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Abstract—The governing extremum principle for the description of stable post-bifurcation processes
in elastoplastic materials with associated and nonassociated flow rules is substantiated. To derive it, a
new thermomechanical postulate, called the postulate of realizability is introduced. The postulate of
realizability was applied to obtain some known results (associated flow rule in classical plasticity,
relations between dissipative forces and the rates for time-dependent behaviour, some extremum
principles for a finite volume of perfect rigid-plastic material), as well as some new ones
(nonassociated flow rules and more complex relations between dissipative forces and the rates for
more complicated models, some extremum principles for a finite volume of elastoplastic material).
This means that the postulate of realizability is a quite powerful and flexible tool in the theory of
dissipative processes and the derived extremum principles can be considered as well grounded.
Indeed, the concept of stability following from these principles has a clear physical meaning.

1. INTRODUCTION

A quasi-static instability in an inelastic region can appear in various forms: for instance as
buckling, necking, shear band formation or phase transition. In contrast to purely elastic
materials, for which the instability is connected with the loss of stability of the equilibrium state
(at constant loading), the loss of stability of the deformation process (at varying loading) is of
main importance in the elastoplastic region (Klushnikov [1]; Petryk [2]; BaZant [3]). If more
than one solution is possible at some point in the deformation process under a given increment
of the prescribed external quantities (forces, displacements), it is necessary (a) to determine the
first time, when bifurcation takes place; (b) to find all possible solutions of the boundary value
problem; (c) to choose the stable solution which includes the definition of the corresponding
concept; (d) to describe the whole stable post-bifurcation process (it is possible that items (ii)
and (iii)) may have to be fulfilled at each point of the post-bifurcation path). Phase transitions
(PTs) represent typical post-bifurcational phenomena. PT starts when some crystal lattice or, in
continuum description, deformation process loses its stability under thermomechanical loading.
For elastic materials the principle of minima of the free energy is used to describe the process
of equilibrium PT as a consequence of equilibrium states [4]. For PT in elastoplastic materials
or in elastic materials if we take into account dissipation related with PT [3, 6] this principle is
not applicable and corresponding principle is lacking. It is natural to try to describe PT as the
stable post-bifurcation process in dissipative materials.

Let us consider some known approaches for the description of the post-bifurcation behaviour
(a comprehensive survey is not a goal of this paper).

HilP’s [7,8] bifurcation theory was extended to the initial post-bifurcation range by
Hutchinson [9,10]. Nguyen and Triantafyllidis [11] considered an arbitrary high-order rate
problem. A number of results for the post-bifurcation behaviour of materials and structures
were presented by Needleman and Tvergaard [12]. Some extremum principles for choosing the
post-bifurcation path were suggested by BaZant [13] and Petryk and Thermann [14]. They will
be considered in Part II.

At PT the jump of the deformation gradient and (for noncoherent PT) the position vector
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922 V. 1. LEVITAS

takes place and the moving discontinuity surface (interface) appears. Complete description of
PT should include PT criteria, relation for jumps of all thermomechanical parameters across the
interface and equation of interface motion at each stage of PT. That is why not one of existing
approaches could be applied directly for materials with PT.

PTs in inelastic solids were considered in several contributions at small [5], [15-21] and large.
strain [20, 22, 23], but they were not considered from the aspect of instability.

The goal of this paper is to develop a general thermomechanical approach for the description
of the post-bifurcational behaviour in time-independent inelastic materials without and with PT
(some preliminary results were published in [23]). The aim of this Part is to substantiate the
governing extremum principles for the choice of the stable post-bifurcation process among a
number of possible (unstable) ones for materials without PT. The paper is based on a new
proposed thermomechanical postulate called the postulate of realizability. The main essence of
this postulate is as follows: if only some dissipative process (plastic flow, PT) can occur, it will
occur, i.e. the first fulfilment of the necessary energetic condition is sufficient for the beginning
of the dissipative process. The strict formulation of the postulate of realizability is given in
Section 2. Using this postulate, the relation between dissipative stress and the rate on inelastic
deformation gradient is derived along with corresponding extremum principles for rigid-plastic
and elastoplastic materials at small and finite strain. From these principles the associated flow
rule for classical material models foliows (without additional postulates, e.g. by Drucker,
I'yushin). The nonassociated flow rule follows for materials with kinematic constraints, when
the dissipation function depends on reactions of these constraints, as well as for material
models with structural changes and concave yield surface (Levitas [24-26]). In Section 3, the
extremum principles for a finite volume of rigid—plastic and elastoplastic materials is derived.
In Section 4, the governing extremum principles for description of the stable post-bifurcation
processes in finite elastoplasticity is derived using the postulate of realizability (materials with
nonassociated flow rule are included). The simple examples are considered. The relation
between the dissipative forces and the rates (fluxes) for time-dependent (viscous) media and
the corresponding extremum principles are derived in the Appendix using the postulate of
realizability. It shows that the above postulate can give some known and new relations for
arbitrary dissipative systems, i.e. it is a quite general one.

Let us apply the direct tensor notation: A-B and A:B mean the contraction and double
contraction of the tensors A and B; the transpose and inverse operations will be denoted by
superscripts f and —1, respectively; (A), = (A + A’)/2 and I is the unit tensor. The values at the
current configuration V, will be labelled with subscript ¢, and the values at the reference
configuration V; will be without a subscript. All notations are the same through both parts of
the paper.

2. THE POSTULATE OF REALIZABILITY FOR UNIFORMLY DEFORMED
VOLUME OF ELASTOPLASTIC MATERIALS

In this section a new postulate called the postulate of realizability will be introduced. Using
it, the relation between dissipative stress and the rate of the inclastic deformation gradient will
be derived as well as the corresponding extremum principles. In the simplest case, the
associative flow rule follows from this principle, but there are several ways of obtaining a
nonassociated flow rule.

2.1 Rigid—plastic material

Consider a uniformly deformed representative volume of the rigid-plastic material. Let F and
P be the deformation gradient and the first Piola—Kirchhoff nonsymmetric stress tensor with
respect to the reference configuration V,. The stress power P':F for small strain regimes reads
T:¢,, where T is the Cauchy stress tensor and g, is the plastic deformation, e, « L. For
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further generalization it is convenient to use instead of €, the plastic deformation gradient
F,=I[+¢,, and to introduce the dissipative stresses X = X(F,, F,,), using which we can obtain
the rate of dissipation D(F,, Fp):= X(F,, Fy): ¥, =0. For rigid-plastic materials with the free
energy function ¢ which 18 independent of F,, it follows from the second law of thermodynamics
that T = X, and for convenience of further generalization we will use X more often than T. By
definition, for time independent plastic materials X(Fp, F,) is a homogeneous function of
degree zero in F,, so X(Fp, F,) = X(w, F;), where k= Fp/ le( is the directing unit tensor-and
By = (F,:F)"? is  the modulus of F,. Consequently, B(F,, Fp) =X, F): F, =
[F,l X(xk, Fp):KzﬂFpl %(, F) is a homogeneous function of degree one in FP. To make a
geometrical interpretation convenient, we set up a correspondence between the symmetrical
second-rank tensors and the six-dimensional vectors in %° and will call it both a tensor and a
vector.

When varying all possible tensors k€ @ at fixed F,, the ends of vectors X(x, Fp),
corresponding to them, describe the yield surface (X, Fp) = 0 in X-space. For all X for which
¢(X, F,) <0, assume that Fp =0 (at Fp =0 vector k and function X(k,F,) are undetermined).
So we have X = X(Fp, F,) and the set of vectors X(0, F,), which are not related to any Fp.

