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ABSTRACT

The thermomechanical theory of phase transitions (PT) developed by Levitas (Part I of the paper) is
extended to the case with displacement discontinuities across an interface (noncoherence and fracture).
Two boundary-value problems are solved analytically : the appearance of a spherical nucleus in an infinite
elastoplastic sphere under applied pressure (without or with interfacial fracture) with application to
temperature-induced PT in steel and pressure-induced PT graphite—diamond ; noncoherent PT in a rigid—
plastic half-space. The effect of strain hardening on the PT condition is discussed. The experimental
phenomena described in the paper are enumerated. Results of the numerical modelling of the technological
process of diamond synthesis are discussed in connection with the explanation of experimental results and
revelation of the pressure self-regulation effect. Some methods for the control of PT by means of the
purposeful control of stress—strain fields are suggested, using analysis of various useful examples of stress
field variation during PT in the problems solved in Parts I and II. © 1997 Elsevier Science Ltd

Keywords: A. phase transformation, A. thermomechanical processes, A. fracture, A. noncoherence, B.
elastic-plastic material, C. analytical solution.

1. INTRODUCTION

In this part of the paper the following problems are considered. The thermomechanical
theory developed in Part I is extended to the case with displacement discontinuities
across an interface (noncoherence and fracture). It is assumed that PT and fracture
(or noncoherence) criteria are mutually independent, and these processes are coupled
through the stress fields only. Growing transformation strain generates the stresses,
which are necessary for fracture (sliding along the interface), and fracture (non-
coherence) changes the stress variation in the transforming particle. Two boundary-
value problems are formulated and solved analytically :

e the appearance of a spherical nucleus in an infinite clastoplastic sphere under
applied pressure (without or with interfacial fracture) with application to tem-
perature-induced PT in steel and pressure-induced PT graphite—diamond ;

e noncoherent PT in a rigid-plastic half-space.

The PT criterion has the form
1203
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for the first problem (elastic properties of parent and product phases are the same)
and the form

1+ Ar
J J p-vdZ, dr =AY+ )V, )
/ x,

for the second problem [see (7) and (11) in Levitas (1997)]. Here X is the driving
force for PT, ¥, and X, are the volume and surface of the nucleus, ¢ and p = ¢ n are
the stress tensor and vector, respectively, n is the unit normal to X,
Ay = p(Y§ — ) is the difference of the thermal parts of the free energy, &' and g, are
the transformation strain tensor and its volumetric part, k& is the dissipation due to
PT, o, is the yield stress, ¢ is the time and v is the velocity of points £, from the side
of the nucleus. In the second problem the volume V, contains the transformation
strain only, and (2) follows from (1) and the Gauss theorem. Assume the following
explicit expression for the thermal part of the free energy (Huo and Miiller, 1993):

! = Yoi—5a(0—0,) —v,0(n0/0,— 1) —vf,, i=1.2. 3)

Here v, > 0 are the specific heats, s,; and ,; are constants. In the case of small
(6/6,— 1) we have In 8/8, ~ 6/6,— 1. 1t is possible to choose the reference temperature
from the condition Ay’(6,) = 0, so that Ay, = 0. Then

pAv
6()

AY" = —pAs,(0—0,) — ——(0—0,)°. “4)
Then some results of the numerical modelling of the technological process of diamond
synthesis are discussed in connection with the explanation of experimental results and
revelation of the so-called pressure self-regulation effect. In Section 4 some methods
of control of the PT by means of the purposeful control of stress—strain fields are
suggested, using analysis of various useful examples of stress field variation during
PT in the problems solved.

We assume for convenient that compressive stresses and strains are positive (except
in Section 2.2).

2. APPEARANCE OF A SPHERICAL NUCLEUS IN AN INFINITE
ELASTOPLASTIC SPHERE

2.1.  Phase transition criterion

Let us consider the PT in a spherical inclusion with radius R in an infinite elasto—
perfectly plastic sphere under applied external pressure p [Fig. 1(a)]. Elastic properties
of parent and new phases are the same, ' = %3015, where ¢ is the parameter, growing
from 0 to 1 during the PT. Then the pressure g in a nucleus is determined by formulas
(Roitburd and Temkin, 1986 ; Fischer ef al., 1994) :
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p
graphite
diamond
liquid metal
Fig. 1. Appearance of a spherical nucleus in an elastoplastic sphere in a general case and for the problem
of PT graphite-diamond.
. . . . 80 7 ’
intheelasticregion p, =p— 3C leo| < les],  &,:=20,C, &)
: L 2 ,
in the plasticregion g, = p— 3 a, ln2 .C +1 leo| > [e)]. (6)

Here C = 3(1—v,)/2E. E is Young’s modulus, v, is Poisson’s ratio. g, is the yield
stress of parent phase and ¢ is the strain corresponding to the onset of plastic flow
in the parent phase. Note that g, can be positive or negative and due to the condition
&/(20,C) > 0 the signs of o, and &, coincide. Calculation of the work integral yields

