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1. Introduction

Martensitic phase transformations (PT) are usually considered as diffusionless, i.e. solute
atoms are frozen into the crystal lattice and do not redistribute during the transformation.
If the temperature is high enough to allow diffusion during the PT time, redistribution
of solute atoms can change the driving force, accelerate or suppress transformation of the
crystal lattice or make it possible at all. Bainitic transformation and transformation from
austenite to ferrite in steel belong to such diffusional-displacive PT. We do not know any
continuum mechanical treatment of diffusional-displacive PT. In the physical literature [1-5]
such transformations are studied as an interface propagation problem without consideration
of stress and strain fields and continuum thermodynamics. The aim of this paper is an
attempt to develop general continuum thermodynamic and kinetic approaches for diffusional-
displacive PT. This approach will be based on the extension of a thermodynamic theory of
martensitic PT and other structural changes in inelastic materials developed during the last
few years [6-10).

2. General thermodynamic and kinetic theory

Thermodynamic relationships. Consider a volume V' of multiphase material with a
boundary S and given boundary conditions. Assume that in some volume V,, with a fixed
boundary X, relative to the material’s points, due to diffusional-displacive PT during the
time t, the new nucleus of phase 2 appeared, i.e. some material mass m, undergoes the
PT. We will concentrate on the case with a sharp interface and local constitutive equations
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describing the deformation in each material point.

We will consider the simplest case of diffusion of one solute component with the mass
fraction ¢ in a solvent material. We assume an additive decomposition of a total strain
tensor € into elastic &, plastic £,, thermal & and transformational €, parts and misfit
strain g, i.e.

€ =€ +€& +&+ & +E. (1)

The transformation strain &; transforms a crystal lattice of the parent phase into a crystal
lattice of the product phase. The misfit strain &, characterizes stress free deformation
of a crystal lattice due to solute atoms. The diffusional-displacive PT will be considered
as a process of variation of the transformation strain and some or all thermomechanical
properties from the initial to final value in an infinitesimal or finite transforming volume
which is accompanied by a change in the fraction of solute atoms. Transformation process
cannot be stopped at an intermediate state in any transforming point. The thermodynamic
equilibrium for an intermediate value of the transformation strain or material properties is
impossible.

We introduce the internal dimensionless time (order parameter) £ (0 <£<1),e.g. by
formula ¢ := |L56;—‘2|T , PT starts at £ = 0 and finishes at £ = 1; when £ varies between
0 and 1, the transformation strain grows from &; to &g, and all the thermodynamic
properties of phase 1 change into the properties of phase 2. Note that the indices 1 and 2
denote the values before (for phase 1) and after (for phase 2) PT.

The misfit strain &, is assumed to be proportional to the change in the solute fraction
during the diffusion, i.e. &, = b(§)(c — ¢1), b(0) = by, b(1) = b

We will use an energy balance equation (the first law of thermodynamics) and the en-
tropy balance equation combined with the Clausius-Duhem inequality (the second law of
thermodynamics) for the whole volume V. As outside the nucleus V,, no PT occur and
local constitutive equations are valid, both these equations can be rewritten for an arbitrary
volume and for each material point without PT. Then the integral form of the first and the
second laws of thermodynamics have to be used for the nucleus V,, only and will be accepted
in the following form

. d
0:6 —pU—divh+ pr)dV, - — | TdXZ, =0, (2)
I yon- 4
s::i/psdv —/pfdv +/ﬂ-ndz —/ﬁ-ndz >0. 3)
13 dtvn n Vn 0 n 2”0 n ):" 0 n

Here & is the stress tensors, p is the mass density, U is the specific (per unit mass)
internal energy, h the heat flux, r is the specific volumetric heat supply, ¢ is the time,
' is the surface energy per unit area after the PT, S; is the total entropy production, s
is the specific entropy, 6 > 0 is the temperature n is the unit normal to ¥,, p is the
chemical potential of the solute component and j is the flux of solute atoms which satisfies
the balance equation

pc+divy = 0. (4)

The energy balance equation (2) cannot be written for each material point due to the surface
energy term, but the entropy inequality is valid for each point:

