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NUMERICAL METHOD FOR CPTIMIZING THE DESIGN OF A
HIGH-PRESSURE APPARATUS WITH DIAMOND ANVILS

N. V. Novikov, V. I. Levitas, 5. B. Polotnyak,
and M. M. Potemnkin

A numerical method for optimizing the structure of 8 high-pressure unit with diamond anvils as pressure
is created in the vessel s developed and realized in the form of a zer of programs. The methad Ineludes
the following: determination of the siress — strain state of the anvils and the deformable intervening layer
of material; evaluvation of the strength of the anvils; the development of 3 mathematical modsl to
describe the dependence of the strength of the anvils on the parameters being cptimized: determination
of the optimum podnts of the model, A combination of gptimum parameters s obiained, making it
possible 1o reach a design pressure of 465 GPa. This prassure is 2,5 times higher than the pressure
recorded w1 anwvils with a similar pressure digiribution (N, K. Mao and B. M. Bell, 1578].

The use of diamonds as anvils in high-pressure units (HPU) makes it possible to conduct a broad spectrum of
physicomechanical investigations 8t static pressures in the megabar range [1]. Pressure in such units is generated during the
compression of a deformable interlayer (DI} berween the small fla ends of two oppositely positioned cur gem diamonds.
One way of increasing the maximumn pressure arainable in such units i 1o mprove the stress —strain state of the anvils by
altering their geometry and loading conditions. This problem can be approached either experimensally or theoretically. The
first, more traditional epproach entails considerable material costs, since one or both anvils are damaged during compres-
sion (unloading). The second, theoretical approach involves constructing a mathematical model to describe the behavior of
the main elemems of an HPU and then optimizing the parameters tha: go into the maoxdel,

Several ansmpts have been made 10 analyze the stress —strain state (S55) of diamond anvils [2-8]. In particular, the
smudy (2] examined the main principles underlying the design of an HPU for obtaining megabar pressures. Requirements
regarding the geometry and constinwent materials of an HPU were also set forth in [2]. In [3-5], & finite-¢lement analysis
was made of the stress —strain state of diamond anvils within the framework of the theory of elasticity of isotropic bodies.
The authors analyzed several varianis of model loads and obtained disiribarions of the principal o, oy and octahedral shear
Toey StTesses in anvils. The bevel angle of the working surface & = 15° was established on the basis of the lowest maxi-
UM Sresses 7,.,. The strength of anvils was evaluated in [3] using the Pisarenko - Levedev criterion, and an analysis was
made of the main mechanisms by which anvils fail. Approximate methods were emploved in [6, 7] w0 calculate the
pressure corresponding to the beginning of plastic flow in a single crvsal of perfect diamond (g, = 960 GPa). An analysis
of the stress—strain state of the anvils and the intervening laver in an HPU in [8] led the authors w doubly truncate the
working surface.

In the present sudy, we resort 10 numerical optimization of the geometry of diamond anvils and the conditions of
their loading to accomplish the following: determine the limiting state of the DI; calculate the siress—sirain stare and
strengy of the anvils; construct a mathematical model to describe the dependence of the strength of the anvils on their
geometry and loading conditions: find the optimum points of the model for the a maximum of generated pressure.

To establish the critical state of the interiayer (which undergoes compression berwesn the elastic diamond anvils),
we propose to use & theoretical —empirical method which involves evaluarion of the plastic constafts of the material of the
interlayer and the lateral pressures on it. The methed also entails the numerical solution of the problem of the compression
of a thin disk berween rwo elastic diamand anvils.

The constants K and o of the material of the interlaver, entering into the Coulomb vield condition
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Fig. 1 . Fig. 1

Fig. 1. Stress distribution along the line of contact of & dismond amdl end the interdayer:
1 angd 2] normal stressas O.atp = 0 and 1'D'4. raspactively: 1) shear stressas : ) {Tha
points ehow data from [911.

Fig. 2. Theoratical scheme used o determing the SWess —sirain state of diamond anwils:
1] diamond anvil; 2] hard-alloy SUpport.

