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1 Feed hack of the In-class Quiz #1(43 response)

e (lass teaching speed:
— Speed is okay: ~50%
— Speed is too fast: ~45%
— Speed is too slow: ~ 5%

e Other comments:
— Fast-paced with many derivations.

— Some mathematical terms can be expanded upon and explained
more thoroughly

— Why use complicated formula to describe simple problems.
— More examples to link the equations to real word applications.

— More Practice problems on the slides, which can help prepare for

HW and Tests.
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O Reynolds Transport Theorem

* Let N be any extensive property of the identifiable fixed mass (system) such as total mass, momentum, or energy. The
corresponding intensive property (extensive property per unit mass) will be designated as, c.
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1 Reynolds Transport Theorem
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Linear momentum
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a 1s any mtensive property corresponding to N. (te., @ = N per unit mass),
and 1t can be used for different quantities as follows.
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Q Conservation of Mass

Physical principle: Mass can be neither created or destroyed

Myysten — constant

(@) -

dt system

with | levstem / dm = / pdV
system system
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R & = Iap dV- + I(apV)OdA
at CV. C.S.
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Dt Dt

Dt

+ Integral form of the Mass Conservation Equation:
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Time t + At
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2 Integral Form of the Mas Conservation Equation

* Wind blows through a 7ft x 10ft garage door opening with speed of
V, =5 ft/s as shown in figure below. Determine the average
speed, V5, of the air through the two 3 ftx 4ft window openings.

Solution procedure

* Choose and draw an appropriate - SE— o
control volume (the simplest CV
along the surfaces we have
information on or need to find)

* Write conservation law(s) for the
chosen CV

* Evaluate volume integrals over the
entire CV volume and surface
integrals over control surfaces Fixed CV

* Simplify to find the unknown
guantity

=t
h
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- Integral Form of the Mas Conservation Equation

Conservation of mass

d — 7
a_UdeV%—ffpV.ﬁdSz 0
4 S

Here we can assume steady state condition (wind steadily blows in and
leaves through the windows), hence

%[ sav=o

Ammmmmeth

=
h

B

ffpv.ﬁaw:ffpﬁ.ﬁds+2ﬂpl7.ﬁds -
Note: there are two identical windows, so it is reasonable to assume Fixed CV
average velocity is the same through both. IXe
ﬂ pV.AdS = ﬂ pV;(— sin(0) © + cos(0))).idS Vz Vz
Ay Ay

= —pV; sin(0) ff dS = —pV; sin(0) A4 T T
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Therefore, conservatlon of mass becomes I
—pVisin(B) Ay + 2pV3A, =0 -V, =1, sm(B)E I |91
2
V, = 5 x sin(20) x =" _, v, = 4.99 ft mEmm_—_———————




2 Integral Form of the Mas Conservation Equation

* An airplane moves forward at a speed of 971 km/hr. The frontal area of the
intake to one of the jet engines is 0.80m?, and the entering air density is
0.736 kg/m3 . A stationary observer estimates that relative to earth, the jet
engine exhaust gases move away from the engine with a speed of 1,050
km/hr. The engine exhaust area is 0.558 m? and the exhaust gas density is
0.515 kg/m?3..

* Question: Please estimate the mass flow rate of fuel into the engine
in kg/hr.

|

plane =

971 km/hr

.V, = 1050 km/hr

=
W = - W, = 1050 + 971 =
T 2021 km/hr

1
971 km/hr

Section (2)
Section (1) Ineering
]

I
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2 Integral Form of the Mas Conservation Eguation

0 (flow relative to moving contro|
volume is considered steady op 4
time-average basis)

5

pd¥ + J pW fidA = ()

Assuming one-dimensional flow, we evaluate the surface integral in Eq. 1 ang get

—’}'fucl = pA W, + p, AW, =0

or

’;’mcl = pA,W, —

in

p AW,

We consider the intake velocity, W), relative to the moving control volume, as being equ
in magnitude to the speed of the airplane, 971 km/hr. The exhaust velocity, W,, also needs
(0 be measured refative to the moving control volume. Since a fixed observer noted tha
exhaust gases were moving away from the engine at a speed of 1050 km/hr, the speed of e

exhaust gases relative to the moving control volume, W,, is determined as follows by using
Eq. 5.14

v2 X WZ u Vplunc
or

Wo = Vs = Ve = 1050 km/hr + 971 km/hr = 2021 km/hr

Vplane =
971 km/hr
h <
Control volume
Vitene = L *__‘\
TNV, = 1050 ke
- W, = 1050 + 971 =
____ 2021 km/hr
Section (2)
Section (1)
From Eq. 2,
rhir:el = (0515 kg/m’)(0.558 m?)(2021 km/hr)(1000 m/km)
= (0.736 kg/m®)(0.80 m?)(971 kmy/hr)(1000 m/km)
= (580,800 — 571,700) kg/hr
’hguel = 9100 kg/hr (Ans)

