## Lecture \# 2: <br> Review of Vector Calculus

Dr. Hui HU<br>Department of Aerospace Engineering<br>Iowa State University, 2251 Howe Hall, Ames, IA 50011-2271<br>Tel: 515-294-0094 / Email: huhui@iastate.edu

## - Review of Multivariahle Calculus

## Differential Calculus-derivative

- For a continuous smoothly varying function $f(x)$

$$
\frac{d f}{d x}=f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- Second derivative


$$
\frac{d}{d x}\left(\frac{d f}{d x}\right)=\frac{d^{2} f}{d x^{2}} \equiv f^{\prime \prime}(x)
$$

In physics, time derivative is denoted by 'dot'

$$
\frac{d f}{d t} \equiv \dot{f}
$$

## - Review of Multivariahle Calculus

## 1.1. <br> Review of Partial Differentials and Chain Rule

### 1.1.1 Definition of Partial Differentials

$$
\begin{aligned}
& f_{x}\left(x_{0}, y_{0}\right)=\lim _{\Delta x \rightarrow 0}\left[\frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}+\Delta x, y_{0}\right)}{\Delta x}\right] \\
& f_{y}\left(x_{0}, y_{0}\right)=\lim _{\Delta y \rightarrow 0}\left[\frac{f\left(x_{0}+\Delta y, y_{0}\right)-f\left(x_{0}+\Delta x, y_{0}\right)}{\Delta y}\right]
\end{aligned}
$$


1.1.2 Properties of Partial Derivatives

$$
\begin{aligned}
& (f+g)_{y}=f_{y}+g_{y} ; \\
& (f-g)_{y}=f_{y}-g_{y} ; \\
& (f g)_{y}=f_{y} g+f g_{y} ; \\
& (f / g)_{y}=\frac{f_{y} g-f g_{y}}{g^{2}} \\
& \left(f_{x}\right)_{x}=f_{x x}=\frac{\partial^{2} f}{\partial x^{2}} ; \\
& \left(f_{x}\right)_{y}=f_{x y}=\frac{\partial^{2} f}{\partial y \partial x} ; \\
& \left(f_{y}\right)_{x}=f_{y x}=\frac{\partial^{2} f}{\partial x \partial y} ; \\
& \left(f_{y}\right)_{x}=\left(f_{x}\right)_{y}=f_{y x}=f_{x y}
\end{aligned}
$$

## - Review of Multivariahle Calculus

### 1.1.3 <br> Chain Rule

1). In two- dimensional space:

$$
\begin{aligned}
& \left.\begin{array}{l}
z=f(x, y) \\
x=g_{1}(t) \\
y=g_{2}(t)
\end{array}\right\} \Rightarrow z=z(x, y)=f\left(g_{1}(t), g_{2}(t)\right)=z(t) \\
& \frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& \left.\begin{array}{l}
w=f(x, y) \\
x=g_{1}(u, v) \\
y=g_{2}(u, v)
\end{array}\right\} \Rightarrow w=f(x, y)=f\left(g_{1}(u, v), g_{2}(u, v)\right)=w(u, v) \\
& \frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial u} \\
& \frac{\partial w}{\partial v}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

2). In three-dimensional space:

$$
\begin{aligned}
& \left.\begin{array}{l}
w=f(x, y, z) \\
x=g_{1}(t) \\
y=g_{2}(t) \\
y=g_{2}(t)
\end{array}\right\} \Rightarrow \frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t} \\
& \left.\begin{array}{l}
w=f(x, y, z) \\
x=g_{1}(u, v) \\
y=g_{2}(u, v) \\
z=g_{3}(u, v)
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial u} \\
\frac{\partial w}{\partial v}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial v}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial u}
\end{array}\right.
\end{aligned}
$$

## - Vegtor Algebra

## Definition:

- A vector is a quantity that posses both magnitude and direction, and obeys the parallelogram law of addition.
- A scalar is a quantity that possess only magnitude, but no direction.