(s, and 7, being the normal and tangertial pressures on the slip plane, K the shear stmeagth at o, = 0, and g the angle of
internal friction), were determined from an snalysis of experimental data (9] on the radial distribution of pressure agr) for
an imerlayer made of quenched stainless steel T301 compressed by a factor of 40 between diamond anvils (Fig. 1). We
will use the simplified equilibriam equation [10]

where 7,{ag) is the dependence of shear sirength on hydrostatic pressure (represenied for most materials in the fomm ;=
K; + aptang,); hir) is the thickness of the interlayer; r is the running radius of points of the contact surface; K; =
Klcoslol(l = /3sing)); tanp, = unalcosial(l — L3 sina)] [11]. Differenuiating the graph of ayir) and multiplying the
tesult by {=h{r)/2), we obeain the relation 7,{ey) and use the laner to find K, py and, accordingly, K = 222 GPa. p =
0,20015. To check this result, we integrare (2) and, having insered K, and p; inso it, we find the theoretical distribution
of agir). This distnbuation s then compared with the empirical distribution. '

According to [9]. the distribution of the nomal stressss o, supporning cthe sides of the die can be described by an
exponential law. The jump in o, at point A (Fig. 2) is due 1w the geomewry of the dies and is evaluared as ZK(fy — a)
[LZ], whers &, is the angle between the lateral surface of the die and the horizontal plane. The magninude of the jumo in &,
at point B is K(1 + 2{=/2 = #)). The lateral shear stresses are assumed [o confom o discribation (1.

The critical stae of the mterlaver was caloulated numerically by the slip-line method. Since the sirains of the
materizl of the layer are large and since the loading is monotonic, we used the model of an ieally plastie isoropic and
uniform material [11]. The problem will be solved in an axisymmetrie formulstion. The closed system of equations for
solving the protlem includes:

the equilibrium equanions

the equation of the limic surface cormesponding o ideal plasticiy (1):
the condition of complete plasncity

o {4

where oy ar¢ components of the -stress vensor (a;, oy, o, &0d 7y in & cylindrical coordinate system); o and oy are the
principzl siresses.




We used the "Plastic Deformation” application package [11] to solve the problem. The values cbtained for K and
p are used as the initial dara for subsequent iterative approximation of the empirical distribution of contact swesses. We
finally obtain K = 2.24 GPa, p = 107%. Despite the small value of p, a significantly greater difference is obtained
betwesn the theoretical and experimental resules (Fig. 1) if we assume that p = 0.

The calcolation gave us distributions of the components o; in the interlayer (directly under the anvils) and normal
g, and shear 7, siresses on the working surface of the anvils (Fig. 1). This information was then used to formulare
boundary conditions for evaluation of the stress —strain state of the anvils. We should point out the presence of the large
gradient in @, over the working surface.

The application package “Elasticity-2" was developed [13] w determine the stress—sirain state of diamond anvils.
These programs employ the finite-element method together with a set of isoperimewric elememts [13]. Testing of the
package {using sample problems and the method described in [14]) showed that the results obiained are satisfactory. There
are thres independent elastic constants — €\, Cp;. Cyy — for cubic erystals (including diamond). In a crystallographic
coordinate system, Hocke's law for diamond has the form o = [Cle, where # and ¢ are the stress and strain tensors,
respectively; [C] is the matrix of elastic constants [15]. Since the anvils are nearly conical and since the distribution of
contact stresses ower their surface i axisymmetric, the problem is solved in an axisymmerric formulation within the
framework of the theory of elasticity of anisotropic bodies. The axis of symmetry 2 of the t;rtlru:lncai coordinate system
eoincides with the axis of rotation and the {001) direction in the diamond crysial.

