Lecture # 07: Laminar and Turbulent Flows

Dr. Hui Hu
Department of Aerospace Engineering
Iowa State University
Ames, Iowa 50011, U.S.A

Sources/ Further reading:
Munson, Young, & Okiishi, “Fundamentals of Fluid Mechanics,” 4th ed, Ch 8
Tritton, “Physical Fluid Dynamics,” 2nd ed, Chs 2, 19–21

Sources/ Further reading:
Schlichting, “Boundary Layer Theory,” any ed
Laminar Flows and Turbulence Flows

- Laminar flow, sometimes known as streamline flow, occurs when a fluid flows in parallel layers, with no disruption between the layers. Viscosity determines momentum diffusion.
 - In nonscientific terms laminar flow is "smooth," while turbulent flow is "rough."

- Turbulent flow is a fluid regime characterized by chaotic, stochastic property changes. Turbulent motion dominates diffusion of momentum and other scalars. The flow is characterized by rapid variation of pressure and velocity in space and time.
 - Flow that is not turbulent is called laminar flow.
Reynolds’ experiment

Reynolds number:

$$Re = \frac{\rho DU}{\mu}$$

Pipe

Dye

Q = VA

Dye streak

Smooth, well-rounded entrance

(a)

(b)

(c)
Turbulent flows in a pipe

Empirically,
- \(Re < 1,000 \), laminar flow
- \(Re \approx 1,000 \sim 3,000 \), transition
- \(Re > 3000 \), turbulent flow.

\(Re_C \sim \) critical Reynolds number, above which flow exhibits turbulent characteristics

\[Re = \frac{\rho V D}{\mu} \]
Characterization of Turbulent Flows

\[u = \bar{u} + u'; \quad v = \bar{v} + v' \quad w = \bar{w} + w' \]

\[\bar{u} = \frac{1}{T} \int_{t_0}^{t_0+T} u(x, y, z, t) dt; \quad \bar{v} = \frac{1}{T} \int_{t_0}^{t_0+T} v(x, y, z, t) dt; \quad \bar{w} = \frac{1}{T} \int_{t_0}^{t_0+T} w(x, y, z, t) dt \]

FIGURE 7.7 Velocity components in a turbulent pipe flow: (a) x-component velocity; (b) r-component velocity; (c) \(\theta\)-component velocity.
Turbulence intensities

\[\bar{u}' = 0; \quad \bar{v}' = 0 \quad \bar{w}' = 0 \]

\[\overline{(u')^2} = \frac{1}{T} \int_{t_0}^{t_0+T} (u')^2 \, dt > 0; \quad \overline{(v')^2} > 0 \quad \overline{(w')^2} > 0 \]
Turbulent Shear Stress

Laminar flows:
\[\tau_{\text{lam}} = \mu \frac{\partial u}{\partial y} \]

Turbulent flows:
\[\tau_{\text{turb}} = -\rho u'v' \]

\[\tau = \tau_{\text{lam}} + \tau_{\text{turb}} = \mu \frac{\partial \bar{u}}{\partial y} - \rho \bar{u}'\bar{v}' \]
Quantification of Boundary Layer Flow

\[y_{\infty} = u_{\infty} / 0.99, \quad y_{\delta} = \] at \(y = \delta \),

\[u = 0.99 U_{\infty} \]

Displacement thickness:

\[\delta^* = \int_0^\infty \left(1 - \frac{u}{U}\right) dy \]

Momentum thickness:

\[\theta = \int_0^\infty \frac{u}{U} \left(1 - \frac{u}{U}\right) dy \]
Boundary Layer Theory

Blasius solution for laminar boundary layer:

\[\frac{\partial p}{\partial y} \approx 0 \]

\[\operatorname{Re}_x = \frac{\rho U_\infty X}{\mu} \]

\[C_f = \frac{1.328}{\sqrt{\operatorname{Re}_x}} \]

\[\delta = \frac{5.0X}{\sqrt{\operatorname{Re}_x}} \]

\[\delta^* = \frac{1.72X}{\sqrt{\operatorname{Re}_x}} \]

\[\theta = \frac{0.664X}{\sqrt{\operatorname{Re}_x}} \]

\[\tau_w = \mu \frac{\partial U}{\partial y} \bigg|_{\text{wall}} \]
Boundary Layer Theory

Free Stream \hspace{1cm} \textbf{Laminar} \hspace{1cm} \textbf{Turbulent}

Turbulent boundary layer:

\[\frac{\partial p}{\partial y} \approx 0 \]

\[\text{Re}_X = \frac{\rho U_\infty X}{\mu} \]

\[C_f = \frac{0.074}{(\text{Re}_X)^{1/5}} \]

\[\delta = \frac{0.37 X}{(\text{Re}_X)^{1/5}} \]
Boundary Layer Flows

Time-Averaged Velocity Profiles

Free Stream Laminar Turbulent

Wall

\[\tau_w = \mu \frac{\partial U}{\partial y} \]_{wall}

Which one will induce more drag?
Laminar boundary layer? Turbulent boundary layer?