Note that the fuel flowrate was obtained as the difference of two large, nearly equal

numbers. Precise values of W, and W, are needed to obtain a modestly accurate value of
rhfuel'
in
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4 Integral Form of the Mas Conservation Enuation

A bathtub is being filled with water from a faucet. The rate of
flow from the faucet is steady at 9 gal/min. The tub volume is
approximated by a rectangular space as indicate the figure.
Please estimate the time rate of change of the depth of water in

at any instant.

1.5 ft

Control volume




2 Integral Form of the Mas Conservation Enuation

e Conservation of mass equation
.. . Control volume
The continuity equation Vil A /
~— J
5 . A~/ " T Z
—j pd¥+j pV -fidA =0 ~ |l L/ a
ot Jov cs A 7
0 0 - . T == —:;":::::::::_—_1. L _ 2 __|
= — . s B i . 1K 7
8‘[ A — palrdsvlalr * 8t -[water - pwater dSvaater mwater + I‘nalr 1.5 ft ! // i : : /////J
o
5 L A 1] g 2 ft
For ot 5; air volume puird%lir B air - O 5 ft i
0 :
For Water a.[wmer volume pwater dsvl_watcr = mwater
.[wa[er volume pwutcrd¥water = pwater [h(2ft )(Sft) * (l Sft — h)A|]
) ch .
= P (10ft"—A.)—=m_
p\\dter ( _|) ﬁt water 3
and, thus 2.5
_a_h_ el Qwater E 2
= 2 =
gt (10ft° — A) €15k
= 1in., 1.44 in./mi
For A; < 10 ft* we can conclude that {IR{E i i
b Qe 19 gal/min)(12 in./ft) S 0.5
o (100) (748 gal/fe)(10f2)  ~+in-/min ;
0 10 20 30

Dy, in.




A Integral Form of the Mas Conservation Equation

A balloon is being inflated with an air supply by a small tube. The velocity within
the 1-cm-diameter tube is 10 m/s.

Find the rate of growth of the radius R at the instant when R = 0.5 m.

Given:

4
Surface of a sphere A =47R? Ballon volume= §7Z'R3

Sphere

Assumption:
- Density of air remain constant

- Cross-sectional area of tube << Surface of sphere

p = const.




1 Integral Form of the Mas Conservation Equation

Solution

It is convenient to define a deformable control surface just outside the balloon, expanding at
the same rate R(f). Equation (3.16) applies with V, = 0 on the balloon surface and V, =V,
at the pipe entrance. For mass change, we take B =m and B = dm/dm = 1. Equation (3.16)
becomes

Dm 0 . 1
Nt = ar I p d¥+ I (pV).dA:O ﬁ‘u’ﬁl’ﬂgﬂ 1{‘
Dt system at CV. C.S. density:p
Mass flux occurs only at the inlet, so that the control-surface integral reduces to the single neg- /x -
ative term —p;A,V,. The fluid mass within the control volume is approximately the average den- expands outward
sity times the volume of a sphere. The equation thus becomes with balloon radius R(1)
Dm o 4 -
— = —(=7R°p)+ j (pV)edA=0
Dt system at 3 C.S.
4 OR

— —ap[BR*——pV.A =0
372',0 o PVIA

_ R_ViA _V,*zr?  Vp*r?  10*0.005°

_ — = L= 1= —=25x10" m/s
ot 4rzR 4R 4R 4*0.5




2 Integral Form of the Mas Conservation Equation

om
Dt 8'[

e Chose the control volume inside the balloon
* Flow velocity will be the same as the balloon radius growth rate

IpdV—+I(pV) edA=0

system

dR

— =V,

dt

*  Flow inside the control volume is steady, therefore: v 10!: .
Dm : : |
—| == | pd¥+ | (pV)edA=0 o '
Dt gystem ot CJ; P .[ ('0 )e p = const. A1 '
Dm - - d=1cm
— =0+ V)edA=0
Dt system I(p )
= pAV, - pV,A =0
= p4rnR? R —pVzr? =0
ot 2
* 2 * 2 * 2
S Ry i VT 1070095 55,104 mys
ot 47R 4R 4*0.5
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