J' o:ds' = J"”ﬁdg0 = f”ﬁc de, + [“ﬁp de, = pe,— A, (7
! 0 0 RES
with
2 o,C g
Api=S0,8, — +In—"= 8
m 3 a)ﬂv( € + HZUYC> ( )
during elastoplastic deformation and
et . d F: (9)
LT T PR

during elastic deformation. Substituting (7) and (9) in (1) we obtain the PT pressure
in the elastoplastic and elastic region, respectively :

2 (a6,C 3 1 Av .
p=20 (25t Y k= pAs,(0—0)— E=50-0,)7 ). (10)
37\ ¢ g £, 0,

pAv
_ b _pay i
b4 6C+ 80</< pAs,(0—-06,) 0. (0—6,)° > (11)

Equations (10) and (11) at & = 0 coincide with the corresponding equations in the
paper by Roitburd and Temkin (1986) and differ from equations obtained by Fischer
et al. (1994). Adiabatic heating is taken into account by Levitas (1996a).
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For the description of PT progress we can consider the appearance of a new
martensitic nucleus in an austenite + martensite mixture. In the first approximation,
neglecting the energy of internal stresses in a mixture and assuming o, = co,u+
(I —c)aya, where ¢ is the volume fraction of martensite, 6,4 and o,y are the yield
stresses of austenite and martensite, we can use (8) and (10). As for steels, g,y i3
several times 0,4, so the PT pressure should be increased with increase in the martensite
fraction.

A significant increase in ¢,, and o,y (we omit the sign | ...|) with the temperature
decrease should also be taken into account. But the growth of A4,, and p with growing
o, is limited by the condition |¢,| < [¢,|: =2|0,|C,i.c. untilg, = ¢,/2C (at C = 5x 10~*
MPa~' o, = ¢, x 10° MPa). At larger o, the material is deformed elastically and
An = €2/6C (at C=5x107% 4, = &2 -10°/3 is independent of the yield stress. In the
example below (at C = 5x 1074, g, = 0.026) the material is deformed plastically until
o, = 2.6 x 10° MPa and the maximum value of 4,, = 22.53 MPa, i.e. the value of the
mechanical work, is increased very little in comparison with the value 4, = 20.576
MPa at 6, = 10° MPa.

2.2. Temperature-induced PT in steel

In this section it is convenient to consider tensile strains and stresses as positive. For
temperature-induced PT, p = 0, 8 = M_, where M, is the martensite start temperature
which can be determined from (10) and (11). To estimate the value of ¥ and compare
it with the mechanical work A, let us use the material parameters for steel Fe+30%
Ni from the paper by Kaufman and Cohen (1958) (see also Fischer et al., 1994) :

Ay’ =a(@—0,)+b(0—0,)",

A' 2
a= —pAs, =0904MPaK "', b= —pE—L—: —3.356x10"* MPaK 2,

M, =220K, 0,=440K. Ay’(M,) = —215.12MPa,
¢ =0.026, E=21x10°MPa, v, =03, o, =10MPa. (12)

The value g, for austenite is overestimated considerably. Even in this case 4,, = 20.576
MPa and the value & is determined from (10) at p = 0 is £ = 194.554 MPa, i.e. 9.455
times larger than A,,. The coefficient L in (1) is also very high: L = 7.48.

There is an opinion (Estrin, 1993) that the very high value of Ay*(M,) (and the
difference M,—8,) typical of PT in steels is connected with the elastoplastic work
during the PT due to relatively large ¢,. Our semiquantitative estimations show that
the main reason for large M,— 6, lies mostly in large k. Allowance for adiabatic
heating and plastic work in the process of self-accommodation of transformation
shears can reduce the value of k.

The values of g, and k grow intensively with increasing ¢ and decreasing 6. When
k and o, are large enough, the temperature 6 determined from (10) at p = 0, can be
less than 0 K. This means that some residual austenite cannot be transformed into
martensite due to cooling, which is in agreement with experiments for steels.

To determine the PT temperature explicitly, assume (Bell, 1973)
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7,a(6) = ayA(O)(l - Bi) oym(0) = oyM(0)<1 - i), (13)

BmM

where 6, is the melting temperature (6, is a fitting parameter), but we neglect the
temperature dependence of ¢,C. Designating x = 6 — 6, we obtain

Gy = (1 - C)UyA + oy = [(l - C)UyA (60) + CJyM(Go)]

—x[(l _ @ +c"yM(O)] = FlO)—M(Ox  (14)

Oma Orm
with
F(e) =(1=c)ayal(0,) + com(b,) >0
and

0,4 (0)  om(0)
0mA e HmM ~

M) =(1—c) 0 (15)

(as g, < 0). Equation (10) leads to

2 As,  pAv
p = S(F— Mx)B+L(F—Mx)— 2% P2V 2. (16)
3 €o &,0,
where
o, C £
B=2C 4t
e M)

does not depend on temperature. For a temperature-induced PT, p = 0 and

rx’+nx+m=0, (17)
where
Av A 2 2
r=Pl P2 (1 ZB\M, m=—F(L+ZB)<0. (18)
8060 SO 3 3
The solution of (17) reads
noJ/n*—4rm
X = — Z + T (19)
The sign “+” or “—" should be chosen from the condition x=0 at