(a) Inviscid flow along a flat plate.
(b) Viscous flow along a flat plate.
(c) Comparison of laminar and turbulent flow.
Which one will induce more drag?
Laminar boundary layer? Turbulent boundary layer?
Laminar Flows and Turbulent Flows

Viscous forces important throughout
Re = $UD/V = 0.1$

Viscosity not important
Viscous effects important

Re = 50
Separation location
Separation bubble

Viscosity not important
Boundary layer separation
Viscous effects important

Re = 10^5

$C_d = \frac{D}{2\rho U^2 A}$

$Re = \frac{\rho UD}{\mu}$

$C_d = \frac{24}{Re}$

Smooth cylinder
Smooth sphere

Flat plate
Circle
Ellipse
Airfoil
Float plate

$C_d = \frac{1}{2} \frac{b^2}{bD}$

$b =$ length

$Re = \frac{UD}{V}$
Flow Around A Sphere with laminar and Turbulence Boundary Layer

Top:

Instantaneous flow past a sphere at Re_D = 15,000. Dye in water shows a laminar boundary layer separating ahead of the equator and remaining laminar for almost one radius. It then becomes unstable and quickly turns turbulent.

Bottom:

Instantaneous flow past a sphere at Re_D = 30,000 with a trip wire. A classical experiment of Prandt and Wieselsberger is repeated here, using air bubbles in water. A wire hoop ahead of the equator trips the boundary layer. It becomes turbulent, so that it separates farther rearward than if it were laminar (compare with top photograph). The overall drag is thereby dramatically reduced, in a way that occurs naturally on a smooth sphere only at a Reynolds numbers ten times as great.
Golf Ball Aerodynamics

- Aolf ball aerodynamics
Laminar and turbulent flows

Re=100,000

Smooth ball

Rough ball

Golf ball

Centerline Velocity (U/U_∞) vs. Distance (X/D)

- Smooth-ball
- Rough-ball
- Golf-ball

Distance (X/D)

Centerline Velocity (U/U_∞)

Smooth-ball

Rough-ball

Golf-ball

Velocity field plots for different balls and distances.
Automobile aerodynamics
Automobile aerodynamics

Mercedes Boxfish

Vortex generator above a Mitsubishi rear window
Flow Separation on an Airfoil

- Separation points
- Turbulent wake
- Separation point moves slightly forward
- Maximum lift
- Separation point jumps forward
- Separated flow region expands and reduces lift
- Large turbulent wake (Reduced lift and large pressure drag)

Increasing distance downstream

-肩部的翼剖面，最大速度超过翼面的边界层

边界层（层状变为湍流）

分离点

Stagnation point pressure = Total pressure p_t

Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!
Conventional vs Laminar Airfoils

- Laminar flow airfoils are usually thinner than the conventional airfoil.
- The leading edge is more pointed and its upper and lower surfaces are nearly symmetrical.
- The major and most important difference between the two types of airfoil is this, the thickest part of a laminar wing occurs at 50% chord while in the conventional design the thickest part is at 25% chord.
- Drag is considerably reduced since the laminar airfoil takes less energy to slide through the air.
- Extensive laminar flow is usually only experienced over a very small range of angles-of-attack, on the order of 4 to 6 degrees.
- Once you break out of that optimal angle range, the drag increases by as much as 40% depending on the airfoil.

FIGURE 2: Extent of laminar flow on some famous airfoils.
Aerodynamic performance of an airfoil

\[C_l = \frac{L}{\frac{1}{2} \rho V_x^2 c} \]

\[C_d = \frac{D}{\frac{1}{2} \rho V_x^2 c} \]

Airfoil stall

Before stall

After stall

25 m/s

Shadow region

vort: -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5

Experimental data

Angle of Attack (degrees)
Flow Separation and Transition on Low-Reynolds-number Airfoils

- Low-Reynolds-number airfoil (with Re<500,000) aerodynamics is important for both military and civilian applications, such as propellers, sailplanes, ultra-light man-carrying/man-powered aircraft, high-altitude vehicles, wind turbines, unmanned aerial vehicles (UAVs) and Micro-Air-Vehicles (MAVs).