- Flow particle displacement and flow velocity are vectors


Velocity of the boat with respect to the water.
The water is used here as an
Resultant
velocity of boat
with respect to the
Earth.


Airfoil terminology

(a)

(b)

(c)

- Aerodynamic forces are vectors

- Air pressure is not a vector!

$\operatorname{Pressure}(p)=\frac{\operatorname{Force}\left(F_{n}\right)}{\operatorname{Area}(A)}$

- Scalar Product (Dot Product)
$\vec{A} \cdot \vec{B}=|\vec{A}| \vec{B} \mid \cos \theta$
Where $|\vec{A}|,|\vec{B}|$ are the magnitude of the vectors $\vec{A}$ and $\vec{B}$.
$\theta(0 \leq \theta \leq \pi)$ is the angle between the vectors $\vec{A}$ and $\vec{B}$ when
 they are arranged "tail to tail".
- $|\vec{B}| \cos \theta$ is the projection of vector $\vec{B}$ to vector $\vec{A}$.
- If $\theta=\pi / 2, \vec{A}$ and $\vec{B}$ are orthogonal to each other, and $\vec{A} \bullet \vec{B}=0$
- Commutative: $\vec{A} \bullet \vec{B}=\vec{B} \bullet \vec{A}$
|
Example:
Work done by a force $\vec{F}$ during an infinitesimal displacement $\vec{S}$



## - Vector Product (Cross Product)

## $\vec{A} \times \vec{B}=|\vec{A}||\vec{B}| \sin \theta \hat{e}_{n}$

Where $\hat{e}_{n}$ is the unit vector normal to the plane containing $\vec{A}$ and $\vec{B}$. Direction is determined according to the "right-hand" rule. $0 \leq \theta \leq \pi$
$|\vec{A} \times \vec{B}|=$ Area of the parallelogram

If the two vectors are parallel, that is if $\theta=0$ or
 $\theta=\pi$, then $\quad \vec{A} \times \vec{B}=\overrightarrow{0}$.

- Vector product is not commutative. i.e., $\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}$. However, $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$

Application example:
Moment about $O: \vec{M}_{O}=\vec{R} \times \vec{F}$


## - Veetor Algebra

- Scalar Triple Product:


## $\vec{A} \bullet(\vec{B} \times \vec{C})=\vec{C} \bullet(\vec{A} \times \vec{B})=\vec{B} \bullet(\vec{C} \times \vec{A})$

- is the volume of the parallelepiped formed by the non-coplanar vectors


## - Vector Triple Product:

$\vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \bullet \vec{C}) \vec{B}-(\vec{A} \bullet \vec{B}) \vec{C}=m \vec{B}-n \vec{C}$


- Where $\boldsymbol{m}, \boldsymbol{n}$ are scalar parameters.


## $\vec{A} \times(\vec{B} \times \vec{C}) \neq(\vec{A} \times \vec{B}) \times \vec{C}$

$$
\begin{aligned}
(\vec{A} \times \vec{B}) \times \vec{C} & =-\vec{C} \times(\vec{A} \times \vec{B}) \\
& =-[(\vec{C} \bullet \vec{B}) \vec{A}-(\vec{C} \bullet \vec{A}) \vec{B}] \\
& =(\vec{C} \bullet \vec{A}) \vec{B}-(\vec{C} \bullet \vec{B}) \vec{A}
\end{aligned}
$$

Thus, vector $(\vec{A} \times \vec{B}) \times \vec{C}$ is inside the plane of vectors $\vec{A}$ and $\vec{B}$, while the vector $\vec{A} \times(\vec{B} \times \vec{C})$ is inside the plane of vectors $\vec{B}$ and $\vec{C}$.

Therefore: $\vec{A} \times(\vec{B} \times \vec{C}) \neq(\vec{A} \times \vec{B}) \times \vec{C}$

## 2.8

A vector whose magnitude is 1 is called a unit vector:

$$
\hat{e}_{A}=\frac{\vec{A}}{|\vec{A}|}
$$

Where $|\vec{A}|$ is the magnitude of the vector $\vec{A}$, and $\hat{e}_{A}$ is a unit vector in the direction of $\vec{A}$.