0,4 = Oy = m = 0, because at 6,4 = g,y = 0 the PT occurs at the equilibrium tem-
perature § = 6,. It follows from the equation —r+|n| = 0, that for n > 0 we should
use + sign and for n < 0 the — sign is valid. For » > 0 (i.e. Av > 0), (19) always has
a solution. What is more interesting is the case r < 0 (i.e. Av < 0). It follows from
(19) that PT proceeds (i.e. ¢ grows) until
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n

*=drm and x=—-.
n Fm  dan X 2

(20)
It is evident from (19), that at » < 0, the value x < 0 at n < 0 only.

If there is additional cooling, (19) has no solution, because the PT stimulus Ay’
grows more slowly than the resistance to PT 4,,+k. This means that PT is impossible
at a temperature less than some critical one, which is also in agreement with exper-
iments at Av <0 (Estrin, 1993). The temperature M, = 6,—n/2r is the martensite
finish temperature. Note that usually the following explanation for the existence of
M. is used (Estrin, 1993) : at low temperatures the growth of the PT stimulus becomes
slow, but the yield stress increases intensively. As the resistance to PT in this case is
related to the plastic straining only, then the PT is finished when the PT stimulus
becomes smaller than the plastic resistance. As was shown above, the role of plastic
resistance is overestimated by Estrin (1993).

2.3.  Phase transition graphite—diamond

Let us consider PT graphite (G)-diamond (D), which is accompanied by a 54%
volume decrease. The equilibrium pressure-temperature line calculated with the
methods of chemical thermodynamics (Kurdyumov, 1980; Novikov er al., 1987;
Bundy, 1989) is shown in Fig. 2 ; this means that pressure and temperature variations,
plastic straining and dissipation due to PT are neglected. The equilibrium line can be
approximated by the equation (Kurdyumov, 1980; Novikov er al., 1987 Bundy,
1989)

Peg = 1.2575+0.00250 = a+hO(GPa). 1)

In reality,

p, GPa

7

10 1

4 B,AK

0 1000 2000 3000 4000

Fig. 2. Phase transition G—D diagram: l-—equilibrium line (Eq. (21)): 2—calculated curve (Eq. (23) at
k = 0); 3—regions of the direct G-D PT (Bundy, 1989, experiments).
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e solid-solid martensitic PT G-D proceeds at a pressure that is several times higher
(Bundy, 1989) (Fig. 2);

e if PT occurs in the presence of some liquid metal [e.g. Fe, Ni, Co, NiMn (Novikov
et al., 1987)], then the PT can proceed at equilibrium pressure.

There are a number of physico-chemical theories which try to explain these phenom-
ena qualitatively assuming some special chemical reactions, catalytic properties of
metals or their properties as solvent metals, and so on (Kurdyumov, 1980 ; Novikov
et al., 1987). All of them may be correct, but first of all PT should be possible from
the point of view of continuum thermodynamics. It will be shown that the above
thermodynamic continuum theory allows us to explain both experimental results
mentioned without any additional physical or chemical hypothesis.

Let us consider the appearance of a D spherical nucleus in an infinite G sphere
under the prescribed external pressure p [Fig. 1(a)]. To obtain a simple analytical
estimation we shall neglect several details, in particular finite strains. The variation
of elastic moduli and thermal expansion will not be taken into account when defining
the stress state and calculating the work integral in the PT criterion. Consequently,
(10) can be used. The variation in elastic moduli and thermal expansion will be taken
into account in an implicit way. In the particular case o, = k = 0 the PT pressure in
(10) should coincide with the equilibrium pressure p.,. We shall use (21) for p,, which
includes the variation in elastic moduli and thermal expansion, and obtain

0, = — %, pAs, = e,b, Av=20 (22)

and

2 o,C £ k
= 2 : — —8,). 2
p 30-)' ( 80 +ln20,yc>+ &, +b(6 00) ( 3)
Let us estimate the parameters in (23). The volumetric strain g, = |1 —p4/p, = 0.5418,
where py = 3.5 x 10° kg/m® and p, = 2.27 x 10° kg/m’ are the mass densities of D and
G in the unloaded state. The compression modulus of G at p = 10 GPa is equal to
K = 75 GPa (Bundy, 1989). At v, = 0.3 the constant

3(1—v 1 —v,
_3U=v) Yo _0.0117GPa . (24)

C="%F 30—k

For the yield stress we adopt the linear temperature dependence (Bell, 1973)
0
g, () =0a,(0)(1— o | 25

where 6, = 4000 K is the melting temperature of both G and D (G-D liquid triple
point). We assume that at pressure p = 10 GPa, 6,(0) = 2 GPa (Vereshchagin and
Zubova, 1960). The result of the calculation of the PT pressure according (23) at
k = 0 is shown in Fig. 2. The pressure increment due to mechanical work A4/, at
6 = 0 K is 3.34 GPa and at # = 2000 K is 2.11 GPa. If we assume that the difference
between the experimentally defined PT pressure (approximately p., = 11.26 GPa at
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arbitrary temperature) and the pressure according to (23) at k£ = 0 is due to £, then
the ratio k/A,, is maximum at § = 0K and equal to 1.97;at 0 = 2000K, k/4,, = 1.386;
at 6 = 3000 K, k/A4,, = 0.957. As these values are relatively small in comparison with
kiA, = 9.44S for steel, our assumption is plausible. It is interesting to note that the
coefficient L in (1) varies from 3.35to € = 0 K to 2.40 at & = 3000 K. This is a very
narrow interval when we take into account the rather simplified character of our
description.

