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0 Reynolds Transport Theorem
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0 Gonservation of Momentum

. o
. Newton’s second law states that:
[Time change rate of momentum of a system] = [Resultant external force acting on the system]
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Reynolds Transport Theorem:
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« Integral form of the Mass Conservation Equation:
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- Gonservation of Momentum - Integral form
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Surface forces such as pressure and shear stress. The surface forces usually «

urface
expressed as FSW& .[P ® d4,where P is the stress tensor exerted by the
— — — Fixed control surface and system
surroundings on the particle surface. P =—FPJ + T boundary at time ¢
— —— System boundary at time 7 + &1
Fo Body forces such as electromagnetic, eravitational forces. Usually the body force can

be expressed as F body = I o }'. d¥ , where }" is a vector which references the
CF

resultant force per unit mass. Control surface

*  Integral form of the Momentum Conservation Equation

E jp\7 dV- + j(p\7\7)od5\= Iﬁ'd/&‘F jpfd\%
tCV C.S C.S. CV.




0 Gonservation of Momentum - Integral form

Flow past a pipe bend

Area= A4

Velocity = Vl

Density = Py

Pressure = Py 4

Elevation =2
Area= AQ_
Velocity = V2
Density =P2

Pressure = P2
Elevation =22

» Consider the pipe bend shown above. We may first draw a

1 . A E ¢ N
I free body diagram for the control volume with the forces: G




0 Gonservation of Momentum - Integral form

Problem Solution:
1. Chose a control volume:
2. Applying momentum conservation equation.
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Paying due regard to the positive x and y directions, we may write the summation of forces in these y
two directions:
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Relating these components to the net change of momentum flux through the inlet and exit surfaces

Impact force the

x-Direction
_ _ W bend is acting on the
iy — py A, cos0—F, = pQ(V, cos 0V, ) Weight of flid  fluidinside control
y in the control volume
volume if the
T : bendisin a
y-Direction vt sigcn

F, - p,4,sin@-W = pQ(V,sin6-0)

F=[FI+F

¢=tan”(F,/F,)

As a reaction, the impact force on the pipe bend is equal in magnitude, but opposite in direction to
the one on the fluid.




- Gonservation of Momentum - Integral form

Example Problem:

A static thrust stand as shown in the Figure is to be designed for testing a jet engine. The flow
conditions are known for a typical test: The intake flow velocity = 200m/s; exhaust gas velocity
=500 m/s; inlet cross-section area = 1.0 m?; intake static pressure = -22.5 kPa (gauge) = 78.5
kPa(absolute); intake temperature = 268K; exhaust static pressure = 0 kPa =101 kPa(absolute).
Estimate the thrust force generated by the jet engine on a static thrust stand.

P,ogc=-22.5Pa Pgage = 0 kPa
e me—-
inlet velocity outlet velocity
200 m/s 500 m/s

INTAKE COMPRESSION COMBUETION EXHAUST

A Infet/ Combustion Chambers Torbine/

Cold Seclion ' Hot Section




0 Gonservation of Momentum - Integral form

Problem Solution: Cankrol vuluma

1. Chose a control volume: N e
I

2. Applying momentum conservation equatior . : -
a uy _-_: {‘M =10
7 7 7 N _ = = ~ Section (2)
a IV,OdV‘-F J. (va)’dA_ZFsurface_i_zFbody /fl —~ '
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*Since the flow is steady, the momentum equation is simplified as:

j (\7 ,0\7) odA= Z IEsurface + Z IEbOdy
C.S.

Pyage=-22.5Pa Pgage = 0 kPa
. . . ' —_— ——
Forces along X- direction: et vElaey outlet velocity

500 m/s

Z |:x = Fprust T PlAl o PZAZ e

* Momentum along X- direction:

[ (upV)edA=[(upV)sdA+ [ (upV)edA=-V,p AV, +V,p0,AV,
A Ay

C.S.

based on consevation of mass = mass flowrate m= p AV, = p,AV,
Therefore: [ (upV)edA=m(V,-V,)) = R, =m(,-V,)-RA+PA,
C.S




0 Gonservation of Momentum - Integral form

Problem Solution - continue:
1. Chose a control volume:

2. Applying momentum conservation equatior

|:thrust =m (VZ _Vl) o PlAi + PZAZ

V, =200m/s

P, =—22.5kPa(gauge) = 78.5kPa(absolute)
3

5 P 785x10 _1.02kg /m’

" RT, 287.5x268
m= pV,A =1.02x200x1.0=204kg /s
V, =500m/s

Therefore :

I:thrust =m (VZ _Vl) - PlAi + PZAZ

= 204 (500 — 200) — (—22.5*10° x1.0) + 0x A,

= 61200+ 22500
=83/7/00N

Control volume
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- Gonservation of Momentum - Integral form

Example-Drag on an airfoil *  Airfoil aerodynamics

* https://www.youtube.com/watch?v=8fk2J5LtdSgq

Trailing edge

* Problem : Two-dimensional steady flow around the airfoil
where velocity profile is given (measured) at upstream and a
downstream location. Find an expression for the drag force
on the airfoil,

Chord line



https://www.youtube.com/watch?v=8fk2J5LtdSg
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