Strength of Materials, 1S3(, NS

Let us determine the allowable ductile-to-brittle transition temperature of 38KhN3MFA
steel in &an M170x6.0 stud with a crack-type defect constituting 107 of the gross diameter
from”the ,value of tjjp for an impact specimen with a defectiveness of 107 of the gross cross
section. In this case we first find tjjy = +25°C and then {tc] = —5°C (broken line i in
Fig. 3 and Eq. (1)). With use of t]jy obtained from the test data of type 11 specimens to
GOST 9454-78 with a defectiveness of 207 of the gross cross sectionthe allowable ductile-
to-brittle transition temperature of 38KhN3MFA steel with tjjp = +80°C is itc] = —60°C
(broken line 2 in Fig. 3).

According to Fig. 3, in comparing the conservative and more accurate approaches to de-
termination of the brittle strength of fasteners the difference in the allowable ductile-
to-brittle transition temperatures of the metal is 50°C. With the more accurate evaluation
of the allowable ductile-to-brittle transition temperatures of the fastener metal in rela-
tion to the technical condition of the steel taking into consideration the level of defec-
tiveness of the fastener and the specified operating life of the thread joint more soundly
based requirements may be imposed for effectiveness of the material in the stages of design,
production, and service.
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NUMERIC MODELING OF THE STRENGTH AND LONGEVITY OF STRUCTURES
WITH ALLOWANCE FOR SCALE EFFECT.
REPORT 1. SUBSTANTIATION OF STRENGTH AND LONGEVITY CRITERIA

N. V. Novikov, V. I. Levitas, UDC 539.893
and S. I. Shestakov

The nonlocal criterion of the static strength of structurally inhomogeneous con-
struction materials, whose basic mechanical properties depend heavily on the loaded
volume in a complex stress—strain state, is developed. A statistical interpreta-
tion of the proposed .criterion is given. The case where the criterion is used for
an isotropic material with volume-dependent ultimate tensile, compressive, and tor-
sional strengths is analyzed as an example. A longevity criterion, which makes it
possible to account for the different character of the material's rupture strength
as the form of the stress state changes, in addition to the scale effect, is pro-
posed for structural components that operate under asymmetric low-cycle loading.
This criterion is in accord with the static criterion and is obtained on the as-
sumption of the invariance of the limiting-stress diagrams, which applv to the ul-
timate strength relative to the form of stress state.

The scale effect is observed in analyzing the physicomechanical properties of many struc-
tural materials {sintered cermets, cast iron), which are grown from the melts of brittle crys-
tals, i.e., diamonds and others. In using these materials as structural materials, 1t is ob-
viously necessary to model the variation in their strength and longevity by computational °
means, proceeding from different operating conditions. The - accounting of the inhomogeneity
and form of stress state can be referred to a number of basic methodological factors, and the
derivation of criteria of the structural strength and longevity of sintered tungsten-cortain-
ing hard alloys can be considered, using a minimum amount of experimental data on their phys-
icomechanical properties [1, 2]. Note that these criteria may be applicable in calculating the
strength and longevity of a broad circle of other brittle materials.
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1o evaluate the erfectiveness of the criteria let us calculate the static and fatigue
strengths of heavily loaded nard-ailov components of different types of high-pressure appara-
tus with different effective volumes, which are used to synthesize hard-alloy materials under
an external pressure of 45-55 GPa with heating to 1000°C. As will be indicated in subsequent
reports, computational data are in good agreement with familiar results of the practical evai-
uation of the longevity of these components.

1. Let us adopt a static-strength criterion for structural material in general form:
Ge=Flo, A,VN<1, i=1,9 .. .1 (1)

where o, are dimensionless equivalent stresses, F is a certain function, o is a stress tensor,
and Aj are material constants (uitimate strengths in compression, tension, etc., for aniso-
tropic material, which differ in different directions). As a result of the presence of scaie
effect, the constants A; depend on the ioaded volume V. In a-uniform stress state, the loaded
volume corresponds to the total volume of the effective component of the structure.

Since the structure operates under a nonuniiorm stress state, it is necessary, first of
all, to define more precisely what to assume as the loaded volume of the material in the case
in question in order to evaluate their strength.

Let us assume that for the class of materials investigated, the A;j(V) relationship can
be written on the basis of Weibull's theory (3] in the form

K
Ai='—V1/lTl, mi>0’ (2)

where Kj are constants, and m; are parameters of material homogeneaity.