Consequently there are two main reasons why the experimental PT pressure sig-
nificantly exceeds the pressure calculated using the methods of chemical ther-
modynamics :

e the negative pressure variation in the course of the PT and corresponding mech-
anical work ;
o the dissipation due to the PT.

Let us consider the appearance of the D nucleus in a liquid sphere which is located in
a finite G sphere under the prescribed external pressure p [Fig. 1(b)]. As an initial
condition assume that the pressure in the liquid and the prescribed pressure are the
same. The liquid acts in three ways.

e First, the melted metal in the given case transforms a martensitic PT into a
diffusive PT (Kurdyumov, 1980 ; Novikov et al., 1987 ; Bundy, 1989), for which
the dissipative threshold is zero.

o Second, the maximum possible pressure variation in the transforming particle in
the liquid is Ap = K,(vy—v,)/v,, Where v,, vy and v, are the volume of the trans-
forming particle before and after PT and the volume of liquid, respectively. The
volume of liquid is usually comparable with the volume of G sphere and the
pressure variation in an infinitesimal D nucleus is negligible, because v, > (v, —vg).

e Third, let us consider the case where the volume of the transforming particle is
comparable with the volume of the liquid drop. Due to the diffusion of liquid
metal in G the effective yield stress of the graphite-metal mixture is very small.
For a small drop we can apply (23) with

6o =

g% _ <—1+&)”‘1=0.5418@. (26)
U Pe/ Ui vy

For vy/v, = 1/3 and ¢, = 0.2 GPa, p—p., = 0.440 GPa.
For vg/v, = 1/6 and o, = 0.1 GPa, p—p,, = 0.220 GPa.
For vy/v, = 1/6 and ¢, = 0.01 GPa, p—p,, = 0.037 GPa.

As diamond synthesis with liquid metals usually concerns 6§ = 1600 <+ 2000 K,
i.e. at p, = 5.25 + 6.25 GPa, then even the biggest deviation 0.440 GPa lies inside
the experimental errors for high pressure—high temperature measurements.

Consequently there is no reason why the experimentally determined pressure needed
for the appearance of a small D nucleus should exceed the pressure calculated using
the methods of chemical thermodynamics. Thus the thermodynamical continuum
theory developed allows us to explain both the fundamental experimental results
mentioned above without any additional physical or chemical hypothesis.
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If we want to model the process of metal melting in G, then we should introduce
the volumetric transformation expansion in the metal and vary the elastic properties.
At fixed elastic moduli the volumetric transformation expansion results in pressure
growth in the liquid. Consequently the PT G-D can occur at the external pressure,
which is less than the equilibrium p,, pressure. The same will occur when the com-
pression modulus of the chosen liquid is higher than the compression modulus of the
G at zero transformation expansion. It is known that the pressure in the reaction cell
increases due to the metal melting (Shul’zhenko et al., 1977), i.e. the possibility of D
synthesis under a pressure that is less than the equilibrium p,, pressure can be real.

From this example we can derive three useful conclusions :

—it 1s possible to use liquid or material with a small yield limit to decrease negative
pressure variation in the course of the PT;

—it is necessary to replace a martensitic PT by a diffusive PT in order to remove
the dissipative threshold in the PT criterion;

—PT conditions can be improved by the creation of a pressure (stress) con-
centration in the transformation zone, for instance by using another PT with
corresponding transformation strain or material with higher elastic moduli.

3. ALLOWING FOR DISPLACEMENT DISCONTINUITIES:
NONCOHERENCE AND FRACTURE

One of the mechanisms for getting more profitable stress variation in the trans-
forming particle is related to the possibility of displacement discontinuities on the
moving or fixed (at nucleation) interface. The jump of displacements tangential to
the interface produces so-called noncoherence and is connected with the generation
and sliding of dislocations on the interface with the Burgers vector tangential to the
interface. The jump of the displacement component normal to the interface is a
fracture.

