it follows
e‘
Xo = [ Suidel— (8- vf) = b, (6)
e

where S, and e!, are the deviators of @, and &, (= e!). Using the results of [1, 2] we obtain
S» = S+Pe'i  Su=S-P(-0ey; S.=S.-Pei e =cel, (0

where § and e' are the stress and transformation strain averaged over the mixture (Fig.2). The
subscripts A and M mean averaged over A and M values, ¢ the volume fraction of M, P a
constant depending on elastic moduli. Note that e}, =

Let us analyze expressions (7). Stresses in §, and 8, consist of two parts: the external stresses
S and internal stresses. If e, = 0, no residual stresses exist in A and M. Consequently, the
internal stresses must be proportional to e!,, and P is a coefficient which transforms inelastic strain
into stresses and characterizes elastic properties of a system. If there is no M,c=0and S, =§;if
thereis no A, then ¢ = 1 and S, = §. The averaged value of internal stresses over the representative
volume must be zero. As (1 — ¢)c Pel,—c(l — ¢) Pe!, =0, wefulfill this requirement. As ¢, — 0,
the nucleus does not affect the averaged stresses §, and §,. The expression for S, has also no
qualitative contradictions. Thus, if e!, = 0 and the nucleus is austenitic, then S, = S,. If e, = i,
and the nucleus is martensitic, then

S, =8,-Pe,=8—(1-c) Pely =8u. (8)

There is one problem, related to a value of the constant P. Analytical expression obtained for P
in [2} and similar expression in [4] give P ~ p, where p is a shear modulus. At c =0 or ¢~ 1 the
maximal internal stresses S;,, in M or A can be estimated as
t t
Si'n=ﬂ'ej\l=2ue\’5ef; =TY§:77 (9)
where 7y = 2 ey and ey are a yield stress and an elastic strain at yielding in shear. If ey ~ 10-3
for steel and ey =~ 10~2 for shape memory alloys, | e}, |~ 107!, then | S, |~ 0.5(10 + 100} 7y,
which is impossible (| A= (A:A)ln). The reason of the contradiction lies in the fact, that
simplified estimations for P do not take into account the anisotropic (plate-like) form of martensitic
particles and the specific character of transformation strain distribution. E.g., at transformation
strain with invariant plane and formation of fine microstructure the internal stresses are zero, but
e!, # 0 [11]. It is in principle possible, but extremely difficult, to derive correct expression for P.
That is why we shall determine the constant P from simple experiments.
After substituting S, from Eq.(7) into Eq.(6) and integrating we obtain

Xo = Sat(eh~el)~05P(|ef 2~ |el[?) (v - ) = kn- (10)
Using the postulate of realizability [5]-[7] the extremum principle can be derived
Xn (e'; ,e'l.) - ky (ef; ,e'l') <0=X, (e'z ,ei) — ky (e; ,ei) , (11)

i.e. the real values of e! maximize X, — k, in comparison with all possible e! . Tensors e meet

some additional constraints, which depend on the type of PT. If k, is independent of e} then from
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the principle (11) we obtain

Sii(ef —el')-05P(|ef P~ el ) <Sa:(ef—ei) -05(les |~ el 2. 2

3. Phase transition austenite — martensite due to nucleation

At A M PT, e} = €', =0, é = é,. Let the transformed particle consist of several variants of
M. Then |e§ | could not exceed its maximal value a (c), but due to, e.g., twinning it is possible
that | e} |< a. Consequently it follows from the principle (12)

Spieh —05P el |2°< S ieh-05P| el > at |el|<a; (13)
ey = (1/P)8, at |ej|<a; e =aS./ |81 at |ej|=c. (14)
Substituting Eq.(14) in Eq.(10) we obtain an explicit expression of 4 — M PT criterion in stress

space
0.5 P! [S4 |2= ('L’:l_'/)g)'f'k,a-uf at |S4l< Pa; (15)

a|Si|= P2+ (¥~ ) +kasue 3t |S.|2Pa. (16)

If we assume as usual that d*f, - 11:2 is a linear function of # and k., P and a are temper-
ature independent, then Eqs.(16) and (15) exhibit linear and quadratic dependence between PT
temperature and stress respectively. Linear dependence is observed in the most of experiments,
quadratic one can be found in [12] for §-Cu Zn.

/
‘X’n = kn

FIG. 4. Experimentally determined dependence
of transformation strain on stress at cooling of
FIG. 3. PT surface in deviatoric space S. various alloys [14].