## $2.9 \quad$ Vector Differentiation

If $\vec{A}$ and $\vec{B}$ are differentiable vector, $\alpha, t$ are scalars, and $\vec{U}=\vec{A}+\vec{B}$, then,

$$
\begin{aligned}
& \frac{d \vec{U}}{d t}=\frac{d \vec{A}}{d t}+\frac{d \vec{B}}{d t} \\
& \frac{d(\alpha \vec{U})}{d t}=\frac{d \alpha}{d t} \vec{U}+\alpha \frac{d \vec{U}}{d t}
\end{aligned}
$$

$2.10 \quad$ Product Rules

$$
\begin{aligned}
& \vec{A} \bullet \vec{A}=(|\vec{A}|)^{2} \\
& \hat{e}_{i} \bullet \hat{e}_{j}=\left\{\begin{array}{ll}
0 & \text { if } i \neq j \\
1 & f i=j
\end{array} \quad \bullet \quad\right. \text { Cartesian system } \\
& \left|\hat{e}_{i} \times \hat{e}_{j}\right|= \begin{cases}0 & \text { if } i=j \\
1 & f i \neq j\end{cases}
\end{aligned}
$$

### 2.11 Components of a Vector

In 3-D, a vector has 3 components. These 3 components are independent of each other. Consider three vectors $\vec{A}, \vec{B}$ and $\vec{C}$. In component form, these vectors in general can be written as:

$$
\begin{aligned}
& \vec{A}=A_{1} \hat{e}_{1}+A_{2} \hat{e}_{2}+A_{3} \hat{e}_{3} \\
& \vec{B}=B_{1} \hat{e}_{1}+B_{2} \hat{e}_{2}+B_{3} \hat{e}_{3} \\
& \vec{C}=C_{1} \hat{e}_{1}+C_{2} \hat{e}_{2}+C_{3} \hat{e}_{3}
\end{aligned}
$$

Based on the component form, the following relations can be established:

$$
\begin{gathered}
\vec{A} \bullet \vec{B}=A_{1} B_{1}+A_{2} B_{2}+A_{3} B_{3} \\
\vec{A} \times \vec{B}=\left|\begin{array}{lll}
\hat{e}_{1} & \hat{e}_{2} & \hat{e}_{3} \\
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3}
\end{array}\right| \\
\vec{A} \cdot(\vec{B} \times \vec{C})=\left|\begin{array}{ccc}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right| \\
\vec{A} \times(\vec{B} \times \vec{C})=\left|\begin{array}{ccc}
\hat{e}_{1} & \hat{e}_{2} & \hat{e}_{3} \\
A_{1} & A_{2} & A_{3} \\
B_{2} C_{3}-B_{3} C_{2} & B_{3} C_{1}-B_{1} C_{3} & B_{1} C_{2}-B_{2} C_{1}
\end{array}\right|
\end{gathered}
$$



- Cartesian system


## - Cartesian Coordimate System

## Cartesian Coordinate System

Rectangular coordinate system $X, Y, Z$ coordinates and the corresponding unit base vector $\hat{i}, \hat{j}, \hat{k}$ which are orthonormal.
$\hat{i} \bullet \hat{j}=\hat{i} \bullet \hat{k}=\hat{j} \bullet \hat{k}=\mathbf{O}$
$\hat{i} \bullet \hat{i}=\hat{j} \bullet \hat{j}=\hat{k} \bullet \hat{k}=1$
$\hat{i} \times \hat{j}=\hat{k} ; \quad \hat{j} \times \hat{k}=\hat{i} ; \quad \hat{k} \times \hat{i}=\hat{j}$
$\vec{A}=A_{x} \hat{i}+A_{Y} \hat{j}+A_{z} \hat{k}$

Where $A_{x}=\vec{A} \bullet \hat{i} ; \quad A_{y}=\vec{A} \bullet \hat{j} ; \quad A_{z}=\vec{A} \bullet \hat{k}$.