It is evident that if for a given T =X at arbitrary fixed F, an inequality

X F* - @(F5.F,) <0, VF5=0 (2.1)
is valid, then Fp =90. Indeed, if Fpaé 0 then X= X(Fp, F,) for some Fp, and X:Fp =
X(i?p, Fp):Fp: @(Fp, F,) for these X and ﬁ‘p, which is in contradiction with inequality 2.1).
As X:F*— (k3 F,) = ¥ (T:ae* — D(x*, Fy)), then inequality (2.1) admits an equivalent
presentation X:ic* — D(w*, F,) <0, Vx* e . In a geometrical interpretation this means that
the sphere X:k*, plotted on vector X as on the diameter, is inside the surface 2(*, F,) (Fig.
1). Condition X:F, = (K., F,) could be met when sphere X:xk* and surface P(x*, F,) have the
common points, i.e. at their intersection or touching. Touching is the first possibility of the
beginning of plastic flow and we assume, that this possibility is realized. As main postulate we
suggest

The postulate of realizability: Let us start from the plastic equilibrium state FP =0 and vary
X-vector. If in the course of this variation X the condition

X:F,— 9(F, F,)=0 (22)

is fulfilled the first time for some F,#0, then plastic flow will occur with this Fp (if condition
(2.2) is not violated in the course of this plastic flow).

If, in the course of X-variation, condition (2.2) is satisfied for one or simultaneously for
several tensors Fp, then for arbitrary other F§ the inequality (2.1) should be held, as in the
opposite case for this Fy condition (2.2) had to be met before it was satisfied for F,. Taking

into account that for F, #0 X = X(Fp, F,), we obtain the extremum principle
X(E,F):F,— D(F, F)=0< X(F,, F,):F¥ — G(F},Fp). (2.3)

From principle (2.3) we get the normality rule
. 1)
X(F,,F,) = SE";) . (2.4)

In a geometrical interpretation, the postulate of realizability means that if in the course of
the variation of X the sphere X:k* touches the surface F(w*, F,), then F,#0 (if touching is
not violated in the course of this plastic flow). Vector F, may be directed to the touching point
only, because for any other direction k* we have X:x* — @(x*, F ) <0 (Fig. 1). Due to the fact
that from both inequalities o(X,F,) <0 and X:Fj— D(FF) <OVF*#0 it follows that
F,= 0., and from both conditions ¢(X, F,) =0 and X:l‘*‘p - @(Fp, F,) =0 for some F, it follows
that F,»0 (if these conditions are not violated in the course of plastic flow), they are

equivalent and determine the same yield surface. Let us invert the dependence X(F,,F,). If
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D (x*.F) D (k* F)

(a) (b)
Fig. 1. On the formulation of the postulate of realizability: (a) sphere X:x* is inside the surface
%(x*, F,), F,=0; (b) sphere X:x* touches surface 2(x*, F,), F,#0.
¢(X*, F,)=<0, then for this X* VF e R X F QZ(FP,F) 0, due to the fact that these
conditions are equivalent. But for X X( p) for some F we have X: F D(F,, F,) = 0.
Combining these conditions we obtain

X:F,— @(F,,F,)=0=X*F,—- 9F,F,) at ¢X, F,)=0=¢X*F), (2.5)
or
X:F,=X*:F, at o(X,F,)=0=¢X*F,), (2.6)
and the associated flow rule Fp=haqo/aX’. Here h is a scalar-valued function which is
determined from the consistency condition ¢ = 0. This condition is necessary and sufficient that
the equality (2.2) is not violated in the course of the plastic flow, as mentioned in the
realizability postulate.

The consistency condition: Consider this problem in more detail in term of %. According to
the postulate of the realizability, condition (2.2) has to be valid at time ¢ + A, i.c.

Xs:Fps = D(Fpa, Fpa) = 0, (2.7)
where subscript A means that the parameter is determined at ¢ + Az. But for all other F* #0
we have X, :F 5, QZ(FPA, F,4) <0, as in the opposite case for this F condition (2.7) had to be

met before it was satisfied for FPA Consequently, the counterpart of the extremum principle
(2.3) at ¢ + Az is valid:

XA @(FPA’ pA) < 0 XA 9(FPA’ FpA) (2‘8)
For infinitesimal At the rlght side of equation (2.8) reads
. .. . g . 0D ..
(X+X At):(Fp +F, Ar) — B(F,, Fp) - GF:F At ——=F, At

p
, oKy

. . . 99 .
=(X:F‘,—@(F‘,,Fp))+(X:Fp F’: )At

0D . ..

T :Fp> At + X:F(Ar)* = 0. (2.9)
P

We assume that all derivatives exist. Neglecting the term with (Ar)* and taking into account

equations (2.2) and (2.4) we obtain

(X a@(aF, P)) =0. (2.10)

+<X:Fp—
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This is the counterpart of the consistency condition ¢ =0. From equation (2.10) we could
obtain an expression for |F|

a%(x, F,) X:x

X:k—|F| k=0 or |[F|=——". (2.11)
P oF, P99k, FE)ZK
IF",

Transforming the left side of equation (2.8) we get

. . .. D(FX,F,) . .. D .
x:F;;A—@(F;';A,Fp)+(X;F;A——((;PE;L—L):F,,>A1<0=(x:Fp—gF:Fp>At. (2.12)
P P

Note, that in the last term of the inequality (2.12) Fp is not varied, because in equation (2.8)
F,,=F,+F,Ar and F, and F,, are determined uniquely.

Non-unique solution: Consider now the case when the extremum principle (2.3) admits more
than one Fp. In Fig. 2(a) this fact corresponds to two touching points of the curves X:x* and

*
D (x ,Fp)

I "

@ D (K*, Fp+ FplAr)
(b)

s} (F:A, Fp'" szAr)

(c)

Fig. 2. (a) The cases when the postulate of realizability admits two solutions Fpl and sz at time ¢; (b)
if the stable solution F, is realized, the postulate of realizability is satisfied at the time ¢ + A¢; (c) if the
unstable solution F,, is realized, the postulate of realizability is violated at the time ¢ + At.
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9(x*, F;). Let the solution Fpl be realized and at time ¢ + Ar we have the situation shown in
Fig. 2(b). It means that

Xy F% — DF, F, + Fy A) <0 VFE #0,Fiy # Fypa, (2.13)

i.c. the postulate of realizability is met at ¢ + Az. When the solution F,, is realized we assume
the situation shown in Fig. 2(c). It means that

3F%, for which X,:F# — D(Fi, F,+ Fy, At) >0, (2.14)

i.e. the postulate of realizability is violated. Indeed, condition (2.7) will be satisfied the first
time for one of these F;‘A and at At # 0 the jump from F;, to this F*, will occur. Consequently,
the solution F,;, is unstable and using the postulate of realizability we could choose a unique
stable solution among several possible ones.

Remark 1. Here and from now we will exclude the cases when condition (2.13) is met for
several solutions I"‘p,- at t + At or is not met for even one solution. For example, the postulate of
realizability could not choose the unique Fp for perfectly plastic media with the singular point
on the yield surface.

REMARK 2. We will assume that tensors F;‘A, for which the inequality (2.14) is valid, include the
real solution Fpl [Fig. 2(c)].

These assumptions limit the possible dependence & on Fp and F,, by cases where the unique
solution could be found.