. .
Sizzpé-p£-+§divh——Z;—-h—dh(%’)20, (5)
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where S; is the local entropy production and transformation

b1 1 _ 1 1
divy = 7 divh+h-V (5) = Sdivh— - h-V0 6)
was used. Using the balance Eq.(4) we transform
v (PIY = Paivit v (B) = — 2t v (©
d1v(0)_od1v1+JV(9)— 0c+]V<0). (7)

Excluding the expression divh — pr from Eq.(5) and substituting it in Eq.(2) we receive
after evident transformations an inequality

_ ~ d
D.:/pOS,;an:/deVn—a—t/FdE,,20, ®)
with pD = o:6 — pU + pbs — Va-h+puc’—0j-v (%) =
= a:é‘—pd}—psé—-g-thpué—Oj-V (%) 9)

for the local rate of dissipation per unit volume and D for the total dissipation rate; the
specific Helmholtz free energy ¢ = U — 6 s is introduced.

Assume that ¢ = ¥ (e., 0, &, g, &, ¢, &), where g is a set of internal variables, e.g.
internal stress tensor (back stress), dislocations or point defect density. Substituting ¥ and
decomposition (1) in Eq.(9) we obtain

D= (la— 6'/’) (€, — (s+a—w—%;%)é+x,:¢,+xg:g+xh.h+xgé+

p  Oe 00 o6
g.0Etete) OV, b, (H)
(u+p. e 6c>c p]V 7) (10)
_1, 9y, __9v. __1V¥9
where X,,—pa 3¢, X, = ag X, = 578 (11)
1 O(er+eg+er) oY Oe oY
d Xe=-gi——"0T% 7. 2% % 12
an €= 57 ER de, 96 € (12)

are the dissipative forces conjugated to dissipative rates &,, g, A and € respectively. The

assumption that the global rate of dissipation in Eq.(8) is independent of &, , 6 and ¢ (which
supposes that ¢ does not change due to chemical reaction) results in the hyperelasticity law,
expressions for the entropy and the chemical potential

o0y . g = 2,980 0¥
oe.’ IR T T

o=0p (13)

by = _gza(ec+£¢+£o) + Q'l_/{ (14)
) dc dc
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For the global dissipation rate we have

D = /p(x,,:e,,+xg:g+xh-h+xfé— %j-V(%)) dv, -t >0. (15)
Va

The simplest assumption that each rate &,, g, h and j depends locally on the conjugate
force at the same material point only leads to evolution equations

. . . 6
b= 1,06,85 9=1,06,0; h=nn0; i=5(29(4)). 0o
as well as to inequalities

X,:8, >0, X,:9 >0, Xu-h >0, —%j-v(g—) >0. (17)

The kinetic equation j = f, QV K ) between the dissipative rate j and force jo—V L
J I \p 0 p ]

represents the generalized Fick’s law and its substitution in balance Eq.(4) results in the dif-

fusion equation
pé = —div (fj (% v (%))) . (18)

Description of a phase transition. The assumption that PT is thermodynamically
independent of all other thermodynamic processes, i.e. £ is independent of X,, X, and
X}, leads to the inequality

D; :=/pX§éd%—f‘20. (19)
\

The above assumptions do not exclude a mutual influence of all thermomechanical processes

through the stress and temperature fields. At T # 0 inequality (19) cannot be localized;
consequently PT have to be described by nonlocal equations.

Now let us show that even at T' = 0 we cannot prescribe for £ a constitutive equdtion
of type £ = fe (X, €) or any other constitutive equation. We assume that the condition
£ = 0 can be satisfied with some external parameters, for example at X = 0. This is one
scalar equation and it is always possible for each £ and 6 (&) to choose six components of
stress tensor o (£, 8 (£)) to satisfy it, i.e. the phase equilibrium is possible for arbitrary £.
According to our definition of PT, the phase equilibrium is impossible at 0 < £ < 1; only
at £ = 0 and £ = 1 do we have the stable equilibrium. At 0 < £ < 1 a nonequilibrium
process takes place, which requires energy and stress fluctuations.