3.1. Noncoherence

Earlier (Christian, 1965 ; Roitburd, 1972 ; Boguslavskiy, 1985), the possibility of
noncoherent PT in elastic materials was estimated by comparing the energy of a
coherent nucleus (displacements are continuous) and a noncoherent nucleus while
taking into account the energy of dislocations. Now it is clear that the sliding along
the interface is a dissipative process and comparison of energies is not sufficient. The
dissipative concept in the theory of noncoherent PT was developed by Levitas (1992,
1995). We will present a simplified and modified version of this approach. For the
points of noncoherent interface, the rate of dissipation due to sliding takes the form

95 =T [vs] - l//;([u\]) - 0, (27)

where [ug] 1s the displacement discontinuity, v, = @,, T the shear stress and y, is the
energy of the displacement discontinuity (dislocations). After obvious trans-
formations we obtain



1212 V. I. LEVITAS

@s = (Tﬁ ;‘ﬁ:}) * [Vs] = Xs ' [vs] = @s([vs]a [us])v / (28)

where X, = t—0y,/0[uy] is the dissipative force conjugated to [v]. The dissipation
function Z([vy, [u]) should be determined experimentally; for time-independent
martensitic transformations it is a homogeneous function of degree one in [v,]. Using
the postulate of realizability (Levitas (1992, 1995) (or other postulates of irreversible
thermodynamics or plasticity theory)) it is easy to obtain X, = 82,/d[v,]. For the
1sotropic case we get

Q\ = rs|[vs]|a X, = Tsﬁ]_ {Xs| =T and [V;] = I[vs”?a (29)

]l
where 7, is the dissipative threshold for the occurrence of sliding, at |X,| < 7, sliding
is impossible and the interface is coherent.

In the first approximation we assume that the processes of PT and sliding along
the interface are thermodynamically independent, i.e. the driving force X in the PT
criterion (1) (or in the general criterion in Part 1) is independent of [v,] and the driving
force X, in the sliding criterion (29) is independent of the rate of PT, e.g. of the
interface velocity v, (coupling between [v,] and v, is considered in papers by Levitas
(1992, 1995)). Then these processes will interact through the stress field variation due
to both of them.

The scheme of application of criteria (1) and (29); is as follows. We model the
appearance of a new nucleus in some volume by growth of the transformation strain
(parameter £) and variation in material properties. If for a given ¢ the sliding criterion
is not met, then the interface is coherent. If for a given ¢ the sliding criterion (29); is
satisfied, we admit the sliding at this point until a value where criterion (29); is violated.
After completing the PT we check with criterion (1) whether it is thermodynamically
admissible. Consequently, growing transformation strain produces the stresses that
are necessary for the appearance of noncoherence, and noncoherence changes the
stress variation in the transforming particle.

As an illustration we consider a simple plane strain problem for a half-space.
Suppose that, under the action of homogeneously distributed normal stress p over
the length a, PT occurs in a triangle OEF (sides OE and OF are orthogonal) ; the rest
of the half-space is rigid (Fig. 3).

Fig. 3. Noncoherent PT in a half-space.
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The same solution is valid in the case of homogeneously distributed normal stresses
on the whole surface of the half-space. Such a situation can be realized both on the
external and internal boundaries of a body, e.g. in the pores and cracks which contain
liquid or gas.

The transformation strain &' = 0.5¢.i, the plastic strain ¢° = 0 in the triangle OEF,
where ¢, = 1 —V,,/V,,. Along the interfaces OE and OF, [u] # 0, i.e. noncoherent
PT occurs. Assume that the shear stress along the interfaces OE and OF is constant,
7 =1, < 0.50,, where o, is the yield limit of weaker material, i.e. the energy of
dislocations is neglected. From the plastic limit equilibrium theory we obtain that at
p <(1+0.57)0, the half-space is rigid (Hill, 1950). The nucleation condition (2) will
be used with ¥, = V,,. In the given problem we can consider also a large e, if we
assume that the values Ay/" and k are referred to the unit volume of phase 1.

In Fig. 3(b) three positions of the triangle are shown : initial OEF, final OAB and
arbitrary intermediate OCD. Initial and finite geometric parameters have indices 1
and 2 (EF = a,, OF = b,,OM = h,, AB = a,, OB = b,, OK = h,), current parameters
have no indices (CD = a, OD = b, ON = h). We will use in the calculation that

a a

, hy\
1 =7 . 4= 2h11 an = h%s Vn? = hi, & = 1— J) (30)
h h h,

By taking into account the variation in geometry in the course of PT and (30) we
obtain for the work of 4, of p

s i1y
A, = —J padh = —p%‘J hdh = —p(hs —hy) = pe, Vo (p > 0). 31
h 1 Iy

h
]

For each b, the power of the shear stresses 7, along lines OD and OC is

b

b
Y, = 215J‘ v(x)dx = 2rj
(

) 0

%bﬂx = rsblﬁ. 32)

where v,(x) = x/bb is the velocity of relative sliding at point x (as the deformation of
a triangle OCD is homogeneous, v,(0) = 0 and v,(b) = b). The total work A, of the
shear stresses

[ b

A, = j . dr = TSJ bdb = 0.5t (b —bH) =1, —h}) = —1e. V.  (33)
1 by

As the left side of (2) is equal to 4,4+ A4, then we have

Ay +ki
e

‘0

Py =T+ (34)

Similar calculations give

AV’ — ks ky_»+ks
pry = ~rs+L"~‘, H=p ,—pyy =20+ ==

80 o

(35)

Consequently, at maximum possible 7, = 0.5¢, the expressions for p, ., and H for a
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noncoherent nucleus and (22) for ¢,~2 and H in the problem with the horizontal

layer at t = 0 (see Part I) coincide and both variants are equiprobable. At 7, < 0.5 g,
the noncoherent nucleation is more profitable ( from the point of view of the postulate
of realizability) than the nucleation in the horizontal layer.