In the general case let us designate all the possible solutions at time ¢, excluding the unique
one F,, by F%. Then for F,, =F, + F, At and for Fg, = F, + FY At

XA: ! ;3 - @(F:A, FPA) < 0 = XA:FpA - @(FPA, FPA) VF:A 7é 0, F;I;A ?é FPA’ (2.15)
3F%,  for which X, :F%, — I(F¥, Fo)>0. (2.16)

If the solution may be found for infinitesimal A¢, then principles (2.15) and (2.16) read

. . . AD(F*,, F.) .
X:F:A—Q(F:A,Fp)-k(X:F:A—$:Fp)m<0
p
.. D(F,F) . . . .
:<X:F,,——;FP;—&):FP>M VE% %0, Fi#F,, (217)
P

. . . . OG(F*,,F,) .
AF;, for which X:F}, — D(F},, F,)+ (X:F;‘;A —%%—Q:Ffm) At>0. (2.18)
P
We could consider F pa= Fg only, but designate if F§ [to differ them from the Fg in the last
term in equation (2.18)]. Then from the principles (2.17) and (2.18) it follows

. .. O9FS,F) . .. AD(F,F) .
X:F§—~—£—1’——£2:F <0=X:F ——L—Lpl: (2.19)
aFI P P aF! P
p p
. .. AB(FS,F) .
3F¥y for which X:F}?———(—M:Fg>0, (2.20)

oF",

because the first term in equations (2.17) and (2.18) is equal to zero for all the solutions Fr? .
The consideration of F;‘A#Fg is senseless, due to the fact that for this case the first term in
inequalities (2.17) and (2.18) is equal to a finite value and the second term is infinitesimal for
arbitrary possible F‘F’, and the result will be negative independently of Fg.
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Let us describe the procedure of the application of principle (2.19). If we have an infinite
number of solutions F} and the maximum in equation (2.19) is analytical, then

P2 . X
=— :F,= :F,. (2.21)
oFL oF;, " aF, °
If we have a finite number of solutions F0 F.,i=1,2,..., m, assume that one of them, e.g.

Fp,, satisfies principle (2.19). If we demgnate #H(x, F,) = a@(x, F,)/0F,, then from equation
(2.11)

: Xk
Fy| = ——7'—. (2.22)
P Kk, Fp) ik,
Substitution of FY = F = |Fp,| K;, [ #j and equation (2.22) in principle (2.19) results in
' %(KU ) K . .
X: <K,- ———p——’> <0, Vi#j (2.23)
K H(w;, Fp) i

If at any fixed j inequality (2.23) is met for all i 5, then Fp, is really a solution, if not—we have
to check the next j. The same procedure is valid when we use principle (2.15). Similar
procedure will be used in Section 4 for the derivation of the governing extremum principle for
description of the stable post-bifurcation processes in finite body and the above vivid
geometrical interpretation (Fig. 2) is useful. Despite the fact that equations (2.3)-(2.6) are
known, equations (2.8), (2.9)-(2.23) seem new to us.

2.2 Nonassociated flow rule

It would be a mistake to identify the realizability postulate with the associative flow rule: it is
true for given simple models only. For models of materials with structural changes (Levitas
[24-26]) the postulate of realizability will admit significant concavity of the yield function and
nonassociated flow rule. It is easy to show that results of its applications will coincide with the
ones obtained in [24-26], using the dissipation postulate.

Another possibility exists to obtain the nonassociated flow rule for systems with kinematic
constraints, when X depends on the reactions of these constraints. Let us have one scalar
constraint equation q(Fp) =0. Using the realizability postulate, we obtain principle (2.3) for
FfecqF*=0and F, e q(F,)=0, ie.

X(F,, F,):F, — %(F,, F,)=0>X(F,, F,):F* — 9(F* F,);

q(F}) =q(F,) =0, (2.24)
and
oD aq aq
X= ——= + = - .
aF; gaF, xd Xf’ X§ g aF;,, (2 25)

where ¢ is the Lagrange multiplier and X, is the constraint reaction. For time independent
materials, function q has to be homogeneous of degree one. From equatlon (2.25) X: F
a@/aF’ F +.§aq/aF’ F =9+ &q =%, where the property aq/aF‘ F,=g¢ (the same for
2) of the homogeneous functlons is used. Identity X,:F, =0 means that q(Fp) 0 is an ideal
constraint. We could assume the dependence of X, and 9 on X,—we get equations (2.24),
(2.25) without any changes:

X(F,, Fp, X,):F, — 9(F,, F,, X,) = 0> X(F,, F,, X,): F* — 9(F%,F,, X,) (2.26)
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at q(F;*,‘) :q(Fp) =(. We show from the simple example that this assumption could lead to
non-associativity, e.g. to the model

T=k+bo,, qg=¢&,+ay=0, (2.27)

where &, and o, are the deformation rate and the Cauchy stress components which are normal
to the shear plane, respectively, and a # b are scalars. Let us define & = (k + (b —a)o,)y. If we
include F, in F* the principle (2.26) results in 79* + o,€} — D(¥*, 0,) =0 at &} +ay*=0,
whence

@
ou=& =T +ga=k+bo, (228)
Y

In the given case o, is a constraint reaction. An associated flow rule with a yield surface (2.28)
is y =h, £, = —hb = —by; it does not coincide with the constraint (2.27).

Consequently, using the postulate of realizability, the constraint equation and the dissipative
function, dependent on the constraint reaction, we obtain a model with a non-associated flow
rule. The model (2.27) is very often used for the description of materials with internal friction,
fissured rock masses and granular materials. The aim of this section was to show that these
materials are included in the given description.

2.3 Elastoplastic materials at small strains

Let us assume € = €, + &5 ¢ = (€., €,); d=€ =¢. + &, where €, &, and g, are the total,
elastic and plastic strain tensors, respectively. As in Section 2.1 we will use F, =1+ g, instead
of e,. The rate of dissipation

P=T:d— py (T paee €. +(T paFL o

(the temperature is fixed in a paper), and due to the independence % on €. we have

o ( Y oy
T=p—; @=(T- .
P e, paF;, oF;,

):szx:l'«‘pzo; X=T-p (2.29)
We can repeat all the results which we obtain by the application of postulate of realizability and
which led to equations (2.1)-(2.28). But now X# T and the associated flow rule in X-space
does not lead (in the general case) to an associated flow rule in the T-space.

2.4 Rigid-plastic materials at finite strains

In this case the stress power and (if ¢ does not depend on F,) the rate of dissipation per unit
volume in some reference configuration V, are equal to P’:Fp. Designating X = P/, we can
repeat all the derivations and results (2.1)—(2.28) of the Sections 2.1 and 2.2, but it is necessary
to make some remarks related to the correct account for finite rotations.

Remark 1. Tensors X =P’ and Fp have nine components, but only six of them contribute to the
rate of dissipation and the other three are connected with rigid body rotations. Using the polar
decomposition F, = R, - U,, where R, ' = R}, and U}, = U, are the orthogonal rotation and the
right-stretch tensors respectively, we have P:F,=P":(R,-U,+R,-U,)=P R, R, -F,+

P-R,:U,=F,- P’.:RP ‘R, +(P'-R,),:U,=(P'-R.),:U,, as F,-P'=(p/p)T is a sym-

metric tensor and R, - R}, is a skew-symmetric one. It means that if in all equations of Section
2.1 the tensors X = (P - R), and F, = U, are used, all the results of this section will be valid. In
this case the principle of material frame indifference will be met in explicit form.

REMARK 2. It is possible to use the expressions X =P, X = X(Fp, F,), &= X(FP, F,): Fp, for the
non-symmetric tensors, assuming the fulfilment of the principle of material frame-indifference.
All the results (2.1)-(2.26) are valid with only additional limitations F,,# Rps - Ugs;
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F;,"A# R;‘A - Upas F o Rg - U,, i.e. we have to exclude the pure rotation without plastic strain,
for which the left sides of the inequalities, e.g. (2.8), are zero. The usage of nine degrees of
freedom is more convenient for the application of the approach considered above to a
non-uniformly deformed volume. A similar situation occurs in nonlinear elasticity, where
= y(F.) = ¢(U,) and one can get an equation for six stress components (e.g. the Cauchy
stress tensor T or the second Piola—Kirchhoff stress tensor) or for the nine components of the
stress tensor P.