Note that k,_» is an increasing function of ¢ [3, 13]. In the space of deviatoric stress in A,
PT criterion (15), (16) represents a sphere with growing radius. As §, = § + Pe!, this sphere
is shifted on vector —Pe’ (Fig.3) in the space of deviatoric macroscopic stress S. The modulus
|ef| grows when ¢ grows, and at a radial loading the center of sphere moves in direction opposite
to S. Consequently (using similarity with plasticity theory) in space § material exhibits isotropic
hardening end kinematic softening.
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Note, that if we neglect dissipation, k., = 0, then only kinematic softening occurs, and
at prescribed stress two—phase equilibrium is unstable and consequently impossible. The same
conclusion was made in {1, 2] and this was a reason for the introduction of a dissipative threshold.

After substitution of e} from Eq.(14); (for | e} |< a) in Eq.(7)3 we obtain §, = 0, ie.
the deviatoric stress in nucleus after PT is zero. This result can be important to generalize the
mathematical theory of formation of fine microstructure in single crystals [11] for the stress induced
PT in polycrystals. Let us determine e'. By definition

e'(t) = c(t)e', (t), and e (t+At) = c(t)el, (t+AL) + ca(t) €] (t), (17

If !, in previously formed M is not changed, then & = e}¢,

d—e‘-—e'—lS el =e /CIS()e (-z)dz  at lebl< a; (18)
de Y T eXpef poEORTE : ’
de? S, :
= ' =a. 19
de alsAI at !e2l a ( )

If PT occurs during cooling at § = const (| e} | < a}, then
e'(c) = (1/P) 8 (expc—-1), e'(1) = (1.78/P) S, (20)

i.e., e and § are related linearly, as in experiments for TRIP steels (Fig.4) [14]. Comparing
of Eq.(20); with experiments (Fig.4), we can determine constant P for a number of materials.
For example, for negligible elastic strains and one dimensional tension Eq.(20); reads as ¢ =
(1.19/P) o, where o and ¢ are the stress and strain. Then P = 4377 MPa for Cu 88% Mn
(material 1 in Fig.4) and P = 99167 MPa for Cu 52% Mn (material 6 in Fig.4).

If PT proceeds under § = §, = const at 0 < c < ¢, and S = 0 at ¢, < ¢, then

e = (1/P) S, exp ¢ (1-exp(=c,)) , (21)
i.e. at § = 0, strain e' continues to grow which also corresponds to experiments (Fig.5) {15].
%
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FIG. 5. Experimentally determined dependence of strain ¢ on temperature at S # 0 (4 — B)
and S =0 (CD) [15). Strain grows with decreasing temperature at § =0 as well.

Let us designate the PT surface (15), (16) with equation ¢ (S + Pe') = K (c,6). Then we can
represent the constitutive Eqs.(18) and (19) in the form of associated flow rule

.t_ -@
e =éog. (22)
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A Kkinetic equation for ¢ coincides with the consistency condition ¢ (S + Pe!) = K (c,0), i.e.

4. Phase transition M — A due to nucleation and reorientation process

At M — A PT, transformation strain accumulated during A — M PT is recovered, i.e. in Eqs.(10)
and (12) e} = 0. As D = X,é, = X.¢ and ¢ = —é,, then X. = —X,, and Eq.(10) results in

Xe = Sael-05P|el "= (vh — ¢)) = ko <0, (24)

where e! now is the transformation strain in particle of M undergoing PT. Let us redesignate
e\ (€) = e4{c), & = ¢, the transformation strain at A — M PT, which occurs at fraction
c. For the definition e} let us further assume that e} = e (€) for some £, and let us use the
principle (12) for choosing £:

S.:el’ —05P el 2> S,:el —05P el |2 at el € ef(¢). (25)

According to Eqs.(24) and (25) the following procedure for definition of reverse PT surface is valid.
For each e} € e}(¢), condition (24) defines the plane which is orthogonal to e}. According to
principle (25), the resulting surface of reverse PT is formed by points of these planes, which are
the closest to end of the vector §, during or after the direct PT (Figs. 6 and 7).

ch_ ks e (z)

X.=kuoa

FIG. 6. Surface of reverse PT at §,:e} < 0 (pseudoplasticity).

FIG. 7. Surface of reverse PT ABC at §,:e;; > 0 (pseudoelasticity).
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I e}(€) = n = const, then e =% and

X. = Sin+ Pl (- 05)~ (v - ¥) (26)

has the same expression for A —+ M and M — A PT. Such situation at unidimensional tension
was considered in [13, 16] for the description of experiments [16] with pseudoelastic CuZnAl single
crystal. It was shown [13] that in this case k = B (c —c,), where B = 2P| 5 |? is constant, ¢,
the volume fraction of M at the beginning of the last type of PT (4 & M or M — A). Knowing
constants B and | 5| [16], we can determine P. Thus, at B = 635090 J/m® [13) and 7~ 0.06
(16] P = 88206944 J/m>.