A standard procedure [16] is used w wansform the components of the matrix [C] of the diamond from the crysal-
lographic coordinate system to the cylindrical sysiem. Averaging the values obtained for the clastic cocfficients over the
angle # and 1aking 1,y and 7,9 equal to zero, we write Hooke's law as follows for the case of axisymmeric deformation of
a transversely isotropic body of rowation:
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Figure 3 shows the boundary conditions and theoretical scheme employed to solve the problem. We assigned the
following boundary conditions: along line CD — absence of displacements in the direction of the z axis u, = Oand r, =
0; along line EF — ideal bonding of the materials of the anvil and the supporting insert; along line GH —.u, = 0 and
r, = 0; along line HA — distribution of the contact ¢, and 7, stresses (Fig. 1); along line AB — distribution of the lateral
stresses ¢ and 7, on the remaining surfaces o, = 7, = 0. ‘I]'u: properties of the matecials: diamond — Cyy = 1076 GPa;
Ci2 = 126 GP& Csy = 548 GPa; the hard-alloy suppont = elastic modulus E = 640 GFa, Poisson's ratio » = 0.1
Having completed the finite-slement calculations. we obtain the fields of « and & in the diamaond anvils (Fig. 3a). Figure 3b
shows isolines of components of the stress t2nsor in the case when the elastic properties are ot anisotropic. A comparison
showed that ignoring the effect of anisorropy produces an error of mere than 10% in the determination of the maximum
stresses in the anvils. The highest compressive and shear stresses occur near the working boundary of the anvil. The
maximum tensile stresses o, and oy develop ar the base of the anvil under the unsupported hole made in the strucaire 10
adrmit light (section GE in Fig. 2). These maxima are is near the working surface on the axis of symehetry .

An amalysis of fraciured single crystals of diamond established [15) thas this is en extremely brittle marerial which
fractures along cleavage planes due to the presence of tensile stresses from the nuclsation and growth of microcracks.
Fracture in this case uswally occurs earlier than fracture due to plastic deformation. Thus, the region in which tensile
stresses are greatest will pose the most danger 1o the material. In order to evaluate the strength of the anvils, it is necessary
to find a criterion that adequately describes the brictle fracnre of materials with the strucrure of diamond while sccounting
for the anisctropy of its strength characteristics and requiring a minimum amount of experimental daa. For brittle aniso-
tropic materials that fracture by brittle rupture along cemain planes, it is usually assumed thar the normal tensile siresses

s &, — which depend on the crientation of the fracrure plane — reach critical values [17]. However, this criterion does not
describe the fracure in diamond anvils in nonsquilibrium triaxial compression. Thus, it was proposed in [18] that the




Fig. 3. Change in the components of the stress tensor in diamond anvils during loading
with (2} and without (b} allowance for the anisotropy of the slastic properties,

effect of the components of the swress tensor other than o, be accounted for within the framework of the model of a

medivm which undergoes strucrural changes. In a special case, it follows from this approach that the criterion of maximum
extension in cleavage planes is valid and best describes the [imiting state of diamand [19]:

where £, is the maximum strain in the directions perpendicular to the planes {ijk) along which the crysral fracrures
under the given type of loading; Eyyqy is the elastic modulus in the direction (ijk); o gy is uitimate strength in the case of
cleavage along these planes. However, use of the above criterion requires experimental determination of o for sach of the
cleavage planes under consideration. It is proposed thar the amount of experimental data nesded be reduced by using a
well-known theoretical relation thar was substantisted experimentally in [15] and expresces the dependence of ultimate
tensile strength (g > 0, &, = g9 = 0) on the Miller indices of the slip plane [20]:
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where vy is the surface energy for the fracrure plane (%) E” and »* are the averaped elasnc modulus and Poisson's
ratio, E" = 1138 GPa, " = 0.072 [15]; C; is the average size of the microcrack-type defects initially present. Inseming
he conditions o & 0, ¢y = gy = 0 imo Eq. (3), we obtain the following for the local coordinate system connected with
e fracmure plane (i),

(6)

Having inserted (7) into (6), we write the final expression for the sirength criterion for diamond. It contains only
Ome Constant:




ig. 4. Distribution of isclines of corrected equivalent siress a,.l'a“mm in

diamand anvils with & ratio of the height of the anvil to the diameter of
its base H/D egual to 1:1 (al; 2:3 (b); 1.2 [e): 123 [d).