2.5 Elastoplastic materials at finite strains

We will use the Lee [27] decomposition F = F, - F,,, due to the fact that it contains the “best”
measures of the elastic and plastic strains (see Levitas [25, 26, 28]). The tensor F, represents in
the given case the plastic deformation gradient for plastic strain without rotations (see
[25,26,28]). For example, for polycrystalline materials F,= U,, for monocrystals F, is the
deformation at a fixed crystal lattice. Consequently, the decomposition F =F, - F, is invariant
with respect to the rigid body rotation in the stress-free intermediate configuration. Assuming
¥ = y(F,, F,) we have h

. . . . T o .
G=P:F—pj=P:(F F,+F - F)—p—F.—p—F

p(lj (E p € P) paF’e PGF;) P

6[/1) . < a,l,> )
=|F,-P' — F.+{P-F, — :F,, 2.30
(p paF; paF;J p ( )
whence

oY R . Y

F .Pf: —_T . @:XF F F; X:Pr_Fe_ .

P S (Fp. Fy) paF;,

When F,=U,, then 9 =X(U,, U,):U,; X =(F, - P), —p 3y/dU,. All the results of Section
2.1 are valid for these conjugated pairs X and F, or X and U,,.

Remark. For rigid perfectly plastic and softening in the X-space materials some problems
arise concerning the implementation of the postulate of realizability (despite the fact that all
the relations obtained are correct). This lies in the fact that in the formulation of the postulate
of realizability we use a stress-controlled “experiment”, i.e. vary the stresses. For perfectly
plastic materials in stress-controlled experiments the modulus {Fpl is undetermined and, in a
particular case, could be equal to zero. The postulate of realizability excludes |Fp| = {0, but does
not exclude infinitesimal |Fp|.

For softening materials, the modulus of the stress vector decreases in the course of plastic
flow, but in this situation not only plastic flow, but unloading is also possible. In reality we
assume that plastic flow will occur and determine the corresponding stress variation.

To avoid the above problems let us give a “‘strain-controlled” formulation of the postulate of
realizability. For elastoplastic materials it has the same form as the ‘stress-controlled” one,
with only one distinction: instead “‘in the course of variation X it is necessary to use ““in the
course of variation F”, because in the elastic region X and F=F, - F, at F, = const connected
by the elasticity law.

3. EXTREMUM PRINCIPLES FOR A FINITE VOLUME OF ELASTOPLASTIC
MEDIA

In this section we derive some known extremum principles for a finite volume of rigid-plastic
and some new ones for elastoplastic materials using the postulate of realizability. They will
serve as a basis for the description of stable post-bifurcation behaviour in Section 4.
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3.1 Rigid-plastic materials

Consider a volume v of a rigid-plastic material with a boundary § in the reference
configuration V,. The energy balance principle results in equation

fp.vdszfvp'(F,F):qu=£@(F,F) dv, G.1)

where p is the external traction, v is the velocity field. We will omit subscript p in this section.
Assume that on part S, the stress vector p is prescribed and on part S, the velocity vector v=10
is given, § = 5, U S,; but a mixed formulation is also possible. Here and later we exclude rigid
body motions. Consequently conditions F =0 and v = 0, if they are valid for all points of the
volume v, are equivalent.

Consider an arbitrary velocity field v*# 0, satisfying the boundary condition on S, and
corresponding to it the velocity gradient field F* = (Vv*), #0. Evidently, if for a given
p-distribution on S, for all admissible velocity fields v*

fp-v* ds~f G(F*, F) dv <0, (3.2)
S v

then v=0 and F=0. The proof of this statement is very simple: if v#0 and F#0 then
equation (3.1) has to be met, which is in contradiction with inequality (3.2). Let us apply

The postulate of realizability: If, starting from the plastic equilibrium [equation (3.2) is valid]
in the course of variation of p the condition (3.1) is fulfilled the first time for some field v (and F),
then the plastic flow will occur with this v (if the condition (3.1) is not violated in the course of
the plastic flow).

If in the course of p-changes condition (3.1) is satisfied the first time for one or
simultaneously for several fields v, then for other v* inequality (3.2) should be held, as in the
opposite case for this v* condition (3.1) had to be met before it was satisfied for v. Thus, we get
the extremum principle

fp-vdS —j 9(F, F) dv =O>f p-v*dS—f D(F*, F) dv. (3.3)
N v s v

Here and later we will assume v* =0, v¥#v, F*s0, F* #F. Equation (3.3) is a well known
extremum principle for perfect plastic materials, but it is also valid for hardening or softening

materials. To fulfil condition (3.1) in the course of plastic flow at the next time instant ¢ + At the
stress vectors p have to be changed in accordance with equation

L Pa-vadS — f D(Fa, Fy) dv =0, (3.4)
where F, = F(r) + F(r) At. Otherwise, when

_LPA -vidS —f %(F%,Fy)dv <0 (3.5)
for all admissible fields v* and F* and for arbitrary infinitesmial At we obtain v, = 0 and FA =0

and at Ar— 0 the conditions v =0 and F = 0. Combining equations (3.4) and (3.5) we obtain at
time ¢ + At the same extremum principle as in equation (3.3) for time ¢

J Pa*Va ds — f @(F.‘A? FA) dv=0 >j Pa’ VK ds - f @(FK, FA) dv. (36)
s v s v

Note that F, is fixed in principle (3.6). Certainly, principle (3.3) as well as (3.6) could be
derived using equations (3.1) and (2.3), but it is important for future generalization to show
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the possibility of the application of the postulate of realizability for a finite volume of materials.
For infinitesimal Ar the right side of equation (3.6) reads

. AD(FEF) .
0>(Jp-ﬁdS—f@(F?",F)dv)Jr(fp-vﬁdS-f%—):FdQAt. (3.7)
S v S v

Here and later we will assume that all the derivatives used do exist. The term in the first
brackets of inequality (3.7) for v # v and v¥ # 0 is negative [according to equation (3.3)], but
we could not confirm the same for the term in the second brackets. As the first step let us find
all possible solutions of the principle (3.7) at Ar=0. In this case, the principle (3.7) coincides
with (3.3). If we label all solutions of this principle with superscript < then

F,F) . AB(F°, F) .
Jp~vd5—1%:de=O>J[')-vOdS—f—(*j—):de, (3.8)
S v aF’ S v aF

because [sp- v dS — [, G(F°, F) dv = 0 according to principle (3.3). Consideration of v} # v®
is senseless, because for the first term in inequality (3.7) equals a finite negative value and the
second term is infinitesimal and the result will be always negative. The solutions v* corresponds
to heterogeneous instantaneously perfect plastic materials, because F is fixed in principle (3.3).

In principle (3.8) the fields v* are determined at time ¢, but in principle (3.7) at time ¢ + At.
But if we use v =v*+ v* Arin the second term of the inequality (3.7) and neglect the terms
with (At)?, we obtain the same result. If we have a continuum of solutions v* and the maximum
in principle (3.8) is analytical, then using equation (2.21) we get

X . .
fp-ﬁvdS—f(—,:F>:6de=O. 3.9
S v dF

All extremum principles stated above are obtained at the primitive boundary condition on S,
v=0. To extend this principle for arbitrary v on §, do the following. Prescribe on the part S, of
the surface S instead of the vector p the velocity, obtained as a solution of principle (3.3)—the
solution in the volume v will be the same. Then we will use in principle (3.3) only those
reduced admissible fields v*, which meet this new boundary condition—principle (3.3) remains
valid. If we have a non-unique solution for v on S,, we could use each of them in principle
(3.3).