In other words, $A_{x}, A_{y}, A_{z}$ are the components of vector $\vec{A}$, and there are the projections of $\vec{A}$ on $X, Y, Z$ axes respectively.


## - Coondimate Systems

### 2.11.2 Cylindrical Coordinate System

Variables in cylindrical coordinate system are $(r, \theta, z)$, and the corresponding unit base vectors are $\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{z}$
$\hat{e}_{r} \bullet \hat{e}_{\theta}=\hat{e}_{r} \bullet \hat{e}_{z}=\hat{e}_{\theta} \bullet \hat{e}_{z}=0$
$\hat{e}_{r} \bullet \hat{e}_{r}=\hat{e}_{\theta} \bullet \hat{e}_{\theta}=\hat{e}_{z} \bullet \hat{e}_{z}=1$
$\hat{e}_{r} \times \hat{e}_{\theta}=\hat{e}_{z} ; \quad \hat{e}_{\theta} \times \hat{e}_{z}=\hat{e}_{r} ; \quad \hat{e}_{z} \times \hat{e}_{r}=\hat{e}_{\theta}$
$\vec{A}=A_{r} \hat{e}_{r}+A_{\theta} \hat{e}_{\theta}+A_{z} \hat{e}_{z}$

Where:

$$
A_{r}=\vec{A} \bullet \hat{e}_{r} ; \quad A_{\theta}=\vec{A} \bullet \hat{e}_{\theta} ; \quad A_{z}=\vec{A} \bullet \hat{e}_{z} .
$$

In other words, $A_{r}, A_{\theta}, A_{z}$ are the components of vector $\vec{A}$.

The position vector in Cartesian system is given as:

$$
\vec{R}=r \hat{e}_{-}+z \hat{e}_{-}
$$



## - Sphenical Goordinate Srstems

### 2.11.3 Spherical Coordinate System

Variables in spherical coordinate system are ( $R, \theta, \varphi$ ), and the corresponding unit base vectors are $\hat{e}_{R}, \hat{e}_{\theta}, \hat{e}_{\varphi}$
$\vec{A}=A_{R} \hat{e}_{R}+A_{\theta} \hat{e}_{\theta}+A_{\varphi} \hat{e}_{\varphi}$
Where:
$A_{r}=\vec{A} \bullet \hat{e}_{r} ; \quad A_{\theta}=\vec{A} \bullet \hat{e}_{\theta} ; \quad A_{z}=\vec{A} \bullet \hat{e}_{z}$.
In other words, $A_{r}, A_{\theta}, A_{\varphi}$ are the components of vector $\vec{A}$.


## - Relationship hetween Dififerent Coordinate Systems

### 2.12 Relationship between Coordinate Systems

### 2.12.1 General Transformation

$\left(q_{1}, q_{2}, q_{3}\right)$ are the general coordinates of a 3-D coordinate system.

$$
\begin{aligned}
& q_{1}=q_{1}(x, y, z) \\
& q_{2}=q_{2}(x, y, z) \\
& q_{3}=q_{3}(x, y, z)
\end{aligned}
$$

### 2.12.2 General Inverse Transformation

$$
\begin{aligned}
& x=x\left(q_{1}, q_{2}, q_{3}\right) \\
& y=y\left(q_{1}, q_{2}, q_{3}\right) \\
& z=z\left(q_{1}, q_{2}, q_{3}\right)
\end{aligned}
$$



Cylindrical coordinate system $(r ; \theta$, , 2$)$

## For example:

Transformation equations between the Cartesian coordinate and cylindrical coordinate system are:

$$
\begin{array}{ll}
r=x^{2}+y^{2} & (0 \leq r \leq \infty) \\
\theta=\arctan (y / x) & (0 \leq \theta \leq 2 \pi) \\
z=z & (-\infty<z<\infty)
\end{array}
$$

The inverse transformation equation will be:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

### 2.13 Scale factors, Unit Vectors and their Derivatives

### 2.13.1 Scale factors

Scale factor defines the relationship between coordinates and distance along coordinates.