Such a contradiction in the application of continuum thermodynamics was revealed for
displacive PT in [7]. In this case a standard thermodynamic approach cannot be applied. It
is necessary to average the thermodynamic parameters, related to PT, over the duration of
PT ¢, in order to filter off these fluctuations. We introduce the averaged dissipation rate
due to PT

Dy = li’p dt = l ( i 3 te" ) _ Xy _ .
e= o[ Dedt = ¢ //ngfdthn—/th = = X,
0 0 0

Vn
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1
_ . 1
where X, ._V/b/ngdﬁdV;, -Aaf, =g (20)

are the averaged dissipative force and rate, AT := T, - T,.
For the driving force for PT using Eq.(12) we obtain

Xo= [ [o(2 - 22 caeavis [ [o(2: 26100 09 sy, ap. o
v p dg) UM p- B¢ 0¢ " '
Va € Vo O

From Egs.(9) and (10) it follows

Xeé = D~ X6 — Xg:9 — Xn-h+p105-V (%) =
ploé— Y — 50— Xpie,— Xgig + pé; (22)

I

Vn 1

€2 8, ts
X, = / (‘/a:ds —pAy— /psdo - /p(x,,:é,, + X g2 + pe) dt) avV,— AT,  (23)
6 0
i.e. X, is the dissipation increment due to PT only which is the difference between the total
dissipation increment and the dissipation increment due to other dissipative processes (plastic
flow, variation of internal variables and so on). Taking into account the decoinposition (1)
and Eq.(11); for X, we obtain

E; 02

X, = /(/U:d(£e+59 tEte)—p( ~¢1)—/P3d0+
Vo V& 6
gz ep2 c2
o oy P
9 Ep1 a

Kinetics. As is usual in irreversible thermodynamics, the kinetic equation between force
and rate x = f(X,,..) or X, = K, (X, ...) has to be given. Functions f and K, can
depend on #, €&,, g, V,, .. and should be determined experimentally. Sometimes it

K 1 - - ]
is convenient to present K := — = — [ pK dV, , where K isa locally determined
_ mn mn Vn
function. Then introducing X := %: we can express the kinetic equation in the form x =

f (X' My, ) or X = K(x, ...). For homogeneously distributed K we have K = K .
As an example of we consider size-dependent Arrhenius-type kinetic equation which in-
cludes both thermal activation and athermal threshold K?:

X - K~ E,))m, _
( ) E at OSX—KOSE,,,(25)
ROe, n

=i = t,,exp(—

e K

X =0 at X-K'<o. (26)
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Here E, is the activation energy per unit massat X — K® = 0, R = 8.314 J/(K mol)
is the gas constant, t, is some characteristic time, N = 6.02-10% is Avogadro’s number
(number of atoms in 1 mol). In Eq.(25) the actual activation energy includes difference
K° — X to take into account the effect of the driving force, dissipative threshold and surface
energy on kinetics. The lower bound for X — K° in Eq.(25); represents the PT criterion;
the upper bound is due to the requirement of positiveness of an actual activation energy,
since otherwise the process does not need thermal activation and Eq.(25) loses its sense. By
introducing the effective temperature 8,; we take into account the fact that temperature
can vary significantly during the PT. As the simplest variant we define effective temperature
as temperature averaged over the transformation process and transforming volume. The
introduction in Eq.(25) of the number n of atoms in volume V; which undergo thermal
fluctuations allows us to consider transformation in a macroscopic volume in which multiple
thermal fluctuations occur.

Extremum principle. The kinetic Eq.(25) is only one scalar equation which is not
sufficient for the determination of all unknown parameters, e.g. position, shape, volume and
orientation of nucleus and so on, which we will designate as b. All functions in Eq.(25)
depend on b. To determine all actual parameters b among all admissible parameters b* let
us use the postulate of realizability [6-8].-We formulate the postulate of realizability in the
following form: _

as soon as PT can occur (i.e. when the PT criterion X > KDY is satisfied), it will occur
during the time determined by equation (25) for each b".

ts

.