If we have kinematic constraints g;(F) = 0 at each point of the material, then, making use of
the realizability postulate, we obtain principle (3.3) with additional terms

L p-vds — f D(F,F, X)) dv - J £q;(F) dv

. . 9g;
=o>f p-vt ds—f@(F*, F,X,)dv —j £q(F*)dv, X, = g,.%. (3.10)
S v v

Principle (3.10) is valid for materials with the non-associated flow rule.

3.2 Elastoplastic materials at small strains

Equation (2.29) will be used. The global form of the second law of thermodynamics reads

fp-vds—fm du=f@(FP,Fp) dv =0, (3.11)
N v v

where is the given case p is the Cauchy stress vector and F, =1+ €,, £, <« L For all admissible
fields v* equation

Lp-v*dS—fpzl:*dv-fX:Fjdv=0 (3.12)
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where

. iy . aw ay
yr=- 8+ I :F, T=p——, @(T,F,)<0 and V-T=0,
€ P e

can be proved:

Lp'V*dS—J;pd}*dv=£(T:é*-—pd1*)dv

o . o\ - .
:L[(T—p£>:8§+<T—paF;):F;] dU:[’X-Fde.

[

As X:F* < G(F* F,) VF} # F,, F* +# 0 [see equation (2.3)], then

p>Lp
fp-v* ds—qu}* du—f G(F%,F,)dv <0 (3.13)
s v v
and
Jp-vdS—pr/dv—j@(FP,Fp)dv=O>J.p-v*dS~ij1*dv—j@(Fﬁ,Fp)dv. (3.14)

The extremum principle (3.14) can be obtained using the postulate of reallzablhty In the first
step, we can prove that if inequality (3.13) is valid for all admissible v*, F*, €* and F* which
are nonzero and nonequal to its real value, then field F =0, because for F #0 we have
equation (3.11). Then apply

The postulate of realizability: Let us assume that at prescribed boundary data p on S, and v
on 8, inequality (3.13) is valid and FP = 0. If in the course of boundary data variation condition
(3 11) is met the first time for some fields v# 0 and F # 0 then the plastic flow with these v and
F will occur (if condition (3.11) is not violated in the course of this plastic flow).

Note that we did not use any constitutive equations for F* and €¥; they satisfy only the
equation €* = ¢} + F;‘. The counterpart of principle (3.14) at time ¢ + At reads

[ psvsd = [ piees, Fou) do = [ D0y, Fys) v
Y v v

=0> f ps-vidS — J P (Eca, Fpn) du — J G(F%, Foy)dv, (3.15)
S v v

where

. . .
*(€upr Fpa) = ¥ N :F*,, T, =
¥ ( eA pA) s A BF'pA pA AT P

(,D(TA, FPA) =0 and \= TA =0.

d ll/(eeAs FpA)
ﬁeeA ’

3.3 Elastoplastic materials at finite strains

Equations of Section 2.5 will be used in this section. The second law of thermodynamics
results in equation (3.11), where

% =X(F,,F,):F,, X=P-F.— %’p
For all admissible fields v*
Jipw*dS—JpJ/*dv*J'X:F;',‘dv:O, (3.16)
where ’ ) )
g* = a;f’, Ff+K:F¥, F,- P—pg—g{ ¢(P,F,)=0 and V-P=0.



The postulate of realizability—I 933

Indeed, using the Gauss theorem
f p-v* ds—fpd.f* dv =I(P’:F*—p1/}*)dv
S v v

) Fe (p k)
= P - p ) FE + (P F, - Fx|d
”(FP P=rgp ) Fer (P U TVARLE bt

- j X:F dv. (3.17)

As X:F* < 9(F*, F,) VF: #F,, F¥ 0, then
fp-vds—fpd,du—j@(Fp,Fp)dv:o>fp-v*dS—fp./}*dv—fQ(F:,Fp)dv. (3.18)
s v v N v v

This principle could be obtained using the realizability postulate for the ﬁnjte volume v by
the same way as in Section 3.2, We also did not use any assumption about F3 and F{, only
F*=F%-F, +F,.-F}. The counterpart of the principle (3.18) at time ¢ + A¢ reads

f Pa*Va ds - f p{&(FeAs FpA) dv — J’ @(FPA’ FpA) dv
S v v

=0> [ pa-vids - [ pi(Fes Fp) v = [ 908, Fp) v (319)
) v v

where

al!’(FeAs FpA)

F,:P,=
pa P (9FeA

. ¢(Pa,Fpy)=0 and V-P,=0.

4. THE GOVERNING EXTREMUM PRINCIPLES FOR THE DESCRIPTION OF
THE STABLE POST-BIFURCATION PROCESS

Let the extremum principles (3.3), (3.6) or (3.18), (3.19) admit more than one solution at
time ¢; consequently they indicate possible bifurcation. We will label all solutions of these
principles with superscript 0—v°, F°, F9, FO. There is an important difference between v* and
v’ fields: v* are the kinematically admissible ones, which do not satisfy any principle, but all
fields v* satisfy the corresponding extremum principle. To choose one solution v among all
admissible v’ we will use the postulate of realizability.

4.1 Rigid-plastic materials

Assume that only one solution v and F, among all possible v°, F) meet the postulate of
realizability at ¢+ Ar. Figure 2 gives a vivid geometrical interpretation. It means that the
extremum principle (3.6)

pr-vA ds—f G(F,a, Fpa) dv :o>f Pa-vidS —f D(F%,, Foy) dv (4.1)
S v ) v

for Fpu =F, + F, Az, F5#F,, F*# 0 is valid. If other solutions v°, F and F® do not satisfy the
postulate of realizability, then at p2 = p(¢) + p° Ar; Fyy = F (1) + F) A,

Iv*, F* for which D-vadS + A VEAS — | @(F%, FUy) dv > 0. (4.2)
P 2 p S P P P

In the first step we obtain fields F,4, p, in principle (4.1) and F) and p} in principle (4.2) at
p p p P Y
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¢ + At. And then, at ¢ + At and the same boundary conditions, we consider all possible fields v
and F#,.

Let us consider what may happen from the physical point of view when the postulate of
realizability is violated. The solution v’ may be realized quasistatically (by definition). But if
some perturbations give field v # vk, for which inequality (4.2) is valid, then the power of the
external forces will exceed the dissipated power and a positive increment of the kinetic energy
will occur. Consequently, under perturbations the dynamical jump from v’ to some v* is
possible and the solutions v’ are unstable in this sense.

If the postulate of realizability is met, then according to principle (4.1), the jump from v, to
vi # v, will be accompanied by the negative increment of the kinetic energy. As the initial
value of the kinetic energy is zero (the process is a quasi-equilibrium one), it is impossible.
Thus, using the postulate of realizability we could choose the unique stable solution v among
the possible unstable v°. Making use of this procedure at each time instant, we can find the
stable post-bifurcation process.

It is reasonable to assume that inequality (4.2) is valid also for v% = v,, i.e. from all possible
solutions v’ we will have a jump to the unique stable one. Then equations (4.1) and (4.2) could
be used in the form

f pA'VAdS+f pg‘vAdS’_J@(FpA’FgA)dv>0
Sp A v
= J PaVa ds + J Pac‘Va ds — j @(FPA’ FPA) dv
S S, v
:J‘ pA'Vg dS +j p%'vA dS ‘J’ @(F(]_))Aa FBA) dv
Sp Sy v

> Pa: V?\ ds + Pa*Va ds — J‘ 9([“‘33&, FPA) dv. (4.3)

The first line in equation (4.3) shows that if we choose a solution (F24, pa), it will be unstable
under perturbations, which gives v,; the second and third lines in equation (4.3) show that the
solutions v, and v} are admissible; the fourth line of equation (4.3) reveals that if we choose a
unique solution v,, it will be stable under perturbations which gives v3.