Considering the case of nonuniform uniaxial tension and assigning the normal stress o,
as the equivalent stresses, we obtain

0y

—;:ﬁa'sil; ar (V) = LR (3)

Vl/m

where o, is the ultimate tensile strength. It follows from Weibull's theory [3] that the quan-
tity o, depends on the loaded volume of the material:

v, = § (-—"L‘L’—)”‘dv, (4)

O1max

where r is the radius-vector of a point of volume V, and o,p,5 is the maximum value of o1 in
the stressed volume of the material. The integration is performed over the entire volume
V of the component. According to the equations given in [3]:

N o4 =:(° eix’p'[— § (%ﬂl—)”‘ dv] doy,

where o, is a constant.

For a uniform distribution of the stresses o, in the volume of the component, we have
3 o, \m
o = | exp|—(—=
* J p[ ( °0> V}dUQ.
Hence follows (3). TFor a nonuniform distribution of these stresses,

ov = Jon (22 (22 o 0

v\ Cimax

In this case, we obtain Eq. (4) for Vg.

The purpose of the study is to find the simplest noncontradictory generalization of Eq.
(4) for the loaded volume of the material in the case of a complex stress state, arbitrary
strength criterion (1), and the relationship between the homogeneity parameter and the type
of stress state.
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Let us assume

S( Oe(r) )mm)dV,

emax

(5)

where Ogpayx is the maximum equivalent stress in the effective volume of the material. The

1 /2)

parameter m depends on the unit vector n= T%T-GG[==(U-G) of vector ¢ in stress space,

i.e., on the form of the stress state. . -

The replacement of o, by 0o is natural and noncontradictory. Note that in the special
case considered by Weibull, o, = go. If, however, the initial stress state is nonuniform,
and the distribution of og is uniform, Vg = V follows from Eq. (5). This implies that all
points of volume V are of equal strength.

Let us substantiate the selection of the function m(m). We can assume that relation-
ship (2) is derived for a stress state characterized by unit vectors nj. We should then
have m(ni) = m; when n = nj. In effect, if the quantity m, which is obtained in experi-
ments under uniform tension, exists in Eq. (4) for nonuniform tension, the parameter mj,
as determined in experiments for uniform compression, should be in Eq. (6) for the case of
nonuniform compression, and so forth. Moreover, since there is only a small number of
points mj for the function m(m), it is expedient to assume the condition mlm1n < m(m) ¢
m,0aX (m, min and m;M3X are the minimum and maximum values of the parameters mj). In the
oppos1te case, the maximum and minimum values of the function m(m) are uncontrolled.

The simplest alternative to the function, which satisfies the two enumerated condi-
tions, will be

m(n)=_’f_'._-__ (6)

where aj(n) > 0, aj(nj) = §;5(8;; is the Kronecker symbol

If for aj(n) we assume

(I —nng) (1 —n-ny) ...
e (I—n-n,_g) (I —nengyy) - (I—n-n)
a;(n) = T—nm) T =n, ) " ’ (7

w(b—=nn;_y) (I=nn ) . (1 —nn)

these conditions will be satisfied. Equation (7) is an &-th-order polynomial in terms of
the components of unit vector m; in this case, each of the factors is nonnegative. Con-
version from the vector m to scalar quantities is accomplished using scalar multiplication
of the unit vectors. Thus, the difference in the form of the stress state is evaluated
from the angle between corresponding unit vectors. The denominator in Eqs. (7) is not
equal to zero, since 1 — nj*ng = 0 only when i = k, and this factor is absent in (7).

Let us consider the calculation of these parameters for an isotropic material. For
uniform tension, the tensor ¢ in the principle axes assumes the form ¢= {o;; 0; 0}. Then,

n, = {1; 0; 0}. Similarly, we have ng = {0; 0; —1} for comparison, and ——nsss{;%;i; 0;
__.lélj ny-ny=0; ny-ng ==ng; Ng+Ng = 22 for pure shear. Using the ultimate tensile,

compressive, and torsional strengths of the material as parameters Aj, we obtain
a, = 3,41 (1 + n3) [1 —0.707 (n* — n3)};

a, = 3,41 (1 —nY) [1 — 0.707 (n* — nd)]; (8)
ag = 11,65(1 —n?) (1 + nd),
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0. . 06,0,

Fig. 1. Limiting-stress diagrams of materials
that resist failure similarly (a) and differ-
ently (b) in tension and compression for dif-
ferent number of load cycles N.

when £ = 3, where nk (k =1, 2, 3) are the principal components of the unit vector m.