b b b

Fig. 1. Scheme for derivation of the principle of minimum of transformation time

Consequently, for each thermodynamically admissible parameter b* PT can occur during
the corresponding time, see Fig. 1. We are allowed to do nothing and simply wait. Then
we will observe the PT which appears in the shortest time, i.e. we arrive at the principle of
minimum of transformation time

(X (") - K°(6") — E. (b)) m
RO,

*
n

ts = t, exp — — min . (27)

S|z

Some specifications.  Assume the validity of the following decomposition for the free
energy

Wi :0-55e:Ei:Ee ‘+‘P¢’f(0) +p¢ic(679) = f"ﬁf"‘ﬂwf(g) +p¢f(670) ? i = 17 21 (28)
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into elastic v, thermal ¥? parts and term ¥¢ due to solute atoms, where E; are constant
(i.e. independent of strain, temperature and solute fraction) elastic moduli. For small strain
approximation p =~ const. We neglect the dependence of thermal constants on c¢. For ¢
known approximation (see e.g. [8]) can be used. In an approximation of the regular solution
the following expression is valid {2, 11]

pf = Q7 (eic + kfB(clne+ (1—c)In(1-¢))) + 0.5uxc®. (29)
Here Q; is the atomic volume of a solvent atom, & is the Boltzmann constant, constants
ep; and u, characterize the self-energy and interaction energy of solute atoms.

Generally gy = a (6 —6,), where @ = a (£, 6 —6,) is the thermal expansion tensor
and 8, is the reference temperature. We assume a linear approximation

W= (-8 vl+eyl, ¢t =(1-&Yi+EYs, b= (1-€) b +¢&b. (30)

E=(01-¢E +¢E,, a=(0-€a+Eo,. (31)

Then according to Eq.(12)

pXe = a:% +o0:Aa(60—-6,) +0:Ab(c—c;) — 05¢6.:AE:€g, —

¢
— PAY(O) - pAY(c8) ; (32)
1 Ei2 1 1
pX = pXedé = [ o:der+ [o:Aa(0—0,) dE+ [o0:Ab(c—c)) dE—
[orede = f ortex ] /
1 1
- 0.5/56:AE:eed§ ~ [(pa9°®) + pavr(c, 6)) de. (33)
0 0

It is important to mention that the change in free energy due to diffusion affects the PT
only when there is a difference between free energy parts A ¢° related to solute atoms. The
misfit strain affects PT in two ways: first, due to the third term in Eq.(33) proportional to
the change in misfit strain during thé PT; second, even at Ab = 0 misfit strain changes the
stress distribution and contributes to the first, second and fourth terms in Eq.(33). If 17
and b; are the same for both phases and the stress variation due to misfit strain is negligible,
diffusion does not change the driving force for PT, because the change in free energy due to
diffusion and work o:de, in Eq.(23) is completely compensated for by the term pdc.
The solute volume fraction ¢ and temperature variation during the PT are determined
by the solution of coupled temperature evolution and diffusion equations. If we assume for
simplicity c—c; = A c¢& and an isothérmal process at § = 8, then Eq.(33) transforms into

€2 1 1
pX = /a:de, +/a:AbAc£d§ - O.S/ee:AEzeedg - (34)
E¢1 0 0

- pAY*(0,) - fle, 1, 80),

c2
where flca, c1y 6,) = Ac'l/pAt,b”(c, 6,) de = (35)
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= 05Ac¢7! [A (Q‘l eo) (cg - c%) + % A, (cg - c?) +

1
+ Aﬂ_lkgo (Cg In Cz—C? In Cl——z‘ (Cg‘-‘C%) +

+ (1-e)n(l-c)—(1-¢)’In(l-¢) -% (1-e)’-Q1 —cl)"’))] .