If §=S§, or p,=0on S, then it follows from the principle (4.3)

f D(Fya, Fop) dv < f D(FO s, Fpy) dv,

j G(Fpa, Fy) dv <J D(FYs, FO,) do. (4.4)
If $=S§,0orvy=00nS,, then

f QZ(FPA’ FgA) dv < f @(FPA’ FPA) dU,

v

f D(F0s, Fy) dv < f D(F5, Fyy) du. (4.5)

Consider the question of the value of Az At At =0 and perhaps for positive Az, the extremum
principle (4.3) admits more than one solution v°. We have to increase Af up to a value which is
sufficient to choose the unique solution from the principle (4.3). The solution of the problem
(4.3) may depend on At, but the solution which can be realized the first time will be real
(according the postulate of realizability). If a unique solution cannot be found for infinitesimal
At, we have to consider finite Az
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We consider a fixed volume in the reference configuration, but consideration of time ¢ + At
and variation of v® includes the variation of the geometry of the current configuration.

If a stable unique solution can be found for infinitesimal At, then from principles (4.3) using
the similar procedure as in Section 3.1 we have

Y(F,
fp vdS+fp vdS - JB (aF’ p)Fod >0

DR, F.)
fpvdS+Jp vds - fﬂl’—LFd

a F
=J’p-v°d5+jp0.vdS—J’ 2Ky Fy), :F9 dv
S, . BF'

0
J prv dS+J’ p- JOJ(:F,’ Fp), 'F, dv. (4.6)

It is easy to obtain the counterparts of prmc1ples (4 4), (4 5).
Let us have a finite number of solutions v’ =v,;, i = 1,2, ..., m. Assume that one of them, v,
is the stable solution. Then
a%(F.;, F,)
0>fp v; dS — J—(—P’—E—F dv Vi#j. 4.7)

If at any fixed j inequality (4.7) is valid for all i #, then F,; is really a unique stable solution of
the problem; if not, we have to check the next j. The same procedure can be applied when we
use principle (4.3).

4.2 Elastoplastic materials at finite strains

Let the extremum principles (3.18) or (3.19) admit more than one solution. Using the same
approach based on the postulate of realizability as in Section 4.1, we obtain the generalizations
of the above principles for finding the unique stabie solution:

f PaVa ds - f pljl(Fezh FpA) dv - J @(FpAs FpA) dv
N v v

=0> [ pa - vEdS - [ i (Fes o) v = [ G B dv, (49)
s v v

avi, FX, F%, F, for which

[ povaas+ [ pavias [pirn o [ a@h Fo@>0, @9)
v Sp
where
aw 0 .. E)t/! 0 .
Pd/*(FeAngA):P(aF,)A: :A+P(8F,)A5F§A- (4-10)
e/ p

The counterpart of principle (4.3) looks

L Pa-vadS + L Pa-vadS — J pyr(Fls, Foa) dv — f @(Fpm Fpa)dv>0
:f Pa‘VvadS+ f PavadS — f pyr(Fes, Foa)dv — j @(FpAs Fpa) dv
S v v
J' Pac V dS +[ p " Vu ds — J’plp()(FeA, F()A) dv _J @(FPA’ F()A) dv

>J Ps- V& d5+j PavadS - fp(l/ (Fea, Fpy) dv — JQZ(FpA’ Fp,) du. (4.11)
SP

The counterparts of the principles (4.3), (4.5) can be obtained in a similar way.

ES 33:6-8
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RemaRk. All possible solutions v°, FO, ... at time ¢ can be obtained without the principles of
Section 3 using arbitrary known methods. This does not affect the applicability of the principles
of this section for the choice of a unique stable solution.

4.3 Alternative governing principle

In principle (4.3) for rigid-plastic materials, all the volume integrals represent the strain
power of the corresponding stress and strain rates, e.g. Py(F,a):F,a or Pg'(FgA):FgA, calculated
after some of the processes in time [¢, t + Ar]. In principle (3.15) for elastoplastic material for

K =0 we have

| s V348 = [ (Ty(ees, )it + T3(F s Fp): ) dv <0, (@12)
S v

i.e. two unequal stresses T, and T} are used. But F;’,‘A and T¥ are virtual fields only, in the
particular case, V - T% # 0, and the condition T, # T% is natural.

The same inequality takes place in principle (4.11). But in these principles we consider the
possibility of the realization not of virtual solutions, but of solutions which satisfy all the
equations of continuum mechanics. Therefore we can assume additional conditions: we will use
in the expression for ¢ the same tensor P, and corresponding to it F., as in the expression for
%. Consequently, instead of the first line of principle (4.11) we have

L Pa:vadS+ L pl-vadsS - f pU(Fen, FO)) dv — f D(Fpa, Foa) dv>0. (4.13)
But pi(Fes, FO) + D(Foa, Foy) = P4y(F,4, F5,): Fy, and from equation (4.13) we have
fs Pa-vadS +L pa-vadS — f P4y(Foa, FOy):Fy dv>0. (4.14)
Consequently, instead of the principle (4.11) we obtain

J‘ pA'vAdS+f pg‘VAdS_fP[A(FPA,FgA):FAdU>O
s, s, 5
:j PavadS +j Pa-vadS —JP'A(FPA,FPA):FAdv
Sp Sy v
— [ parwas+ | phevaas— [ PG Fo)FY v
S Sy v

> f pavads + f Pa-vadS — f PU(F04, Fpoy): FQ dv, (4.15)
Sp S, v

where a similar assumption was used for the last line of the principle (4.11). Principle (4.15) is
valid for rigid and elastoplastic materials at small and finite strains. It is obtained from the
postulate of realizability {from principle (4.11)] under an additional assumption about the
possibility of jumps of F., and F2, tensors.

Remember that in the first line of principle (4.15) we realize in time [, t + At] an unstable
solution (the symbols p} and Fj, show this), and then check the possibility of the realization of
stable solutions v,, FA, FPA, .... As the power of the external forces exceeds the power of the
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internal stresses, this difference can be realized as kinetic energy, when we have a jump from an
unstable solution to a stable one.

In the last line of the principle (4.15) we realize in time [, ¢ + Af] a stable solution (the
symbols p, and F,, show this), and then check the possibility of the realization of the unstable
solutions v%, Fg, F‘;A, .... As the power of the internal stresses exceeds the power of the
external forces, we can have a negative increment of kinetic energy. This is impossible, because
the initial value of the kinetic energy for quasi-static processes is zero.

If § =S5, or p,=0on S,, then it follows from the principle (4.15)

j Py(Foa, Fou):Fadv < f PY(F%,, Foa):FQ dv, (4.16)

f PL(Fps, Fy):Fadv < f PY(FO,, FO4):F2 dv. (4.17)
Let us define on S, stress vector distributions pa(r,) and pa(r.) with the formulas

j PO+ va dS = f P, F,y): FY do. (4.18)
Sv v

f Pa-vadS= f PL(F,a, F9u):Fa dv. (4.19)
S v
Then using the principles (4.15)-(4.17) we obtain

J’PA'VAdS<J l_)g‘VAdS; fﬁA'vAdS<J pg'vAdS. (420)
S Sy Sy Sy

If on surface S, the velocity vector v, = |v,|m does not depend on r,, then it follows from
equation (4.20) the relations between the corresponding force components in direction m

pr-mdS<f p2 - mds; ff)A-mdS<f p% - mds. (4.21)
S, S S s,

Let us comment on equations (4.18)~(4.21). Let us realize the stable solution F at the time ¢
and the unstable one F‘& at the time ¢ + At, respectively. We could calculate the stress power at
the time t+ Az and the stress vector p} distribution for the realization of the solution F°
[equation (4.18)]. Then according to equation (4.20) the power of pr—distribution exceeds the
power of stress vector p,—distribution which corresponds to the stable solution. Equation
(4.20) gives the corresponding relation for forces. The similar situation occurs for equations
(4.19), (4.20), and (4.21),. The difference is that at the time ¢ we realize the unstable solution
F° and compare the stress power and the force, which are necessary for realization at the time
t + At the stable and the unstable solutions.