- Since laminar boundary layers are unable to withstand any significant adverse pressure gradient, laminar flow separation is usually found on low-Reynolds-number airfoils. Post-separation behavior of the laminar boundary layers would affect the aerodynamic performances of the low-Reynolds-number airfoils significantly.

- Separation bubbles are usually found on the upper surfaces of low-Reynolds-number airfoils. Separation bubble bursting can cause airfoil stall at high AOA when the adverse pressure gradients become too big.
Surface Pressure Coefficient distributions (Re=68,000)

Typical surface pressure distribution when a laminar separation bubble is formed (Russell, 1979)

GA (W)-1 airfoil
(also labeled as NASA LS(1)-0417)
Laminar Separation Bubble on a Low-Reynolds-number Airfoil

PIV measurement results at AOA = 10 deg, Re=68,000

(Hu et al., ASME Journal of Fluid Engineering, 2008)
Wingtip Vortex and Winglet
Passive Flow Control: Shark Skin

SHARK SPEED

The World's Fastest Sharks

Sharks make it notoriously hard to track their speed, because they rarely swim in a straight line or follow one direct course. Most sharks are cool, quiet swimmers averaging 1.5 miles per hour. But predator sharks can really turn on the heat when they want to eat!

- **Shortfin Mako Shark**
 - Regularly clocked at 31 mph with one report of 48 mph.

- **Great White Shark**
 - Top speed of at least 25 mph, but possibly as high as 30 mph.

- **Blue Shark**
 - Regularly clocked at 24.5 mph.

- **Human**
 - Top speed about 5 mph (olympic swimmer).

- **Average Shark**
 - Most sharks cruise along slowly at about 1.5 mph.
Shark Skin Structures for Drag Reduction
Shark Skin Inspired Engineering
Lab 6: Airfoil Wake Measurements and Hotwire Anemometer Calibration

Flow Field

Current flow through wire

\[mc \frac{dT_w}{dt} = i^2 R_w - \dot{q}(V, T_w) \]

- Constant-temperature anemometry

CTA hotwire probe
Hotwire Anemometer Calibration

- Quantify the relationship between the flow velocity and voltage output from the CTA probe

\[y = a + bx + cx^2 + d^2 + e^4 \]

max dev: 0.166, \(r^2 = 1.00 \)

\[a = 10.8, b = 3.77, c = -26.6, d = 13.2 \]
Forces on CV = Fluid momentum change

Forces on CV: \(\sum F_X = -D + \int_{cs} (p\hat{n}dA)_X = -D + \int_{1} p_{up} dA - \int_{2} p(y) dA \)

Since \(p_{up} = p_{\infty}, \ p(y) \approx p_{\infty} \)

\(\Rightarrow \sum F_X = -D \)

Momentum change: \(\int 2 \rho U(y)(U(y) - U_{\infty}) dA_2 = \sum F_X = -D \)

\(\Rightarrow D = \rho U_2^{\infty} \int_{2} \left[\frac{U(y)}{U_{\infty}} \left(1 - \frac{U(y)}{U_{\infty}} \right) \right] dA_2 \)

\[C_D = \frac{D}{\frac{1}{2} \rho U_2^{\infty} C} = \frac{1}{2} \rho U_2^{\infty} C \]

\(\Rightarrow C_D = \frac{2}{C} \int_{2} \left[\frac{U(y)}{U_{\infty}} \left(1 - \frac{U(y)}{U_{\infty}} \right) \right] dy \)

Compare with the drag coefficients obtained based on airfoil surface pressure measurements at the same angles of attack!
Pressure rake with 41 total pressure probes (the distance between the probes d=2mm)
Required Measurement Results

NOTE: We will be using the GA(W)-1 airfoil from the previous lab for the wake pressure measurements.

Required Plots:
- C_p distribution in the wake (for each angle of attack) for the airfoil wake measurements
- C_d vs angle of attack (do your values look reasonable?) based on the airfoil wake measurements
- Your hot wire anemometer calibration curve: Velocity versus voltage output of hotwire anemometer (including a 4th order polynomial fit)

Please briefly describe the following details:
- How you calculated your drag—you should show your drag calculations
- How these drag calculations compared with the drag calculations you made in the previous experiment
- Reynolds number of tests and the incoming flow velocity