It iz known [15] that (110) and {110} will be the most probable fracwre planes when a single erystal of diamond i
mmp[mﬂd in the di.ltmjﬂﬁ {DD[:I .rhﬂ sirains {:1 S 't{ l.['ﬂ:' and elastic moduli E{ll{l‘]“ El:”ﬂ:l ina E.}'J.I.MF'IC-EJ CU‘UH‘“‘I’[’E
system 16z are connecied with the components of the strain 1ensor and elastic constarus by the following expressions [22]:

Exmox = Opi P flon = 605 Eq e = Egjpe = C) + I(cu = Cy + 2Cy)-

According 10 the data in [19], the ultimate strength of diamond undergoing cleavage along the (110) and (110
planes is 2.67 GPa. We thus find from (9) that m = 3.175. This value of sirength corresponds 1o the following size of the
microcracks on the surface of diamond
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where Ferao = ¥nim = 6.5 If [13].

Calcularions established the regions that are most dangerous frem the viewpoint of the briule fracture of anvils
during loading — under the unsupported hole and near the working surface (Fig. 4). It should be emphasized that during
unleading there is one other likely fracture region — directly on the working surface [22]. One prerequisite for e
formation of this region is a decreass in masimum [ateral pressure (0 2810 It should be noted that the values of comecied
equivalent stress o,/o%;1gy Shown in Fig. 4 were cbtained with the assumption that m = 3.173. However, the value of m
may change appreciably from crystal to erystal. Since the character of the pressure distribution and the shape of the anvils
in the experiments in [9] were similar to the cass we considersd in our calcwlations (Figs. | and 2), we made an ¢stimate
of m to characterize anvil strength. With the assumption that fracnire ocours &t @,/ "Dmm- m should be equal to 6.35 GPa.

To cptimize the geomerry and loading conditions for diamond anvils, we decided to use approximate mathematical
models obtained from analysis of the results of @ numerical experiment in wh ich the strength of such anvils was evaluated.
An analvsis of the range of service loads and variation of the geometric dimensions made it pessible w find several
characteristic parems. A factorial experiment [23] was then performed. Due to the narrow range of variation of the factors
being considered. we first assumed that the dependence of the srength of an anvil in the most heavily stressed regions on
the anvil's geometry and loading conditions is daseribad by a linear combination of n-th-degree polynomials af cach i
independent factor, i.e. we comstructed a regression model 1o describe the principal effects. (A preliminary analysis
established that the dependemce of the stresses g, in the most heavily stressed regions on the dimensions of the anvil is
expresead by a polymomial — Fig. 5)
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Fig. 5. Change in the corrected g,/ic”y, g eguivalent
strasses in diamond anvie for different H/D in the region
under the unsupported hola (1) and near tha working sur-
face of the anvils [2).

]
g, = b+ E,”E by i)

where by iz the absolute term of the equation (the mean of s, within the given region): by; is the regression coefficient for |
the j-th-degree polynomial of the i-th factor; wy(x)) is 3 j-th-degres polynomial of factor x;; k is the number of factors
examined; n; is the maximum degres of polynomial for the i-th factor.

Recursion formulas were used o construct a system of orhogonal polynomials for each factor [24]:

mE st ale f=(rta)p.t b.-n.'-z "

where ¢, is a polynomial of degree v, a, and b', are coefficients, The experiment plan was chosen from the factorial
experiment catalog [23] on the basis of the number of variables and the presumed degres of the polynomial. Each experi-
ment involved a finite-element caleulation of o, in the most heavily stressed regions. The number of each Sxperiment was
assigned in a matrix combining the dimensions and conditions of loading of diamend anvils.

The results of the experiments were analyzed with a set of programs [25] in order to obtain estimates of the
regression coefficients and the errors of the approximation. If the model obtained 1o describe the principal sffects provided
satisfacropily accurate estimates of o, we used it to then solve the optimization problem. Otherwise, we performed an
additional analysis of the experimental data by automatically generating structural models in which there were two of three
murual sffects berween the given variables. We ook this ser of models and chose those which yielded satisfactory values
of the response function ar the different poinis of the experiment plan. The final selection of the approximaring equation
{from the chosen grous) was made by comparing their accuracy in caleulations of o, at intermediate (relative o the plan)
poimnts of the facior space.