Let tensors e}, (£) describe some continuous line in R5. If at M — A PT tensor S, also describes
a continuous line in R5 then a number of variants are possible. Let us enumerate two of them.

1. The maximum in Eq.(25) is reached at one of the ends of line e (§). Due to the exclusion the
tensors e}, which were recovered at M — A PT, the line e, (€) will contract and disappear after
completing of M — A PT. For complex loading jumps from one end of the line e} (€) to the other
are possible.

2. If the maximum in Eq.(25) is reached in some internal point of the line e} (£), then after
excluding this tensor we obtain two lines, and maximum in Eq.(25) will be reached at one of the
ends of one of the lines. In the course of PT jumps between the ends are possible.

Usually M particle consists of several martensitic variants with various orientations. Transfor-
mation of one M variant into another (reorientation) changes the mean transformation strain in
the particle. If M particle with transformation strain e{ transforms to M particle with trans-
formation strain e, then in Eq.(10) 9§ = ¢¢, e} is determined with Eq.(14), el is defined by
principle (25) and

05P | S, 1P-S,:et+05P|el|? = k  at |eh|<a; (27)
a|SA|—S,.:e§—O.5P(a2-|ei l’) = k, at leb|i=a. (28)

At | € |= a, Eq.(28) resultsin a | S, | —S,:e} = k.. At e] = 0 Eqs.(27), (28) describe the
reorientation of completely twinned (self-accommodated) M.

5. Phase transition due to interface motion

Assume that the volume V, is obtained by interface © propagation with a normal velocity vy
during time At, i.e. it is bounded by surfaces £; and Ziya. at time ¢ and t+4 At respectively,
as well as by two lateral infinitesimal surfaces with the heights v, At (Fig.1), Vo = v, dL,At.
Let us transform the stress work integral in Eq.(1).

Across the moving coherent interface the position vector and the traction vector p are contin-
uous, P, = Py, and due to compatibility condition [7]

[F] = - [v] n/v,, whence fv] = -[F]-nv, and [F] = [F] -nn. (29)

Here n is the unit normal to the interface, F = I + £+ w, w the rotation tensor, I the unit
tensor, [a] := @; — a;. Then neglecting all the terms higher than O (At) we obtain

&, t+At
/ / &:dédV,,:/ /p-vdi)dt:
n é] 1 z

= (/ Pr-v1dEa —/ Py-v2 dzt)At = —/ [p-v] AtdL,,
Lepae e N
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~[p-v] = -p-[v] = n-5- [F] -nv, = &:[F] -nnv, = 3:[¢] va. (30)

Due to the compatibility condition only the normal to the interface components of the stress and
the strain jump tensors produce work. Due to traction continuity across the interface the work-
producing components of stress tensor are fixed in the course of PT (&' variation).

Assume that on the interface it holds 6-n = &:n, where & is some constant stress tensor.

Then
2 - ~
//_ta:dédv,,=/ n-(F-F) v, dsde =
Vn JE, n

- a:fv ((F2-F)) -n) nv.dsdt = a:[ E—&1) dVi = &: (62— €1) Va. (31)

n

Consider two specific cases. In the first one we assume, that the particles of A are imbedded in
a martensitic matrix, and X is an external surface of A. Then ¢, := V! | r&-ndX = 7,

where r is a position vector. In the second case, when the particles of M a.x?e imbedded in an
austenitic matrix and £ is an external surface of M, we obtain & = @), . In the intermediate
situation, when it is impossible to distinguish uniquely which phase is the matrix and which is the
inclusion, we assume that & = za, + (1 - 7) 6, where 0 < z < 1 is some function of ¢ and
the geometry of A + M mixture. The PT criterion (1) reads

Xy =a:(62—€1) — (Y2 — 1) = kg, (32)

where kg is related to the actnal dissipative processes in the transforming volume and to intersec-
tion of interface with various defects (grains and subgrains boundary, dislocations, and so on). For
the isotropic phases with equal elastic moduli and pure deviatoric transformation strain, Eq.(32)
can be reduced to

Xy = §:(eh—el) - (¥§ - 9) = ks (33)

For PT A -+ M we have e} = 0. Using the postulate of realizability the extremum principle -
similar to Eq.(11) - can be obtained. Application of this principle together with the constraint
| e | < a yields

¢ = a

B

and | 8= (¥~ vh) + ke (34)

[7,Y

PT criterion (34) represents the sphere in a space S, in particularly, in the space 8, at relatively
small ¢ and in the space §, at relatively small (1 ~¢). For PT M — A,

& =0, Xep=—Xp=8:el—(v},-94) = kouaa <0. (35)

The method of determination of e{ is similar to that proposed for PT due to nucleation.