### 2.13.2 General Coordinate System

A position vector $\vec{R}$ in Cartesian coordinate system is given by:

$$
\vec{R}=x \hat{i}+y \hat{j}+z \hat{k}
$$

Using the inverse transformation, in a general coordinate system, the position vector can also be written as:

$$
\vec{R}=x\left(q_{1}, q_{2}, q_{3}\right) \hat{i}+y\left(q_{1}, q_{2}, q_{3}\right) \hat{j}+z\left(q_{1}, q_{2}, q_{3}\right) \hat{k}
$$

The variation of the position vector along the coordinate direction defines the following relations:

$$
\begin{aligned}
& \frac{\partial \vec{R}}{\partial q_{1}}=h_{1} \hat{e}_{1} \\
& \frac{\partial \vec{R}}{\partial q_{2}}=h_{2} \hat{e}_{2} \\
& \frac{\partial \vec{R}}{\partial q_{3}}=h_{3} \hat{e}_{3}
\end{aligned}
$$

Where $h_{1}, h_{2}, h_{3}$ are the scale factors and $\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}$ are the unit vector in the $q_{1}, q_{2}, q_{3}$ direction,


Cylindrical coordinate system $(r, \theta, z)$
 respectively.

## Scale Factors and Derivatives of Unit Vectors

### 2.14.1 Cartesian Coordinate System

In Cartesian coordinate system, unit vectors are:

$$
\begin{aligned}
& \hat{e}_{1}=\hat{i} \\
& \hat{e}_{2}=\hat{j} \\
& \hat{e}_{3}=\hat{k}
\end{aligned}
$$

A position vector $\vec{R}$ in Cartesian coordinate system is given by:

$$
\vec{R}=x \hat{i}+y \hat{j}+z \hat{k}
$$

Therefore:

$$
\begin{array}{ll}
\frac{\partial \vec{R}}{\partial q_{1}}=h_{1} \hat{e}_{1}=\hat{i} \Rightarrow h_{1}=1 \\
\frac{\partial \vec{R}}{\partial q_{2}}=h_{2} \hat{e}_{2}=\hat{j} \Rightarrow h_{2}=1 ; \\
\frac{\partial \vec{R}}{\partial q_{3}}=h_{3} \hat{e}_{3}=\hat{k} \Rightarrow h_{3}=1
\end{array}
$$



- Cartesian system

Since the unit vectors are fixed in magnitude and direction in Cartesian coordinate system, therefore:

$$
\begin{aligned}
& \frac{\partial \hat{i}}{\partial x}=\frac{\partial \hat{j}}{\partial x}=\frac{\partial \hat{k}}{\partial x}=0 \\
& \frac{\partial \hat{i}}{\partial y}=\frac{\partial \hat{j}}{\partial y}=\frac{\partial \hat{k}}{\partial y}=0 \\
& \frac{\partial \hat{i}}{\partial z}=\frac{\partial \hat{j}}{\partial z}=\frac{\partial \hat{k}}{\partial z}=0
\end{aligned}
$$

## Cylindrical Coordinate System

A point $P$ in space is given by $p\left(q_{1}, q_{2}, q_{3}\right)$ or $p(r, \theta, z)$ with base vector $\left(\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}\right)$ given by $\left(\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{z}\right)$.
$\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta \\ z=Z\end{array}\right.$
$r \geq 0, \quad 0 \leq \theta \leq 2 \pi ; \quad-\infty \leq Z \leq \infty$
$d x=d r \cos \theta-r \sin \theta d \theta$
$d y=d r \sin \theta+r \cos \theta d \theta$
$d z=d z$