Figure 3 gives interpretation of equation (4.21) in a one-dimensional case. In Fig. 3(a) at the
time 7 stable 1 or unstable 2 solutions are realized. In Fig. 3(b) at the time ¢ the stable solution
is realized and for the realization of the unstable solution at the time ¢ + At the higher force is
required. In Fig. 3(c) at the time ¢ the unstable solution is realized and for the realization of the
stable solution at the time ¢ + At the smaller force is needed.

From the principles (4.21) do not strictly follows pi\ >p, [as shown in line 2 in Fig. 3(a)],
because pi #p3 and py#p,. It is possible to imagine that for very complex strain history
dependence of the system the inequality p, > pY is possible. This inequality does not mean that
difference p, — pA could produce positive increment of the kinetic energy at the realization of
the unstable solution. After realization at the time ¢ of the stable solution we need for the
realization of the unstable one at the time ¢ + At the force pls, which is greater than p, due to
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Fig. 3. Interpretation of equation (4.21) in a one-dimensional case.

specific history dependence. If such a specific history dependence does not exist, then p{ > p,,
and we obtain for determination of the stable solution the principle of minima of the second
order work, which was suggested in [13].

Let us consider stress controlled loading, S =S, or v4=0 on §,. We could not derive the
principles similar to (4.16), (4.17), because after realization the same (stable or unstable)
solutions at the time ¢ we have different velocity field on S, in corresponding line of equation
(4.15). But we could define on S, the stress vector distributions pa(r.) and Ppa(r.) using the
formulas

f pa-vids = f PY(F,, Foy): FQ dv. (4.22)

f Pa-vadS= f PL(F,s, Fis):Fadv. (4.23)
Sp v

Then using the first and the fourth lines in principle (4.15) we obtain

J’ Pa“ Va dS>f iiA'vA dS; PA VA dS<f pa - gdS, (4.24)
Sp Sp
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or at uniformly distributed pa, ps and p2 on S,
pPa-m>p, - m; pa - m° <jpi - m’; (4.25)
where

:ﬁ=f mds, m°=f m’ds,  vi=|vim’
s, S,

Let us realize at the time  the stable solution F. If we calculate stress vector pa-distribution
and its power, which are necessary for the realization of the unstable solution at the time ¢ + At
[equation (4.22)], then this power will exceed the power of the prescribed stress vector on the
same velocity field (4.24),. Similar comments are valid for equations (4.23), (4.24), and (4.25).
The interpretation of (4.25) in a one-dimensional case is given in Fig. 4.

It is necessary to notice the following. We have prescribed stresses on §, and different
displacements and actual configurations after the realization of the stable and unstable
solutions [Fig. 4(a)]. Despite of the above in the principles (4.24), (4.25) we fixed configuration
and velocity fields on S, and compare real and some calculated stress vectors [Figs 4(b), (<)].

REMARK 1. The situation is possible when for stable v, and one of the unstable solutions v3 we

P 4 () P 4 (b) e P

P 4 (¢)

Fig. 4. Interpretation of equation (4.25) in a one-dimensional case.
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cannot get two inequalities in principle (4.15), but one inequality and one equality (examples
see below). For instance, in the first line of equations (4.15) we have an inequality, but in the
last line we have an equality or vice versa. But even one inequality is enough to choose the
unique stable solution. The equality in the last line of the principle (4.15) means, that the
solutions v, and v} are equiprobable. But even in this case if the solution v3 is realized, then
inequality in the first line of the principle (4.15) means, that the jump from v to v, will take
place. The algorithm of the application of principle (4.15) is the following one:

(1) Assume that one of the solutions v; is stable. Let us realize it and consider the last

inequality in the principle (4.15) Vi #j:

N(l, ]) = J‘ PA; * VA,- dS + f ij * VA]' dS - f f&,’(FpA,—, Fij):FAi dv < 0 (426)
Sp Se v .

(i) If N(i, j)<O Vi, then v, is a stable solution.

(iii) If for some i = k N(k, j)> 0, then we have to realize v, in time [t, t + At] (instead of v)),
consider inequality N(i, k) <0Vi+# k and repeat items (ii) and (iii).

(iv) If for some i=m N(m,j)=0, then we have to realize the field v,, in time [t, t + At]
(instead of v;) and consider N(j, m). If N(j, m)<0, then v,, is a stable solution, if
N(j, m)>0, then v, is stable.

REMARK 2. If we have kinematic constraints equations, they can be taken into account using
Lagrange multipliers. But now we compare real (not only kinematically admissible) solutions v*
and each of them has to meet the constraints. Consequently, principle (4.15) is valid for
materials with kinematic constraints and non-associated flow rule.

5. EXAMPLES

5.1 Necking

Consider a circular bar with initial cross-sectional area S and the length 2/. The displacement
or the load are prescribed at the ends of the bar (Fig. 5). The deformation gradient and the
stresses are homogeneous. The onset of necking will be considered as homogeneous strain in
the region v, with length 2b and the absence of a strain increment in the volume wv,,
2a =21 —2b. Let us show how the principles suggested in this paper work in the simplest case.

Let the velocity v be prescribed at the ends of the bar. We will consider only axial
components of the velocity vector and the deformation gradient, because other ones do not
produce the mechanical work at our model. Assume that at time ¢ and at the deformation
gradient F the velocity field in volume v, corresponding to necking is realized, F5 = v/b, F4=0.
Consider its stability under a “homogenizing” velocity field with %, = v,/a, F5, = 0. This field

/ Ua\
P - Y
pd
”“/i— 2b—L
9

Fig. 5. Necking problem.
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makes the strains in the bar homogeneous and represents the homogeneous straining in the
region u,. In this case

pA=PZ:P<F+%At>; prvA dS=P<F+%At)vAS; (5.1)
S
f PA(FS, F)FS dv = f PLF4 dv = P(F) Va—“as = P(F)vaS (5.2)
and
f pavadsS — f PY(FY, FO)F dv = (P(F + % Az) - P(F))VAS. (5.3)
S v

If P(F +v At/b)<P(F), i.e. P(F) is a monotonic decreasing function of F, then according to
principle (4.15) the assumption about the stability of the solution with necking is valid. If
P(F + v At/b) > P(F), than according to principle (4.15) this solution is unstable, because for a
“homogenizing”” velocity field we can get a positive increment of the kinetic energy
AK =(P(F +v At/b) — P(F))vaS At. The same results can be obtained in the load-controlled
experiment.

Assume now that at time r the homogeneous strain and stress fields in a volume v are
realized, F = v/I. Consider its stability under the possible necking fields: £4 =v,/b, F$=0. In
this case

pPl=P= P(F + ;m); f pavads = P(F + ;m)ms; (5.4)
s
J Py(Ey, FO)F, dv = f P(F + ;At)F‘g dv = P(F + ; At)vAS (5.5)
5 u,
and
JngA ds — J PA(FA, F%)FA dv =0. (56)
S v

Equation (5.6) means that under homogeneous strain and stress in the volume v in time
[t, t + At] we cannot choose a unique solution independently of P(F) and F. It is related to the
fact that the necking represents a homogeneous strain field in the volume v, and at time ¢ + At
(while we do not take into account the geometry variations) gives the same total stress power
as the homogeneous solution in the volume v.

As was described in Section 4.4, if two solutions meet principle (4.15), then it is necessary to
change their place: to assume that in [r, # + At] the necking solution is realized and to check the
“homogenizing™ field. This was done above.