The stress state of the isotropic material is independent of the orientation of the
principal axes, and the principal axes of the vectors n and nj can be assumed coincident.
Note that Eqs. (8) are valid for n; > n, > n;, since the condition that the function m(m)
should be invariant with respect to the rearrangement of n* for different k was not con-
sidered in the derivation of these equations.

Using the ultimate tensile and compressive strengths as parameters Aj, we can write
for £ =2

a=14+n% a=1—nY (9)
(14 n% m; + (1 — nl)m, (10)
m(n) = 24-n3—n! .

In the tension, compression, and shear tests, o, = 03 the component n? is therefore
absent in expressions (8)-(10).

In the general case, if the vectors n;j are arranged in some space Q, the dimension
of which are smaller than the stress space under consideration, the orthogonal Q component
of the unit vector n will not affect aj; and m, according to Egs. (7). If the unit vector
n is orthogonal to @, Eq. (7) will be unity in the denominator, and the quantity aj will
be independent of m.

For anisotropic materials, it is necessary to consider the orientation of the principal
axes with respect to the coordinate system. It is therefore expedient to use not three-
dimensional, but six-dimensional unit vectors n and nj in the space of the coordinate
stresses.

Thus, eqs. (5)-(7) proposed for calculation of the loaded volume Vg for a complex
stress state, an arbitrary strength criterion, and the presence of several homogeneity
parameters are noncontradictory and the simplest of the possible equations.

»
The set of Eqs. (1), (2), and (5)-(7) is a nonlocal criterion of structural strength.
The nonlocal nature of the criterion is dictated by the fact that the equivalent stresses
at a given point depend not only on the stress tensor in the criterion, but also on the
stress distribution over the entire region under investigation. Note that the integral
is taken over the entire effective volume in Eq. (5).

Let us make a statistical interpretation of the proposed strength criterion. With
this aim, we can replace ¢; by 0o in the expression for the Weibull failure probability S

S=1—exp [—- é; (——o—’"l'i)de} =

Oo

=1—exp [— (*OIT":E-)M Vﬂ.‘]' Vo= é. ( 0?-:“ ) ud

and assume'm = m(m) and 0, = o,(m), i.e.,

S=1—exp [—-( Ceinay )m(n) Vg,] .

0o (n)

Ve=§ (5=)"" av.

;eamax

(11)
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This replacement implies that the equivalent stresses for a representative microvolume
agree with the equivalent stresses for a microspecimen, i.e., the failure processes are
similar on the micro- and macrolevels. The assumption concerning similitude (self-similar-
ity) of the failure process at different scale levels is used widely in theories of con-
tinual failure.

The most probable value of oo during failure, which is, according to (1), equal to
unity, is defined in the following manner:

¢ ? 0 gmax (™ L my8™
Go=1= 6( e masdS = § exp [“(_"?T) vz] oy =JV‘:7”W :

where
Iy =§eXP (—2"™1dz (1,

hence,

VIIL/M(H) ( 12 )
- -

m(n)

oo (n) =

For known m(m) and Vy values, consequently, we can find o,(m). Equation®(11) is now
closed for determination of S: -

§ =1 —exp[Gemaclmml™®- (13)

Although the volume V¢ does not explicitly figure into Eq. (13), it enters into Ogpax in
terms of the constants Aj(V); here, gg = 0, in the special case. Knowing the probability
S of the material's brittle failure, therefore, we can readily determine the dispersion
of the limiting value of oo as a function of the form of stress state. For a macroin-
homogeneous material, the dependence of the material constants on the coordinates of the
microvolume under consideration is substituted in the resultant equations.

After analyzing the static strength, let us examine the longevity criterion for the
components in a complex stress state, which takes into account the scale effect and non-
uniformity of the stress state, the latter conforming to proposed static-strength cri-
terion (1), (2), and (5)-(7). 1Its use should be substantiated for evaluation of the
fatigue strength of materials with a different rupture strength when the form of stress
state is varied. Let us assume that there are no macroscopic plastic deformations of the
material.

In the case of uniform tension—compression, the relation between the amplitude o, > 0
and mean op stresses and the number of cycles N to failure (limiting-stress diagram) can
be adopted as

o, =f(0m ,N), (14)
o, o,
In this case, f( zm ) q = _—_%ﬂ-, i.e., the condition of failure under static load op +
+ +

O = 04 is satisfied when N = 1.

