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1 Reynolds Transport Theorem
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v C.s.

Where o 1s any intensive property corresponding to N. (1e., @ = N per unit mas
and it can be used for different quantities as follows.
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Q Conservation of Mass

Physical principle: Mass can be neither created or destroyed

Myysten — constant
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» Integral form of the Mass Conservation Equation:
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0 Gonservation of Mass

. Physical principle: Mass can be neither created or destroyed.

dv
L @
« Integral form: j 6—'0 dV- + j (pV)CdAIO
CAM. at C.S
System

« Applying Guess divergence theorem, we convert the surface
integral to volume integral to obtain:

op - ~ op - op -
L dV-+ V)edA= | = dV-+ | V V)dV- = L4V V)1dV- =0
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» Differential form of the mass conservation equation
(or continuity equation):

Simplifications:
- 0 - - Form incompressible flows:
a—'0+V0(,0V):—'O+VOV,O+,0V0V P ap
ot ot £ 1s constant, then E =0; Vp=0

Do i .
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0 Gonservation of Mass

Example 01:
* The x-component velocity is given by u(x,y)=Ay?*+C in an 2D
incompressible flow.

* Please determine y-component velocity v(x,y) if v(x,0)=0
as would be the case in flow between parallel plates.
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- Gonservation of Mass

Solution to Example 01:

Do .
——+pVeV =0
Dt P
= VeV =0
ou ov
= —+—=0
oX oy
v__ou__aAyh) _,
oy OX OX

%:O:v(x,y)z f(X)

But=v(x,0)=0= f(x)=0
=V(Xx,y)=0
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0 Gonservation of Mass

Example 02:

For a two-dimensional steady, inviscid, incompressible flow around a cylinder of radius of R
as shown in the figure, the velocity field is given as :

2 2

V(r,0)= Um(l—R—z)cosé?-ér —Uw(1+R—2)sin6’-é9;
s ¥

where U/ 1s the velocity of the undisturbed stream (therefore, {/  is constant).
Is the flow with the velocity field given above physically possible?

op - 00 = —
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- Gonservation of Mass

For a two-dimensional steady, inviscid, incompressible flow around a cylinder of radius of R & e,
as shown in the figure, the velocity field is given as : ‘”v

2 2

V(r,0)= Um,(l—R—z)cosﬁ-ér —Uw(l+R—2')sin6?-é9;
r r

where U/ 1s the velocity of the undisturbed stream (therefore, {/  is constant). U S, ¥ S
» Isthe flow with the velocity field given above physically possible?

For a steady, inviscid, incompressible flow, the jnass conservation equation will be: V - V=0
Expend it in the cylindncal system, it will be:

(:'(-'F;) N (jp: N 6(?"VI) _

l 5":?"]:'};) + G]?.-F + G{rprf}] =” {}
r cr e} Oz or v Oz (hLhV.) (hhV.) (hhV.)
— 1 0 V,) O \Y 0 V
For the velocity field given abowve: VeV = [ 23 27+ —2 20+ —— ]
il R hh,hs ™6 o, 0,
V. =U_(l-—)cost: V,=-U_(1+—)smé&. V. =0
¥ i
Since
S g . 2 :
c(;qu,_) . [ (r R Jeos@=U_(1+ R,, Jeosd
cr or r re
= = : :
;F;’ = a;[ U (14 ‘:-22 Jsmél=-U_(1+4 ‘:-23 Jeosd
2Vy)
Oz
Therelore:

R* R’
— =U_ (1+—)cos@-U_(1l+—)cos&+0=0
cr ce oz - e
The velocity satisies the mass conservation equation, 1. e., with the velocity field given above 15
physically possible!
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0 Gonservation of Momentum

. o
. Newton’s second law states that:
[Time change rate of momentum of a system] = [Resultant external force acting on the system]

= Z IES — Z IESurface + Z Ifbody ./dU

_/

Reynolds Transport Theorem:
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* Integral form of the Mass Conservation Equation: j \
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0 Gonservation of Momentum
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expressed as F ;. = J.P ® d4, where P is the stress tensor exerted by the i
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- Gonservation of Momentum

+ Using divergence theorem for the control surface integrals, we obtained
following equation after noting that the limits do not change.

Q I p\7 V- + J Vo(p\7\7)d\7’—= IV0|5dV—+ J pfd’v’- - /T/Controlvolume
atC C.S. cs. cv. ,

= | [a(g:/) 1 Ve(pVV)-VeP—pfldv-=0

:5(§:’)+v.(p\7\7)_v.ﬁ_pf:o

- Expand the above equation using Ve (¢ ,5\) — (,5\ oV)p+pVe A

a(gt)JrV (pVV) - VeP pf=

:>V‘2‘t’+pz—v+vv (PV)+(oV e V)V —VeP —pf =0

—

:>\7[_P+v.(p\7)]+p%+(p\7.v)\7_v,,5'_p F_0 « The differential form of the

ot momentum equation is:
:p%+(p\70V)\7—VOI5—pF:O DV ~ -
ﬁ p——VeP—pf=0
DV ~ -
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0 The Navier-Stokes Enuations

a(pV)
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Re-writing the equation after substitution leads to:
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0 The Navier-Stokes Equations
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0 The Navier-Stokes Enuations

DV N -
= AVP-Ver—pf=0
P Dt P

Stress Tensor

The stress tensor has nine components:
gﬂ

r=lr, o, 7
rxz

Newtonian fluid,

F= u[VP + (VY —%(v « )7

For incompressible flow, in Cartesian coordinate
system

Ou +5i)
ex .

i i

T{',r' :r{":(

* Newtonian and non-Newtonian fluids
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