When the volumetric transformation strain is zero, then AQ~! = 0 and the first two terms
in Eq.(35) remain only. At small ¢ or Ac the second term can be neglected as well.
Temperature evolution. Generally it is impossible to obtain the local temperature evo-
lution equation due to the term with surface energy. If we will neglect the surface energy
in dissipation inequality (8), then #.5; = D and the combination of this relation with the
local entropy production equation (5) results in an entropy balance equation

pls = pD — divh + % «h.— pucé. (36)

Substitution of an expression for the local rate of dissipation from Eq.(15) in Eq.(36) yields

05 = —p 'divh + Xp:6, + X,:9 + Xc€ — pé. (37)
As s =5(0,0,9, €&, ¢, £ (see Eq.(13)), then substitution of this expression and gener-
alized Fourier law h = f, | — Tg into Eq.(37) leads to the temperature evolution equa-
tion
: 1 Ve K ) s .
vl = __pldzvfh(——o——)+(x,,—a—£p0):ep+(Xg—5—;0):94—
ds : ads ds . ds
+ <X5—3—£0>£—0%.6—(ﬂ+%0>6, V.—-an, (38)

where v is the specific heat at constant @, g, €, , £ and c. For the adiabatic process, i.e.
at divh = 0, when Eq.(38) determines the temperature evolution in each material point
independently, i.e. without a solution of the boundary-value problem.

3. Appearance of a spherical nucleus

As the simplest example we consider the nucleation of a spherical particle with the radius
r in an infinite elastic-perfectly plastic sphere under applied external pressure at diffusional-

. . . . . . 1
displacive PT. Let the transformation strain &, = =¢g¢& I and the misfit strain g, = —¢.I

be purely dilatational, where £y and ¢, are the volumetric transformation and misfit
strain, I the unit tensor, i.e. e = b(§)(c — ¢1) = b(E)Acé = by Ac& + Ab Acé?.
We assume that solute atoms are homogeneously distributed in the nucleus. Approximating
the quadratic with respect to the & term in e, with the linear one, ie. Ab Acé&? =~
0.5AbAcE, we obtain

& + €. = %(50 + 0.5(b1 + bQ) AC) fl = %Etcfl. (39)
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Now we can use equations for stress variation from paper [6], in which transformation strain
€, has to be replaced with &;.. Then

£ 1
{'o:de, +05 fo:AbAcdE =
€1 0

jp(ftcé)d(ﬁbf) + O.SJp(etcf)AbAcdf = Oflp(gtcg)d(gtcg) (1 _ M)‘

€t

Calculating the last integral in the same way as in paper [6] with &, instead of €, we
obtain for X

2 . . bA
pX = (pstc 24 (a,,c +épln %)) (1 b c) — AW (0,) — f (@2, 1) -(40)
Yy

Etc

As ¢; before PT in the parent phase is known, Eq.(25) contains three unknowns: r, ¢, and
t; . The following relation

(41)

is the consequence of the solution of the diffusion equation, where D is the diffusion coef-
ficient, ¢ is the diffusion time and ¢;, is the solute volume fraction in the parent phase at
the interface [2, 11]. This equation determines the radius r4 of a sphere in which during the
time t the volume fraction ¢, can be reached. Additionally, the constraint

Cmin < €2 < Cmax (42)
must be taken into account. It means, in particular, that the fraction of solute cannot exceed
some possible maximum value, determined by the type of crystal lattice and the difference
in atomic size of solute and solvent atoms. The minimum value can be zero or determined
from the thermodynamic condition for solute atoms across the interface. For example, if the
solute has a very high mobility, the equality of the solute chemical potential in phase 1 and
phase 2 can be assumed which relates ¢; and ¢y, .

If during time ¢ the nucleus with the radius r with the volume fraction ¢, of solute atoms
appears, then the inequality

— 0.5
r<rg= (202—61%) (43)
- Cir

has to be valid. In the opposite case the fraction c; cannot be reached in the nucleus with
radius r during the nucleation time. If r < rq, then diffusion can guarantee fraction c;
during the nucleation time in the sphere larger than the nucleus, i.e. diffusion does not
limit the transformation kinetics. This can take place for example when ¢2 = ¢pez > €1 OT
C2 = Cmin < €1, i.e. when the solute volume fraction in the nucleus reaches the maximum
or minimum possible values. Consequently, if the solution obtained satisfies the inequality
r < 14, then the process is transformation controlled and we do not need Eq.(41); in the
case r = 14 the kinetics is diffusion controlled.