Graphic interpretation of Eq. (14) for different N = const is shown in Fig. la. If
the material resists tension and compression similarly, the diagram is symmetric about
the o, axis and the function f is even. It is impossible, however, to approximate the
diagram of some smooth even function for both positive and negative op. But the derivative

LY
"ﬁaéo experiences a jump when oy = 0 (Fig. la). When N=1o¢,=0y—0, and —%=—I1.
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The symmetry condition of the diagram can be satisfied in the following manner: Eq. (14)
can be used when ¢, > 0, and the equation

[

= f(—2m, W), (15)

%+ +
G '
when op < 0. The function f(—;ﬂ—, N)l increases monotonically with decreasing N and op.
AN |

The following interpretation is possible as a result of the monotonicity of the func-
tion f: for any (positive or negative) oy and known o,, the two equations (14) and (15)
can be employed directly, and the minimum of the two values of N obtained taken, i.e.,

(4 o, . a, [ [y
O: =f(—g+ ,N1>, o :f(— 6’: ,N,); (16)

N =min(N,, N,).

For materials that resist tension and compression differently (an ultimate compressive
strength o_ # 04), we can assume

ot n) i) S
N = min(Ny, N,).

For alternating shear, we can assume

R HE SR L (18)
N = min (N, N), '

where 15 > 0 and 1y, are the amplitude and mean values of the tangential stresses, and T4
and T1. are the limiting shear strengths in the two different directions.

The correspondence between the functions f in Eqs. (17) and (18) is a basic physical
assumption that significantly lowers the required volume of experimental investigations.
This assumption implies the invariance of the limiting-stress diagrams as applies to the
corresponding ultimate static strength relative to the form of stress state; this ensues
from the following fact pointed out in [2, 3]: the ratio of endurance limits for repeated
tension and shear is approximately equal to the ratio of the corresponding ultimate strengths.
Actually, it follows from Egs. (16)-(18) that for equal N and

L . Om e - Tm
U+ o_ T T_
we obtain
Y _ % _ " _ T (19)
o o_ Ty T_

Let us examine the graphic interpretation of relationships (14) and (15). When N =1,

a
two straight lines :“ -+ gm = 1, and :“ —_ 0” =1, which are equally inclined to the
+ + = - :
0y and Oy axes and which pass through the points o4 and o., respectively, when
o, —o0
05 = 0, correspond to these relationships (Fig. 1b). They intersect when om==-4t§——:.

N > 1, the value of op at the point of intersection is determined from the condi-
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/o o]
tion ou==0+ft?i% ,N)==U—-f(—— é: ,N). Note that when oy = o_, the function f should

describe the experiments well only if oy > 0 (in view of its evenness), o4 # o-, and op <0.
This suggests that many of the familiar approximations [4, 5] are unacceptable for describ-
ing the diagrams of materials that resist tension and compression differently.

As an additional assumption, let us set

ez N) = (5] e, (20)

9+

in this case, ®(0) = 1. Here,

% zq,(“m )Q(Nx)i Ui =

U+ O'+ [+
ag
= o|——m)Q,):;
( o_ )Q( ) (21)
N = min(N,, N,)
follows from Eqs. (17).
Let o. > o4. When op = 0 (symmetric cycle), then N; = N and 05 = 04Q(Nk = o-,(N),
where o_;(N) is the material's endurance limit for a symmetric cycle. Of course, Q(N) =
N,
fE%i_L , and Q(1) = 1. Similarly, Q(N)zngilfl, where t4 < 1-, 1-(N) is the endurance
+ T+
limit for symmetric shear.
Equations (21) and (18) can be rewritten as
% (om). T g tm);
o (NI) =9 o4 ’ 0_, (Ng) o_ —(P('— OT ’
N = min(V,, N,); (22)
s _ (Tm). e TJ.—__ (__T"')-
A I A T A 7 A M S P T )
N = min (N}, Ny). (23)

Let us examine the possibility of using a longevity criterion in the case of a com-
plex stress state with allowance for adopted static-strength criterion (1), (2), and

(5)-(7).

Let the tensor of the stresses at the point under investigation in the loaded volume
of the material vary cyclically between the values ¢, and 0,.. We can assume that ¢ =
6, + (0,—0,)\, where A is a parameter that varies cyclically from zero to unity. The

effect of the frequency A of the variation can be considered insignificant.