Comparison of (44) from Part I for the nucleation in the inclined layer at y' < ¢, and
(34) shows that at small enough 7, [1, < 0.50,,(1 —7'/¢,)] the noncoherent nucleation is
more profitable than the nucleation in the inclined layer as well. Consequently the
variation of 7, is a way to control the PT pressure, geometry and type of nucleus.

3.2. Fracture

The jump of the component of displacement normal to the interface, or fracture,
can be considered in a similar way to noncoherence. We assume that PT and fracture
criteria are mutually independent, and that these processes are coupled through the
stress fields only. If—in the course of growth of transformation strain (parameter &)
and variation of material properties in the nucleus—some chosen fracture criterion is
met at some point of the interface (or at other points), the crack should be introduced.
Practically this results in the introduction of a new boundary with zero normal and
shear stresses. After completing the PT we check with criterion (1) as to whether PT
is in fact possible. Consequently, a growing transformation strain generates the
stresses that are necessary for the fracture, and fracture changes the stress variation
in the transforming particle. We should not take into account the variation of surface
energy in the PT criterion, because it should be taken into account in the fracture
criterion.

As an illustration we consider the problem of the appearance of a spherical nucleus
in an infinite elastoplastic sphere under applied external pressure p (Section 2). As
the simplest fracture criterion we assume that, if the tensile stress normal to the
interface (the same as the pressure in the nucleus) reaches some critical value o, the
interface and consequently the nucleus becomes stress free.

Assume that the fracture occurs in the plastic region and (6) for g, is valid. From
the condition p, = — o, we obtain the critical value of transformation strain

1.5(p+0.) B
o

y

&0 = 20,C€Xp ( 1), (36)

at which fracture occurs. At ¢, > &, pressure and mechanical work in the nucleus are
zero. Consequently in (7), (8) and (10) the value ¢, should be used instead of ¢,. If p
is given, then equations (10) are linear equations relative to the temperature. When
the temperature is prescribed, then equations (10) are nonlinear equations relative to
p (as &, 1s a nonlinear function of p).

Reduction in the strength of the interface o, significantly increases the work integral
in (7) and improves the PT condition. In the ideal case o, = 0, the work integral in
(7) is positive and reaches its maximum value.

The same effect can be reached by using some intermediate materials (layers)
around the places of expected nucleation, e.g. brittle materials with small ¢, or without
cohesion to parent phase or liquid. Note that the methods of control of the PT
condition through the variation of interface tensile o, and shear 7, strength are
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restricted by the possibility of obtaining only relatively small crystals, because they
cannot grow. This can be important for producing superhard material powder (D,
cubic boron nitride).

The numerical study of the interaction of PT, noncoherence and fracture is con-
sidered by Levitas et al. (1996). The averaging procedure for finite strains allowing
for displacements discontinuity is treated by Levitas (1996c¢).

4. MODELLING OF THE TECHNOLOGICAL PROCESS OF DIAMOND
SYNTHESIS

The industrial synthesis of D is a very complicated nonstationary and inhomo-
geneous process. One of the types of high pressure apparatus (HPA) for diamond
synthesis is shown in Fig. 4 (Novikov ef al., 1991a). The symmetry of the HPA about
the vertical axis OA4 and horizontal plane OB makes it possible for us to limit the
study to one quarter of its axial section.

The reaction mixture consists of G and metal and after PT G-D of D as well. A
container made of rock (pyrophillite, lithographic limestone) plays the role of a
deformable gasket. The heater is a mixture of G and rock. A cemented carbide die is
press-fitted in a block of steel rings. Two compound plates reduce axial stresses acting
on a plate of a press.

Such a system is compressed by the press to a pressure in a reaction mixture of 4.5-

1
Z
2
C / B r
O / 9 S— — — — o — = — —r
~
3 ‘J><
A -
4 5
/ .-
6
N \
A
Fig. 4. High pressure apparatus for the diamond synthesis : 1—reaction mixture ; 2—container ; 3—heater;

4-—die; 5—block of rings ; 6—compound plates.
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5.5 GPa. The reaction mixture is heated to the diamond synthesis temperature (1600
2000 K) by passing a low-voltage current through the mixture. Then the metal is
melted and G is dissolved in a metal. If the pressure exceeds the equilibrium value
(21) for the G-D system, then carbon is crystallized in the form of D.