To illustrate the approach only, we assume for simplicity that ¢, is known from the
solution of the diffusion equation and is independent of c;; temperature is fixed. Let us
consider the following cases.
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Let diffusion be a limiting process, i.e. 7 = rq and constraint (42) is satisfied. Finding
¢y from Eq.(41)

=2D (Cl Clr) + Cr (44)

substituting this ¢, in X (and probably in K° and E,) and minimizing transformation
time according to principle (27), we derive an additional equation
(X — K° - E,) 4D (¢, — ¢1,) pt
802 3

+ (X =K~ E,)pr* —2Ir = 0. (45)

Eqgs.(25) and (45) after substitution of expression (44) for ¢, in them represent two equations
with respect to two unknowns r and t. After substitution of ¢ from Eq. (45) into Eq.(25),
we get the nonlinear algebraic equation to find 7. It is assumed that X > K°.

Let us analyze the results obtained.

1. In the case without diffusion (D = 0 or when X, K° and E, do not depend on c,)
the first term in Eq.(45) is zero, this equation has no positive solution {(as (X — K° — E,) <

0) and we arrive at the same situation as for pore nucleatlon [8] ie. r = min and r is

determined from the thermodynamic PT criterion X = K9,

3T
(X KO) §7T7'tp - F47T7‘t =0 or Ty = m . (46)

A nucleus (void) with a radius 7, is called the thermodynamically admissible nucleus [8].
Relation between thermodynamically admissible and critical nucleus is analyzed in [8]. Sub-

stitution of condition X = KO in Eq.(25) results in

t, = t,,exp(}g];f 1:; 1"3) (47)

If diffusion promotes the PT and increases the difference X — K° — F,, i.e. the first term
8 (X -K°-E,)

in Eq.(45) is negative, then again this equation has no positive roots. In

this case 7‘ — min, the PT criterion (46), the kinetic equation (47) and diffusion Eq.(44)
are three equations for the determination of three unknowns r, ¢, and ¢. Substituting
t from Eq.(44) in kinetic equation (47), and then r from Eq.(46) in Eq.(47), we obtain a
nonlinear equation with respect to c,. Substituting ¢, found in Eq.(46) we can find r, and
then ¢ from Eq.(44). Then we have to check inequality (42).

2. If diffusion suppresses the PT and decreases the difference X — K° — E, , i.e. the first
(X - K- E,) .

term in Bq.(45) is positive, then a solution of Eq.(45) for "optimal” r

exists. If it exceeds the thermodynamically admissible radius and inequality (42) is in fact
satisfied, then it is the actual solution.

3. Let the solution obtained not satisfy the thermodynamic PT criterion (46),i.e. r <r,.
Then we should repeat the same procedure as in item 1.

4. Let one of the inequalities (42) be violated, e.g. ¢ > Cmac- Then we put ¢ = cpay
and substitute it in kinetic Eq.(25). As in this case X is independent of r, the principle of
the minimum of transformation time reduces to the r — min and the minimum value of
7 is determined from the PT criterion (46), and the transformation time can be found from
kinetic equation (47). If » < r4, then we have obtained the actual solution.
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5. Let us obtain for the case ¢ = c¢nax considered in item 4 r > ry, i.e. diffusion is a
limiting process. Then we put 7 = r4 and two Eqs.(25) and (44) determine two unknowns
r and ¢t and an additional extremum principle is not necessary. If r satisfies PT criterion
X > K°, then the solution obtained is the actual one. In the opposite case, a solution does
not exist.

4. Concluding remarks

A suggested theory of diffusional-displacive PT in inelastic materials is an extension of the
theory of martensitic PT and other structural changes developed in [4-11]. That is why
it is easy to take large deformations and displacement discontinuity into account in the
same way as in [6, 7]. Interface propagation condition can be derived by considering the
PT in the infinitesimal volume covered by moving interface [6-8, 10]. Generalization for
diffusion of n types of solute atoms, as well as for for chemically reacting solute substances
is straightforward. Effect of stresses on diffusion is taken into account. However, due to
defect generation, plastic deformation may affect the diffusion significantly which has to be
incorporated in model. Coupling of stress, temperature and solute fraction fields may be of
great importance as well.
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