5.2 Simple shear

Consider a slab of elastoplastic material with volume v under simple shear with prescribed
velocity v or shear stress 7 on one edge. Let us analyse the possibility of a shear band formation
with width b (volume v,) at strain y [Fig. 6(a)].

Assume that the homogeneous strain field in a volume v in the interval [z, t + Ar] is realized,
Fy=1+vy+vAt/l. Consider its stability under a possible shear band formation, F4 =v,/b,
F4=0, where v,=v—v,. In this case, the power of the external stresses is equal to
7(y + v At/l)v, and the power of the internal stresses is equal to 7(y + v At/l)v, and we cannot
choose a unique solution,

Assume further that at strain y the strain rate field F® =v/b, F*=0 is realized, which
describes the shear band formation. Consider its stability under ‘“homogenizing” fields
Fi=v,/a, F{=0. In this case the power of the external stresses is equal to T(y + v At/Dva,
the power of the internal stresses is equal to 7(y)vs, and their difference is N =[z(y +
VAt/b) ~ 7(y)]va.
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Fig. 6. Simple shearing: (a) formation of the shear band; (b) formation of a second shear band inside
the first one.

O —

If 7(7y) is a monotonic decreasing function of the given vy, then N <0 and the shear band is
stable, otherwise the homogeneous solution is stable.

Let 7('y) be a monotonic decreasing function and a shear band with width b was formed.
Consider the possible formation of a second shear band with width b, <b inside the first one
[Fig. 6(b)]. If we consider the first shear band as a whole volume v in the previous example, we
obtain the same problem. Consequently, if the second band is formed in time [t, r + At], then
N =[t(y +vAt/b;) — ©(¥)]va <0, and the decreasing width of the shear band is in correspon-
dence with principle (4.15). If we have a size-limiter, the band width with the minimum possible
but finite b will be formed. Otherwise b =0 and localization on the surface will occur. If 7(7y)
reach 0 at some finite vy, then at 7 = 7, a finite increment Ay will lead to localization on the
surface, infinite strain on this surface and 7 = 0. Consequently, at 7= T.,, the fracture will
occur (Fig. 7). The same situation will be encountered in shear band formation under tension
(Fig. 7).

Let us consider the following shear band width limiter at the simple shearing. Let the slab
shown in Fig. 6 is the representative volume of polycrystalline materials and we decrease its
height /. The assumed dependence between the overall shear stress 7 and H = I/d at some fixed

%

]
v, €

Fig. 7. Diagram of simple shearing and tension: 1—homogeneous strain; 2—strain localization with
shear band size limiter; 3—strain localization with b = 0.
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1 H
Fig. 8. Dependence of the overall shear stress on the dimensionless height of the representative
volume.

v is shown in Fig. 8, where d is the grain size. At H > H* shear stress 7 does not depend on H
by definition of the concept of the representative volume. At H <H* the volume under
consideration is not representative and 7 depends on orientations of specific grains. The
probability of finding the grains with the profitable orientations with respect to shear direction
is decreased with decreasing of H, so consequently 7 should increase. If we have dependence
7(y, H), then from the principle (4.15) it follows that after the pick point the shear band
appears with the width b = H*d. Both H* and d depend on v, the whole strain history and the
texture.

6. CONCLUSIONS

The main result of the second part of this paper is the derivation of the governing extremum
principle for the description of stable post-bifurcation behaviour in elastoplastic media. The
media with nonassociated flow rule and finite strain regimes are included in the consideration.
To derive this principle, we have introduced a new thermomechanical postulate, called the
postulate of realizability. The main idea of this postulate is very simple: if only some dissipative
process can occur (from the point of view of thermodynamics), it will occur, i.e. the first
fulfilment of the necessary energetic condition is sufficient for the beginning of the dissipative
process. The postulate of realizability was applied to obtain some known results (associated
flow rule in classical plasticity, relations between dissipative forces and the rates for
time-dependent behaviour, some extremum principles for a finite volume of perfect rigid-plastic
material), as well as some new ones (nonassociated flow rules and more complex relations
between dissipative forces and the rates for more complicated models, some extremum
principles for a finite volume of elastoplastic material). This means that the postulate of
realizability is quite a powerful and flexible tool in the theory of dissipative processes and the
derived extremum principles can be considered as well gounded. Indeed, the concept of
stability following from these principles has a clear physical meaning. If, under a prescribed
increment of boundary data in time [¢, £ + Az], the stable solution for the velocity field is
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realized, then at time ¢ + At the power of the external stresses is less than the power of the
internal stresses for all other possible solutions (velocity fields), i.e. they cannot be realized
from the energetic point of view. If in the time interval [¢, ¢ + At] the unstable solution is
realized, then at time ¢ + At the power of the external stresses exceeds the power of the internal
stresses for the velocity field, corresponding to the stable solution, i.e. the jump from the
unstable solution to the stable one is dynamically (with a positive increment of the kinetic
energy) possible.
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APPENDIX

Application of the Postulate of Realizability to Systems with an Arbitrary Dissipation Function

Our consideration was limited to systems with homogeneous dissipation functions of degree one, i.e. limited to
time-independent elastoplastic materials. We will extend the approach considered above to time-dependent systems
(including viscoplasticity and creep), i.e. to arbitrary dissipation functions Z. Let @(q,...)=X(q,...)*q be a
dissipation function, X and § are the work-conjugated dissipative forces and rates (fluxes), respectively. If q=F,, the
expression for X is given in Section 2.

Assume that dissipative function Z(X,...):=X-q(X,...) exists. Let us fix an arbitrary X and consequently
@y(X,...)=4M=9(q,...), where 4 is some scalar, i.e. we consider not the equilibrium and its violation, but motion
with some fixed value of &. Let us prove the following statement: if

Vie Z@) =M X-§ - 2(q*) <0, (A1)
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D(Q¥)=M

(a) (b)
Fig. Al. Application of the postulate of realizability to systems with an arbitrary dissipation function:
(a) motion with & = . is impossible; (b) motion with & = M occurs.

then for this X a motion with & =4 is impossible. The motion with @ =.# is possible only for X*=X(§*), if
q* € B(q*) = M. But for them X(q*) - ¢* — Z(¢*) =0 by definition Z(§*), and this is in contradiction with inequality
X - ¢* — 2(¢*) < 0. Geometrically, this means that the surface @(q*)= 4 has no common points with the plane
X - ¢* = M (Fig. Al). A motion with @ = 4 is possible when the surface @(q*)= 4 and the plane X - §* = .4 have
common points, i.e. at their intersection or touching. Let us apply

The postulate of realizability: Ler us consider vector X, which met the inequality (Al). If, in the course of X-variation,
the condition

X-q-2(@=0 (A2)

is met the first time for some q € D(q) = M, then a motion with % = M occurs.
This postulate means that a motion with % = # occurs when the surface 2(q*) = # and the plane X - ¢* = 4 touch
each other at some point q, i.e. the X and q correspond to each other (Fig. Al). For the touching point equation (A2)

is valid, for all other points with @* e @(q*) = 4, inequality (A1). Consequently, we get the following extremum
principle

X-@*-2(§)<0=X-q4-9(q at 2(q*)= 29, (A3)
or
X-q<X-q at @(q*)=2(9). (Ad)
whence
7 -1
x:/\ﬁ; Az@(ﬁ-') (A5)
aq Jq

where A is the Lagrange multiplier, which is determined from the condition X - 4 = 2(q). Equations (A4) and (AS) are
Ziegler’s [29] extremum principle and relation, respectively. Consequently, using the postulate of realizability, we can
prove the Ziegler relationship, but we ca.. also obtain more general expressions, e.g. for media with structural changes
(Levitas [20, 24-26]).