It is known that good-quality D can be obtained near the equilibrium line (21)
only (Kurdyumov, 1980; Novikov et al., 1987). It follows from known experiments
(Prikhna er al., 1978) and our simulation (Novikov ez al. 1988, 1990, 1991b; Levitas
et al., 1989 ; ldesman and Levitas, 1995) that the temperature and pressure are
distributed extremely inhomogeneously. The question arises: how is it possible to
obtain D of good quality in some experiments under such inhomogeneous conditions?
To answer this question we will use the results of our numerical modelling of D
synthesis (Novikov er al., 1988, 1990, 1991b; Levitas et al., 1989; Idesman and
Levitas, 1995).

First of all a compression of the system by the press is modelled (Novikov et al.,
1990 ; Idesman and Levitas, 1995). Large elastoplastic deformation of container,
reaction mixture and heater, pressure dependence of mechanical properties and con-
tact sliding on the boundary between the die and container are taken into account.
The theory of large elastoplastic deformation of materials under high pressure
developed by Levitas (1987, 1996b) is used. Then electrical heating, stress redis-
tribution, metal melting and PT G-D were studied.

The thermostress state of the reaction mixture in the HPA is changed during electric
heating which results in a pressure increase. At the same time, PT G—D occurs starting
from some instant of heating corresponding to attaining technological parameters for
diamond synthesis.

This in turn affects the distribution of electric, temperature and stress fields in the
HPA. Therefore, the interdependence occurs between the processes of electrical and
heat conduction, thermoplasticity and PT, i.e. there are relations of electric potential
field to those of temperature, pressure and D fraction ; of temperature field to electric
potential, pressure and D fraction distributions ; of stress fields to those of temperature
and D fraction and of D fraction field to pressure and temperature distributions in
the reaction zone. Besides, there are physical and geometrical nonlinearities caused
by the temperature dependence of thermophysical properties, by the pressure depen-
dence of elastic and plastic properties and by the occurrence of large elastic and plastic
strains.

A corresponding finite-element model has been developed to describe processes
occurring in HPA during diamond synthesis with allowance for features enumerated.

The complete system of equations comprises equations of the plastic flow theory
with allowance for finite strains, equations of electrical conduction, equation of
nonstationary heat conduction, the kinetic equation for the rate of the D crystals
growth, and equations for carbon phase equilibrium (21) and metal solvent melting
(Novikov ef al., 1988, 1990, 1991b; Levitas er al., 1989). The reaction zone is con-
sidered to be a mechanical mixture of G, metal solvent and D, the efficient properties
of which are determined depending on the component’s properties and mass fractions.
PT is taken into account through the changes in properties, mass fraction of D and
the compressive volumetric transformation strain. The rate of D mass fraction change
in the region of its possible synthesis (when the metal is melted and D is stable) is
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Fig. 5. Time dependence of temperature ¢, pressure p and diamond volume fraction in two points of
reaction mixture (Novikov ez al., 1991b).

determined by the topochemical Avraamy—Yerofeyev equation. The time dependence
of temperature, pressure and volume fraction of D in two points of the reaction
mixture is shown in Fig. 5. First D crystals appear in the centre of the mixture.
Further, with D fraction increase and decrease in reaction mixture specific volume a
monotone pressure drop is observed. At 1 = 51 s, D growth in the HPA centre ceases ;
this corresponds to the pressure drop below the equilibrium pressure for the G-D
system.

At the same time diamond synthesis occurs in the neighborhood of the central
point and pressure decreases there as well. As the force averaged over the line OC in
the horizontal section of the HPA remains practically constant, the pressure at the
point O increases.

The point O at the instant of time ¢ = 55 s returns to the D stability region, D
fraction growth is restarted, pressure drops again, and so on.

Consequently, an effect of pressure self-regulation is revealed which consists in the
pressure oscillation near the G-D equilibrium line. D crystals grow near the equi-
librium line due to this effect, which explains why it is possible to produce high-quality
D under very inhomogeneous pressure and temperature fields.
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5. POSSIBLE WAYS OF CONTROL OF PT CONDITIONS

Let us summarize our analysis of various useful examples of stress field variation
in the transforming particle in the course of PT, giving possible ways of controlling
PT by the purposeful control of stress—strain fields.

1. The trivial contribution of shear stresses to the driving force of PT connected
with the work of shear stresses along the transformation shear strains.

2. According to the associated plastic flow rule, shear stresses and plastic shear
strains (or plastic strain increments) are uniquely related, and they are in a
monotone relation to each other, i.e. they produce equivalent contributions to
the driving force of PT.

3. Effect of shear stresses on the yield conditions (problem of PT in an inclined
layer) :

e Applied shear stresses contribute to the yield condition in a way equivalent to
the decrease in the yield limit, and this is one of the mechanisms of an additional
increase in the driving force of PT.

o If a new phase has a yield stress o, > 20,;, shear stresses practically do not
affect the PT condition.

o Shear stresses can render the PT impossible, if due to the necessity of fulfilment
of the yield condition for a parent phase a PT criterion is violated.

4. Possibility of an additional displacement to promote the PT for a significant
volumetric transformation strain (problem of compression and shear of
materials in Bridgman anvils). Ways of getting additional displacement are as
follows :

e reduction in contact friction due to the rotation of anvils or using some other
methods ;

e reduction in yield stress under fixed applied load, e.g. due to heating:

e use of the TRIP phenomenon during temperature cycling.