Cylindrical system
( $R, \theta, z$ )
$(d s)^{2}=h_{1}{ }^{2} d q_{1}{ }^{2}+h_{2}{ }^{2} d q_{2}{ }^{2}+h_{3}{ }^{2} d q_{3}{ }^{2}$
$=(d x)^{2}+(d y)^{2}+(d z)^{2}$
$=(\cos \theta d r)^{2}-2 r \sin \theta d \theta \cos \theta d r+(r \sin \theta d \theta)^{2}$
$+(\sin \theta d r)^{2}+2 r \sin \theta \cos \theta d r d \theta+(r \cos \theta d \theta)^{2}+(d z)^{2}$
$=(d r)^{2}+r^{2}(d \theta)^{2}+(d z)^{2}$
Therefore: $h_{1}=1$;
$h_{2}=r ;$
$h_{3}=1$

## Scale Factors and Derivatives of Unit Vectors

r-Direction:

$$
\begin{aligned}
& h_{r} \hat{e}_{r}=\frac{\partial \vec{R}}{\partial r}=\frac{\partial x}{\partial r} \hat{i}+\frac{\partial y}{\partial r} \hat{j}+\frac{\partial z}{\partial r} \hat{k}=\cos \theta \hat{i}+\sin \theta \hat{j}+0 \hat{k} \\
& \left(h_{r} \hat{e}_{r}\right) \bullet\left(h_{r} \hat{e}_{r}\right)=\left(h_{r}\right)^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1 \quad \Rightarrow \quad\left\{\begin{array}{c}
h_{r}=1 \\
\hat{e}_{r}=\cos \theta \hat{i}+\sin \theta \hat{j}
\end{array}\right.
\end{aligned}
$$

## $\theta$ - Direction:

$h_{\theta} \hat{e}_{\theta}=\frac{\partial \vec{R}}{\partial \theta}=\frac{\partial x}{\partial \theta} \hat{i}+\frac{\partial y}{\partial \theta} \hat{j}+\frac{\partial z}{\partial \theta} \hat{k}=-r \sin \theta \hat{i}+r \cos \theta \hat{j}+0 \hat{k}$
$\left(h_{\theta} \hat{e}_{\theta}\right) \bullet\left(h_{\theta} \hat{e}_{\theta}\right)=\left(h_{\theta}\right)^{2}=r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=r^{2} \quad \Rightarrow\left\{\begin{array}{c}h_{\theta}=r \\ \hat{e}_{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j}\end{array}\right.$
$Z$ - Direction:
$h_{z} \hat{e}_{z}=\frac{\partial \vec{R}}{\partial Z}=\frac{\partial x}{\partial Z} \hat{i}+\frac{\partial y}{\partial Z} \hat{j}+\frac{\partial z}{\partial Z} \hat{k}=0 \hat{i}+0 \hat{j}+1 \hat{k}$
$\left(h_{Z} \hat{e}_{z}\right) \bullet\left(h_{Z} \hat{e}_{z}\right)=\left(h_{z}\right)^{2}=1^{2} \quad \Rightarrow\left\{\begin{array}{l}h_{Z}=1 \\ \hat{e}_{Z}=\hat{k}\end{array}\right.$


## Summarize:

$$
\begin{array}{cc}
\hat{e}_{r}=\cos \theta \hat{i}+\sin \theta \hat{j} \\
\hat{e}_{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j} \quad ; \quad & h_{r}=1 \\
\hat{e}_{z}=\hat{k} & h_{\theta}=r \\
h_{z}=1
\end{array}
$$

Transformation relationship
$\left[\begin{array}{l}\hat{i} \\ \hat{j} \\ \hat{k}\end{array}\right]=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\hat{e}_{r} \\ \hat{e}_{\theta} \\ \hat{e}_{Z}\end{array}\right] \quad ;$ or $\quad\left[\begin{array}{l}\hat{e}_{r} \\ \hat{e}_{\theta} \\ \hat{e}_{Z}\end{array}\right]=\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\hat{i} \\ \hat{j} \\ \hat{k}\end{array}\right]$