Two static-strength surfaces (1), which are distinguished one from the other by dif-
ferent volumes Vé and V; under the loads ¢, and o, are shown in Fig. 2a. Let us denote

the amplitude and mean values of the tensor ¢ b g =%9=% and ¢ = O1t0 respectively.
P y a P m 2

Let us examine the special case when straight line ML passes through the origin of
coordinates. The cases of tension—compression, variable-sign shear, and cyclic loading
with an arbitrary form of stress state are presented in Fig. 2b. Using the above assump-
tion concerning the invariance of the limiting-stress diagrams with respect to the form
of stress state, we obtain
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B (e, V2=t
5 22‘)
Fig. 2. For calculation of longevity of structures
formed from brittle material in arbitrary stress
state (o*, # 0) (a), and in case where stress vector
passes through origin of coordinates (o*, = 0) (b).
(F,(ou, Vlg) =1 AND F,(o0., V%) = 1 are the limit-
ing strengths corresponding to the two cases of
loading.)

> =f(%m Nl);

L [0 (©40,) (24)
To_1 “f(_ fo_1 ™ N’)’“m,o,,,,’ :

N =min(N,, N,),

where 04 and o_ are vectors that originate at point O', and terminate at the points of
intersection between line ML and the surfaces described by the static-strength criterion;
the parameter n = 1 when the directions of the vectors o4 and o coincide; in the opposite
case, n = —1 and is introduced to account for the sign (direction) of op- It is obvious
that (17) and (18) are a special case of Eq. (24), and |o4| and |6-| are the ultimate
strengths for the given form of stress state.

Let line ML not pass through the origin of coordinates. Since in this case, cyclic
variation of the stresses occurs, as before, with respect to a certain line in stress
space, we can attempt to reduce this case to the one previously analyzed. For this purpose,
it is sufficient to find the zero point on line ML. Point O, which is near the origin of
coordinates O', can be adopted as this point, i.e., the vector o*, = 0'0 is orthogonal to
line ML (Fig. 2a). Then, setting oy = ON = o', — 0*,, where

% =°x_%g;—ol_1:l)("a—“x)’ (25)

w*
6, = NL, o4 = OP, and o. = OR, and substituting these vectors in Eq. (24), we obtain a
longevity criterion for the case under consideration.

Note that the assumption that this is the point at which o, assumes a minimum value
from criterion (1) may be an alternative scheme for determining point 0. In this case,
however, line ML may be located on the surface of criterion (1) (e.g., in the case of
Coulomb's criterion) and the selection of point O is no longer single-valued. Moreover,
it is not altogether clear which of the volumes Vj or V2 (or which of their combinations)
must be used in this case.

Using the expansion of (20), we obtain

lo,1

Q7 (N =

|°+|

lo, | s —
o  (Nylog | T

. la,, | lo,l _
o) s et (v -

A o (__:om: )
Ty Toor T\ e
N = min(N,, N,).

(26)
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As a result of the dependence of the static-strength criterion on Vi, the parameters |o4|
and [o_| are also functions of V!y and V?p, respectively. The functions ¢ and Q (or f)
may depend on Vg; in this case, however, it must be determined additionally what combina-
tion of Vlp and V?; should be substituted in these relationships for Vg (e.g., (Vig +

VZg)/2).

Note that in real structures, the trajectory of the variation in the vector ¢(t) (t
is time) between the values ¢, and 6, may or may not be rectilinear. The effect of the
trajectory of o(t) is difficult to account for. The independence of the longevity cri-
terion on the trajectory of ¢(t) can therefore be proposed as a first approximation, and
criteria in the form of (24) or (26), which yield the minimum number of cycles for ¢, and
62, can be used.

To use longevity criterion (26), it is therefore sufficient to determine the follow-
ing experimentally: a) the static-strength criterion in the form of (1); b) the o_,;(N)
fatigue curve for the material under consideration for a symmetric cycle and simple load-
ing; and, c) the function ¢, i.e., the limiting-stress diagram for a simple loading and
any number of cycles N.

To concretize resultant relationships (26), let us select the function ‘¢ in the form

10,1 lo,, | :

Then, expressions (26) can finally be written as:

LA loy,| .
la+, _(1_ |°+| ﬂ)Q(Nx),
lo,| ol

|
To_1 =<1 T o ")Q(N’);
N = min(Ny, N,).

(28)

The generalized Pisarenko—Lebedev criterion [4], which according to numerous experi-
mental data [6, 7] most completely describes the limiting state of structurally inhomogeneous
hard tungsten—cobalt alloys with strikingly different ultimate tensile and compressive

strengths can be recommended as a static-strength criterion of the form of (1) for the class
of materials investigated.
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