These methods are especially effective for producing high-strength materials.
5. Creation of stress (pressure) concentration in the transformation zone:

e by compression of a thin layer in Bridgman anvils;

e by using another PT with corresponding transformation strain (e.g. metal
melting at the PT G-D);

e by using intermediate materials with higher elastic moduli (problem of G-D
PT).

6. Decrease in the negative stress variation in the transforming region:

o use of intermediate liquids or materials with a small yield limit ;

e reduction of interface shear strength t, to promote the noncoherence ;

e reduction of interface tensile strength o, or use of intermediate materials
(layers) around the places of expected nucleation, e.g. brittle materials with
small o, or without cohesion to the parent phase or liquid.
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7. Reduction in the dissipative threshold & :

e replacement of martensitic PT by diffusive PT;
e reduction of the yield stress, e.g. by annealing or increasing the characteristic
size (grain, subgrain, single crystal).

8. Search for and use of self-regulation phenomena for various systems.

6. CONCLUDING REMARKS

The results of the solution of problems of PT in elastic materials are in most cases
easily understandable and interpretable due to the linearity of the equations. The
non-trivial effects in plasticity are related to the necessity to meet the nonlinear yield
condition in the parent and product phases and specific pressure redistribution. In
particular, shear stress contributes to the driving force of PT even at zero trans-
formation shear strain and in some cases pressure in the transforming region increases
despite the volume decrease due to PT. The solutions obtained develop a nonlinear
feeling of how PT proceeds in plastic materials and show much richer possibilities of
control of PT.

Let us discuss qualitatively the effect of strain hardening on the PT condition based
on the above solutions. Yield stresses of both parent and product (due to defects
heredity) phases and consequently the dissipative threshold & increase with increasing
plastic strain. Growth of k£ always makes the PT condition worse. As follows from
the above equations (excluding in some cases (44) of Part 1), in the case without
external shear stresses the increase in yield stress reduces the driving force of PT. This
explains the known experimental results (Bernshtein ez al., 1983 ; Hornbogen, 1984 ;
Estrin, 1993) concerning the negative effect of preliminary plastic straining of austenite
on PT.

In the problem of PT in the inclined layer at 0.50,,)' > kg, in (42) of Part 1 the
growth of the yield stress increases parameter A4 and if this increase exceeds the
negative effect of growth of 6, in (41), the strain hardening improves the PT condition.

In the problem of the compression of materials in rotating Bridgman anvils the
term 7y' increases with increasing yield stress [see (47) in Part I of the paper (Levitas,
1997)]. At g,, < o, the increase in o,, which is larger than the growth in g, increases
the pressure in the central part of the disk and improves the PT condition.

It is necessary to mention that at logarithmic strain of order 1, strain hardening is
saturated. It was shown by Levitas (1987, 1996b) for more than 60 initially isotropic
materials belonging to different classes (metals, rocks, oxides, compacted powder
and powder mixtures) that for monotone (without unloading) and so-called quasi-
monotone loading, beginning from a certain degree of deformation, materials are
deformed as perfectly plastic, isotropic and strain-history independent. Due to the
relation (1), between k and o, it is reasonable to assume that after some critical strain
the value of & is also strain and strain-history independent. This hypothesis should be
verified experimentally.

Based on the solutions obtained, the following experimental phenomena are
described :
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e preferential appearance of martensitic nuclet on slip surfaces;

o negative effect of preliminary plastic straining of austenite on PT;

e impossibility in some cases to transform the whole austenite into martensite
without pressure (existence of a martensite finish temperature) ;

e negative effect of reduction of grain size or single crystal size on PT ;

e linear dependence between pressure hysteresis and yield stress;

e decrease in PT pressure under applied shear stress or plastic strain and the
possibility of PT at a pressure which is less than the thermodynamic equilibrium
pressure ;

e improvement in the condition of the PT in material compressed in Bridgman
anvils due to the additional rotation of the anvil as well as the unique relation
between the volume fraction of a new phase and the rotation angle of the anvil;

e possibility of obtaining new material phases under compression and shearing in
Bridgman anvils, which are thermodynamically nonprofitable without rotation
of the anvil ;

e pressure self-multiplication effect due to PT in material compressed in Bridgman
anvils;

e occurrence of direct solid—solid martensitic G-D PT at a pressure which is several
times higher than the equilibrium pressure and the possibility of G-D PT at
equilibrium pressure in the presence of some liquid metals ;

e possibility of producing high-quality D under very inhomogeneous pressure and
temperature fields.

All the above recommendations for the improvement of PT conditions are based on
the simplest models and it is possible that more precise solutions may slightly or
completely change some of them. These results are the formulation and first step to
the solution of the problem of the search for possible ways to control PT in inelastic
materials. It seems to us that systemization, experimental verification, further devel-
opment and application of such recommendations can make a significant contribution
to materials science and the synthesis of new materials.
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