Derivatives of the unit vectors:

$$
\begin{array}{lll}
\frac{\partial \hat{e}_{r}}{\partial r}=0 & \frac{\partial \hat{e}_{\theta}}{\partial r}=0 & \frac{\partial \hat{e}_{Z}}{\partial r}=0 \\
\frac{\partial \hat{e}_{r}}{\partial \theta}=\hat{e}_{\theta} & ; & \frac{\partial \hat{e}_{\theta}}{\partial \theta}=-\hat{e}_{r} \\
\frac{\partial \hat{e}_{r}}{\partial z}=0 & \frac{\partial}{\partial z} & \frac{\partial \hat{e}_{Z}}{\partial \theta}=0 \\
\partial z & =0 & \frac{\partial \hat{e}_{z}}{\partial z}=0 \\
\hline
\end{array}
$$

## $\square$ <br> Example

Example: If $\vec{R}=\vec{R}(t)=r \hat{e}_{r}+z \hat{e}_{z}$ is the position vector of a particle in cylindrical coordinates, obtain expression for velocity vector, $\vec{V}$, and acceleration vector, $\vec{a}$, at that point.|

Since $\hat{e}_{r}=\hat{e}_{r}(r, \theta, z)$, then, $\quad d \hat{e}_{r}=\frac{\partial \hat{e}_{r}}{\partial \theta} d \theta+\frac{\partial \hat{e}_{r}}{\partial r} d r+\frac{\partial \hat{e}_{r}}{\partial z} d z$ Therefore $\quad \frac{d \hat{e}_{r}}{d t}=\frac{\partial \hat{e}_{r}}{\partial \theta} \frac{d \theta}{d t}+\frac{\partial \hat{e}_{r}}{\partial r} \frac{d r}{d t}+\frac{\partial \hat{e}_{r}}{\partial z} \frac{d z}{d t}$

Similarly, $\quad \frac{d \hat{e}_{\theta}}{d t}=\frac{\partial \hat{e}_{\theta}}{\partial \theta} \frac{d \theta}{d t}+\frac{\partial \hat{e}_{\theta}}{\partial r} \frac{d r}{d t}+\frac{\partial \hat{e}_{\theta}}{\partial z} \frac{d z}{d t}$

$$
\left.\frac{d \hat{e}_{z}}{d t}=\frac{\partial \hat{e}_{z}}{\partial \theta} \frac{d \theta}{d t}+\frac{\partial \hat{e}_{z}}{\partial r} \frac{d r}{d t}+\frac{\partial \hat{e}_{z}}{\partial z} \frac{d z}{d t} \right\rvert\,
$$



$$
\begin{gathered}
\hat{e}_{r}=\cos \theta \hat{i}+\sin \theta \hat{j} \\
\hat{e}_{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j} \\
\hat{e}_{z}=\hat{k}
\end{gathered}
$$

| Derivatives of the unit vectors: |  |  |
| :---: | :---: | :---: |
| $\underline{\hat{\partial} \hat{e}_{r}}=0$ | $\hat{\partial}_{\underline{e_{\theta}}}=0$ | $\hat{e r}_{\underline{z}}=0$ |
| $\hat{c}^{\text {or }}$ - |  |  |
| $\frac{\partial \hat{e}_{r}}{\partial \theta}=\hat{e}_{\theta}$ | $\frac{\partial \hat{e}_{\theta}}{\partial \theta}=-\hat{e}_{r}$ | $\frac{\partial \hat{e}_{z}}{\partial \theta}=0$ |
| $\underline{\partial \hat{\partial}^{+} \hat{e}_{r}}=0$ | $\underline{\partial \hat{\partial}_{e}}=0$ | $\underline{\partial \hat{e r}_{z}}=0$ |
| $\partial_{\partial z}$ | $\partial_{z}$ | $\partial z$ |