6. A similarity between the theories of phase transition and plasticity

Constitutive equations of the theories of A — M PT and plasticity are summarized in a Box.
Parameters ¢ and A represent corresponding internal variables in the expression for the free energy.
In the special case when a time derivative of a plastic internal variable A coincides with the plastic
parameter in the flow rule, there is a complete similarity between these theories. One not important
difference consists in the fact, that in the theory of PT a kinematical softening occurs, but in the
plasticity theory kinematical hardening takes place.
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The above similarity allows the application of numerical algorithms — which were developed for
the solution of elastoplastic boundary-value problems - for the solution of boundary-value problems
for materials with PT.

Phase transition Plasticity
Kinematical decomposition Kinematical decomposition
e=¢" +¢ E=¢€" +¢P
Free Energy Free Energy
1b=21—pe°:E:e‘+(1—c)1pﬁ+c¢ﬁ, 1/;:21—pe°:E:e’+wa()\)
Yo(c)
Hooke’s law Hooke’s law
o=F:¢ o=E:¢e°
PT criterion Yield condition
¢ (S+ Pe)y=K (c) ¢ (S — Per) = K (A)
Associated flow rule Associated flow rule
ét=ég-£=én é”:;\g—g:)\n
Evolution equation Evolution equation
(Consistency condition) (Consistency condition)
i —n:S (0K ) = n:§ (9K )]
C-—ﬂ.S(—a?—Pn.n) /\—ﬂ.S(m-}-Pﬂ.ﬂ)

7. Concluding remarks

Comparing the obtained results with those, published in [4] we can state the following. In our
criterion (1) based on consideration of transforming particle only, stress variation in transforming
particle is taken into account in the course of transformation. The stress variation differs for
different micromechanical mechanisms (nucleation, interface propagation or reorientation), and
this fact is included in the description. In paper [4] (as well as in [1] - [3]) the derivation is
based on the consideration of the whole representative volume. Difference between nucleation and
interface propagation, as well as stress variation in the transforming particle, are not taken into
account. It is necessary to mention that the results obtained in [4] are close to our results in the
case of nucleation and | e} |=a.

One of the main assumption in [4] is a formula for transformation strain in nucleus (it coincides
with Eq.(14)2 at | e} | = @) which was criticized in [17]. It is not clear why e} should be related to
stress in A, even for reorientation of martensitic variants, and why | €} | = a has always maximum
possible value.

In our paper an equation for e} is obtained, based on the postulate of realizability and corre-
sponding extremum principles. In the particular cases of PT due to nucleation and reorientation of
martensitic variants, at high stresses | §, | > Pa, we have obtained the same equation as accepted
in [4], see Eq.(14)2. This equation is in agreement with some known experiments [4]. At the same
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time Eq.(14)2 can not describe the experiments [14] collected in Fig.4 which is done using our
Eq.(14); at |e} i< a.

Eq.(14); at S, < Pa (for PT due to nucleation and reorientation) and Eq.(34) (for PT due
to interface motion) differ from the postulated ones in [4]. This fact results in different PT criteria
and kinetic equations.

As mentioned in Section 2, the constant P in Eq.(7);, determined by formulas in [2, 4], is
overestimated in one to two orders. We are determining this constant from simple experiments.

Thresholds k,, and k, are constants in [4], but for the description of experiments, some constant
is substituted there by a linear function of c. We have used variable k, which depends on ¢ and the
direct and reverse PT history, and is determined experimentally [13, 16].

For the reverse PT an application of the postulate of realizability allows to determine the
M particle which is transformed in A in the given time instant. In [4] an empirical "forward
transformation memory function” is used for this purpose.

In [3] transformation strain in M e!, is assumed to be collinear to total strain deviator e and
has a constant modulus. This means "instantaneous reorientation” and excludes any hysteresis
and metastability in reorientation which contradicts to experiments at complex loading path [4].
A constant value of | €%, | does not allow to describe the experiments in Fig.4. The description
of reverse PT in [3] is also oversimplified in comparison with [4] and the present paper. The
thermodynamical theory [3] is not based on specific micromechanical mechanisms of PT.
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