The geomerry and loading conditions for diameond anvils were optimized by searching for points of the factr space
where the resulting model had a minimum, This problem was solved by the simplex method developed by Melder and
Mead. Here, the form of the simplex being displaced is adapred 10 the form of the response surface, and the mumber of
iterarions is reduced by selecting the proper displacement strategy. To search for the global minimum. the problem is
sojved repeatedly by constructing the initial simplex at different points unifermly* distributed in the factor space with the
aid of a random mumber generator. '

For each characteristic configuration, we constucted mathematical models describing (to within 10%) the depen-
dence of the sicength of the aovils in the most heavily stressed region cn their geometry and loading conditions. We
examined the following ranges of the factors that were optimized (Fig. 6): D = 2.5-3.3 mm; Dy = 2.54.55 mm: Dy =
0.8-2.0 mm; d; = 0.01-0.18 mm; & = 0.2-0.91 mm: h = 0.54-5.4 mm: h; = 0.050.805 mm; o = 0-20° 6, = 30-
63°; | = 0.02-0.5 mm. The dependence of strength on these factors was found in the form ﬂ',-’-:r(“mn = fix;}, where x;,
i = |, k. Thus. for exampie, we have the following for the region undar the hola 1
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Fig. 6. Configuration of a diamond anvil and cenditons of ts loading that permit the
attainment of theoretical pressures of 485 (al and 435 GPa (b) (D, * = Dy Dy* =
Dy hy* = hy = hy/Did,* = d,/D:dy* = dy/Dp ™ = iD; 0* = g'ig, JialD = 3.8
mm, h = 2.2 mm, o = 20° & = 40 D, = 038 D;" = 1.18, h* = 0.148,
dy* = 0.74, dy" = 0015,/ = Q.086, ¢* = 0131, 0D = 3.0 mm, h = 3.01 mm,
p=0° 8 =85° 0,% = 06666 {snd D,* = 0}, D; = 1.0, h,* = 0.02, d,* = 0.08,
dy® = 007, /" = 0.2, 0% = 0.165.

pu = 100 ﬁ- - 135 g = ElDGI_%I = 135, = T3,46;

# = 1D % - 847 gy = (10 ﬁ. — 4T, — 12,18
P = (mﬁr = i~ Wil v % - 1,15
Pu = [% - I.lﬁ}ﬁ. = 00125, pyu= [% = Ll.ilph- 0,008,
0
Fa= m% -3 g, - {“’B,! - 333)pg = 617
po= (10 - 33394 - 3950u;
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b‘:‘ = =01715: b" = =(.0114; bu = [1L0003; b:” = =(.2117; bﬂ = [J.026; h}l = —0347: b_'_z = 1 853 b]ﬂ. =
24.83; by = 0.097; by, = —0.062; by; = 0.018; bb; = —0.00006; bb, = —0.194; bby = —0.00034; g, Qjs Gy are
the normal components of pressure along the anvil —interlaver contact-llne ate = 0, 1 = d;/2, r = dy/2, respectively; Py,
is the integral force acting on the anvil. (In accordance with Saine-Venant's principle, the stresses away from the site of
Ipad application are independent of the characier of load distribution and depend only on the integral force — as has been
confirmed experimentally). Similar relations were found for each characteristic structure in regions of possible britle
fracture

Our search for optimum poinis of the models that were construceed yielded combinarions of optimized parameters
that made it possible 1o anain theorerical pressures of 463 and 435 GPa (Fig. 6). It should be noted thar these values wers
obained with the assumption of a linear law [9] for pressure dissribution over the working surface of the anvil when m =
€.35, Thus, the optimization established a combination of parameters that allow the pressure achieved previously o be
exceeded by a factor of more than 2.5,

The use of materials with a greater angle of internal friction for the interlayer has made it possible 1o experimental-
ly achieve pressures of roughly 550 GPa [26]. The character of pressure distribution over the working surface of the anvil
for this case differs markedly from the linearity seen in [9] — a fact thar will be considered in furure refinements of the
method presenied here.

The method we have described for optimizing the structural parameters and losding conditions of diamond anvils
and the results that have been obtained can be employed in the design of equipment using such anvils.
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