$$
\begin{aligned}
\vec{a} & =\frac{d \vec{V}}{d t}=\frac{d\left(r \hat{e}_{\theta} \frac{d \theta}{d t}+\frac{d r}{d t} \hat{e}_{r}+\frac{d z}{d t} \hat{e}_{z}\right)}{d t} \\
& =\frac{d r}{d t} \hat{e}_{\theta} \frac{d \theta}{d t}+r \frac{d \hat{e}_{\theta}}{d t} \frac{d \theta}{d t}+r \hat{e}_{\theta} \frac{d^{2} \theta}{d t^{2}}+\frac{d^{2} r}{d t^{2}} \hat{e}_{r}+\frac{d r}{d t} \frac{d \hat{e}_{r}}{d t}+\frac{d^{2} z}{d t^{2}} \hat{e}_{z}+\frac{d z}{d t} \frac{d \hat{e}_{z}}{d t} \\
& =\frac{d r}{d t} \frac{d \theta}{d t} \hat{e}_{\theta}+r \frac{d \theta}{d t}\left(\frac{\partial \hat{e}_{\theta}}{\partial \theta} \frac{d \theta}{d t}+\frac{\partial \hat{e}_{\theta}}{\partial r} \frac{d r}{d t}+\frac{\partial \hat{e}_{\theta}}{\partial z} \frac{d z}{d t}\right)+r \hat{e}_{\theta} \frac{d^{2} \theta}{d t^{2}}+\frac{d^{2} r}{d t^{2}} \hat{e}_{r}+ \\
& \frac{d r}{d t}\left(\frac{\partial \hat{e}_{r}}{\partial \theta} \frac{d \theta}{d t}+\frac{\partial \hat{e}_{r}}{\partial r} \frac{d r}{d t}+\frac{\partial \hat{e}_{r}}{\partial z} \frac{d z}{d t}\right)+\frac{d^{2} z}{d t^{2}} \hat{e}_{z}+\frac{d z}{d t}\left(\frac{\partial \hat{e}_{z}}{\partial \theta} \frac{d \theta}{d t}+\frac{\partial \hat{e}_{z}}{\partial r} \frac{d r}{d t}+\frac{\partial \hat{e}_{z}}{\partial z} \frac{d z}{d t}\right) \\
& =\frac{d r}{d t} \frac{d \theta}{d t} \hat{e}_{\theta}-r \frac{d \theta}{d t} \frac{d \theta}{d t} \hat{e}_{r}+r \hat{e}_{\theta} \frac{d^{2} \theta}{d t^{2}}+\frac{d^{2} r}{d t^{2}} \hat{e}_{r}+\frac{d r}{d t} \frac{d \theta}{d t} \hat{e}_{\theta}+\frac{d^{2} z}{d t^{2}} \hat{e}_{z} \\
& =\left[\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right] \hat{e}_{r}+\left[2 \frac{d r}{d t} \frac{d \theta}{d t}+r \frac{d^{2} \theta}{d t^{2}}\right] \hat{e}_{\theta}+\frac{d^{2} z}{d t^{2}} \hat{e}_{z}
\end{aligned}
$$

## - Transformation between Cartieslan System \& Spuenic System

Scale factors and unit vectors in Spherical coordinate system $(R, \varphi, \theta)$
$\overrightarrow{O B}=R \hat{e}_{R}$
$O A=R \sin \varphi$
$x=R \sin \varphi \cos \theta$
$x=r \sin \varphi \sin \theta$
$z=r \cos \varphi$
$h_{R}=1$
$\hat{e}_{R}=\sin \varphi \cos \theta \hat{i}+\sin \varphi \sin \theta \hat{j}+\cos \varphi \hat{k}$
$h_{\varphi}=R$
$\hat{e}_{\varphi}=\cos \varphi \cos \theta \hat{i}+\cos \varphi \sin \theta \hat{j}-\sin \varphi \hat{k}$

$(R-\varphi-\theta)$
$h_{\theta}=R \sin \varphi$
$\hat{e}_{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j}$

